File: turbomole.py

package info (click to toggle)
python-ase 3.21.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,936 kB
  • sloc: python: 122,428; xml: 946; makefile: 111; javascript: 47
file content (2137 lines) | stat: -rw-r--r-- 79,037 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
# type: ignore
"""
This module defines an ASE interface to Turbomole: http://www.turbomole.com/

QMMM functionality provided by Markus Kaukonen <markus.kaukonen@iki.fi>.

Please read the license file (../../LICENSE)

Contact: Ivan Kondov <ivan.kondov@kit.edu>
"""
import os
import re
import warnings
from subprocess import Popen, PIPE
from math import log10, floor
import numpy as np
from ase import Atoms
from ase.units import Ha, Bohr
from ase.io import read, write
from ase.calculators.calculator import FileIOCalculator
from ase.calculators.calculator import PropertyNotImplementedError, ReadError


def read_output(regex):
    """collects all matching strings from the output"""
    hitlist = []
    checkfiles = []
    for filename in os.listdir('.'):
        if filename.startswith('job.') or filename.endswith('.out'):
            checkfiles.append(filename)
    for filename in checkfiles:
        with open(filename, 'rt') as f:
            lines = f.readlines()
            for line in lines:
                match = re.search(regex, line)
                if match:
                    hitlist.append(match.group(1))
    return hitlist


def execute(args, input_str=None, error_test=True,
            stdout_tofile=True):
    """executes a turbomole executable and process the outputs"""

    if isinstance(args, str):
        args = args.split()

    if stdout_tofile:
        stdout_file = 'ASE.TM.' + args[0] + '.out'
        stdout = open(stdout_file, 'w')
    else:
        stdout = PIPE

    if input_str:
        stdin = input_str.encode()
    else:
        stdin = None

    message = 'TM command "' + args[0] + '" execution failed'
    try:
        proc = Popen(args, stdin=PIPE, stderr=PIPE, stdout=stdout)
        res = proc.communicate(input=stdin)
        if error_test:
            error = res[1].decode()
            if 'abnormally' in error or 'ended normally' not in error:
                message += ' with error:\n' + error
                message += '\nSee file ' + stdout_file + ' for details.\n'
                raise RuntimeError(message)
    except RuntimeError as err:
        raise err
    except OSError as err:
        raise OSError(err.args[1] + '\n' + message)
    else:
        print('TM command: "' + args[0] + '" successfully executed')

    if not stdout_tofile:
        return res[0].decode()


def add_data_group(data_group, string=None, raw=False):
    """write a turbomole data group to control file"""
    if raw:
        data = data_group
    else:
        data = '$' + data_group
        if string:
            data += ' ' + string
        data += '\n'
    f = open('control', 'r+')
    lines = f.readlines()
    f.seek(0)
    f.truncate()
    lines.insert(2, data)
    f.write(''.join(lines))
    f.close()


def read_data_group(data_group):
    """read a turbomole data group from control file"""
    args = ['sdg', data_group]
    dg = execute(args, error_test=False, stdout_tofile=False)
    return dg.strip()


def delete_data_group(data_group):
    """delete a turbomole data group from control file"""
    command = ['kdg', data_group]
    execute(command, error_test=False, stdout_tofile=False)


class TurbomoleOptimizer:
    def __init__(self, atoms, calc):
        self.atoms = atoms
        self.calc = calc
        self.atoms.calc = self.calc

    def todict(self):
        return {'type': 'optimization',
                'optimizer': 'TurbomoleOptimizer'}

    def run(self, fmax=None, steps=None):
        if fmax is not None:
            self.calc.parameters['force convergence'] = fmax
            self.calc.verify_parameters()
        if steps is not None:
            self.calc.parameters['geometry optimization iterations'] = steps
            self.calc.verify_parameters()
        self.calc.calculate()
        self.atoms.positions[:] = self.calc.atoms.positions
        self.calc.parameters['task'] = 'energy'


class Turbomole(FileIOCalculator):

    """constants"""
    name = 'Turbomole'

    implemented_properties = ['energy', 'forces', 'dipole', 'free_energy',
                              'charges']

    available_functionals = [
        'slater-dirac-exchange', 's-vwn', 'vwn', 's-vwn_Gaussian', 'pwlda',
        'becke-exchange', 'b-lyp', 'b-vwn', 'lyp', 'b-p', 'pbe', 'tpss',
        'bh-lyp', 'b3-lyp', 'b3-lyp_Gaussian', 'pbe0', 'tpssh', 'lhf', 'oep',
        'b97-d', 'b2-plyp'
    ]
    tm_files = [
        'control', 'coord', 'basis', 'auxbasis', 'energy', 'gradient', 'mos',
        'alpha', 'beta', 'statistics', 'GEO_OPT_CONVERGED', 'GEO_OPT_FAILED',
        'not.converged', 'nextstep', 'hessapprox', 'job.last', 'job.start',
        'optinfo', 'statistics', 'converged', 'vibspectrum',
        'vib_normal_modes', 'hessian', 'dipgrad', 'dscf_problem', 'pc.txt',
        'pc_gradients.txt'
    ]
    tm_tmp_files = [
        'errvec', 'fock', 'oldfock', 'dens', 'ddens', 'diff_densmat',
        'diff_dft_density', 'diff_dft_oper', 'diff_fockmat', 'diis_errvec',
        'diis_oldfock'
    ]
    spec_names = {
        'default': 'default_parameters',
        'comment': 'parameter_comment',
        'updateable': 'parameter_updateable',
        'type': 'parameter_type',
        'key': 'parameter_key',
        'group': 'parameter_group',
        'units': 'parameter_units',
        'mapping': 'parameter_mapping',
        'non-define': 'parameter_no_define'
    }

    # flat dictionaries with parameters attributes
    default_parameters = {}
    parameter_comment = {}
    parameter_updateable = {}
    parameter_type = {}
    parameter_key = {}
    parameter_group = {}
    parameter_units = {}
    parameter_mapping = {}
    parameter_no_define = {}

    # nested dictionary with parameters attributes
    parameter_spec = {
        'automatic orbital shift': {
            'comment': None,
            'default': 0.1,
            'group': 'scforbitalshift',
            'key': 'automatic',
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'basis set definition': {
            'comment': 'used only in restart',
            'default': None,
            'group': 'basis',
            'key': None,
            'type': dict,
            'units': None,
            'updateable': False
        },
        'basis set name': {
            'comment': 'current default from module "define"',
            'default': 'def-SV(P)',
            'group': 'basis',
            'key': None,
            'type': str,
            'units': None,
            'updateable': False
        },
        'closed-shell orbital shift': {
            'comment': 'does not work with automatic',
            'default': None,
            'group': 'scforbitalshift',
            'key': 'closedshell',
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'damping adjustment step': {
            'comment': None,
            'default': None,
            'group': 'scfdamp',
            'key': 'step',
            'type': float,
            'units': None,
            'updateable': True
        },
        'density convergence': {
            'comment': None,
            'default': None,
            'group': 'denconv',
            'key': 'denconv',
            'mapping': {
                'to_control': lambda a: int(-log10(a)),
                'from_control': lambda a: 10**(-a)
            },
            'non-define': True,
            'type': float,
            'units': None,
            'updateable': True
        },
        'density functional': {
            'comment': None,
            'default': 'b-p',
            'group': 'dft',
            'key': 'functional',
            'type': str,
            'units': None,
            'updateable': True
        },
        'energy convergence': {
            'comment': 'jobex -energy <int>',
            'default': None,
            'group': None,
            'key': None,
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'fermi annealing factor': {
            'comment': None,
            'default': 0.95,
            'group': 'fermi',
            'key': 'tmfac',
            'type': float,
            'units': None,
            'updateable': True
        },
        'fermi final temperature': {
            'comment': None,
            'default': 300,
            'group': 'fermi',
            'key': 'tmend',
            'type': float,
            'units': 'Kelvin',
            'updateable': True
        },
        'fermi homo-lumo gap criterion': {
            'comment': None,
            'default': 0.1,
            'group': 'fermi',
            'key': 'hlcrt',
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'fermi initial temperature': {
            'comment': None,
            'default': 300,
            'group': 'fermi',
            'key': 'tmstrt',
            'type': float,
            'units': 'Kelvin',
            'updateable': True
        },
        'fermi stopping criterion': {
            'comment': None,
            'default': 0.001,
            'group': 'fermi',
            'key': 'stop',
            'mapping': {
                'to_control': lambda a: a / Ha,
                'from_control': lambda a: a * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'force convergence': {
            'comment': 'jobex -gcart <int>',
            'default': None,
            'group': None,
            'key': None,
            'mapping': {
                'to_control': lambda a: a / Ha * Bohr,
                'from_control': lambda a: a * Ha / Bohr
            },
            'type': float,
            'units': 'eV/Angstrom',
            'updateable': True
        },
        'geometry optimization iterations': {
            'comment': 'jobex -c <int>',
            'default': None,
            'group': None,
            'key': None,
            'type': int,
            'units': None,
            'updateable': True
        },
        'grid size': {
            'comment': None,
            'default': 'm3',
            'group': 'dft',
            'key': 'gridsize',
            'type': str,
            'units': None,
            'updateable': True
        },
        'ground state': {
            'comment': 'only this is currently supported',
            'default': True,
            'group': None,
            'key': None,
            'type': bool,
            'units': None,
            'updateable': False
        },
        'initial damping': {
            'comment': None,
            'default': None,
            'group': 'scfdamp',
            'key': 'start',
            'type': float,
            'units': None,
            'updateable': True
        },
        'initial guess': {
            'comment': '"eht", "hcore" or {"use": "<path/to/control>"}',
            'default': 'eht',
            'group': None,
            'key': None,
            'type': None,
            'units': None,
            'updateable': False
        },
        'minimal damping': {
            'comment': None,
            'default': None,
            'group': 'scfdamp',
            'key': 'min',
            'type': float,
            'units': None,
            'updateable': True
        },
        'multiplicity': {
            'comment': None,
            'default': None,
            'group': None,
            'key': None,
            'type': int,
            'units': None,
            'updateable': False
        },
        'non-automatic orbital shift': {
            'comment': None,
            'default': False,
            'group': 'scforbitalshift',
            'key': 'noautomatic',
            'type': bool,
            'units': None,
            'updateable': True
        },
        'point group': {
            'comment': 'only c1 supported',
            'default': 'c1',
            'group': 'symmetry',
            'key': 'symmetry',
            'type': str,
            'units': None,
            'updateable': False
        },
        'ri memory': {
            'comment': None,
            'default': 1000,
            'group': 'ricore',
            'key': 'ricore',
            'type': int,
            'units': 'Megabyte',
            'updateable': True
        },
        'rohf': {
            'comment': 'used only in restart',
            'default': None,
            'group': None,
            'key': None,
            'type': bool,
            'units': None,
            'updateable': False
        },
        'scf energy convergence': {
            'comment': None,
            'default': None,
            'group': 'scfconv',
            'key': 'scfconv',
            'mapping': {
                'to_control': lambda a: int(floor(-log10(a / Ha))),
                'from_control': lambda a: 10**(-a) * Ha
            },
            'type': float,
            'units': 'eV',
            'updateable': True
        },
        'scf iterations': {
            'comment': None,
            'default': 60,
            'group': 'scfiterlimit',
            'key': 'scfiterlimit',
            'type': int,
            'units': None,
            'updateable': True
        },
        'task': {
            'comment': '"energy calculation" = "energy", '
                       '"gradient calculation" = "gradient", '
                       '"geometry optimization" = "optimize", '
                       '"normal mode analysis" = "frequencies"',
            'default': 'energy',
            'group': None,
            'key': None,
            'type': str,
            'units': None,
            'updateable': True
        },
        'title': {
            'comment': None,
            'default': '',
            'group': 'title',
            'key': 'title',
            'type': str,
            'units': None,
            'updateable': False
        },
        'total charge': {
            'comment': None,
            'default': 0,
            'group': None,
            'key': None,
            'type': int,
            'units': None,
            'updateable': False
        },
        'uhf': {
            'comment': None,
            'default': None,
            'group': 'uhf',
            'key': 'uhf',
            'type': bool,
            'units': None,
            'updateable': False
        },
        'use basis set library': {
            'comment': 'only true implemented',
            'default': True,
            'group': 'basis',
            'key': None,
            'type': bool,
            'units': None,
            'updateable': False
        },
        'use dft': {
            'comment': None,
            'default': True,
            'group': 'dft',
            'key': 'dft',
            'type': bool,
            'units': None,
            'updateable': False
        },
        'use fermi smearing': {
            'comment': None,
            'default': False,
            'group': 'fermi',
            'key': 'fermi',
            'type': bool,
            'units': None,
            'updateable': True
        },
        'use redundant internals': {
            'comment': None,
            'default': False,
            'group': 'redundant',
            'key': None,
            'type': bool,
            'units': None,
            'updateable': False
        },
        'use resolution of identity': {
            'comment': None,
            'default': False,
            'group': 'rij',
            'key': 'rij',
            'type': bool,
            'units': None,
            'updateable': False
        },
        'numerical hessian': {
            'comment': 'NumForce will be used if dictionary exists',
            'default': None,
            'group': None,
            'key': None,
            'type': dict,
            'units': None,
            'updateable': True
        },
        'esp fit': {
            'comment': 'ESP fit',
            'default': None,
            'group': 'esp_fit',
            'key': 'esp_fit',
            'type': str,
            'units': None,
            'updateable': True,
            'non-define': True
        }
    }

    # initialize attributes
    parameters = {}
    results = {}
    initialized = False
    pc_initialized = False
    converged = False
    updated = False
    update_energy = None
    update_forces = None
    update_geometry = None
    update_hessian = None
    atoms = None
    forces = None
    e_total = None
    dipole = None
    charges = None
    version = None
    runtime = None
    datetime = None
    hostname = None
    pcpot = None

    def __init__(self, label=None, calculate_energy='dscf',
                 calculate_forces='grad', post_HF=False, atoms=None,
                 restart=False, define_str=None, control_kdg=None,
                 control_input=None, reset_tolerance=1e-2, **kwargs):

        FileIOCalculator.__init__(self)

        self.label = label
        self.calculate_energy = calculate_energy
        self.calculate_forces = calculate_forces
        self.post_HF = post_HF
        self.restart = restart
        self.define_str = define_str
        self.control_kdg = control_kdg
        self.control_input = control_input
        self.reset_tolerance = reset_tolerance

        # construct flat dictionaries with parameter attributes
        for p in self.parameter_spec:
            for k in self.spec_names:
                if k in list(self.parameter_spec[p].keys()):
                    subdict = getattr(self, self.spec_names[k])
                    subdict.update({p: self.parameter_spec[p][k]})

        if self.restart:
            self._set_restart(kwargs)
        else:
            self.set_parameters(kwargs)
            self.verify_parameters()
            self.reset()

        if atoms is not None:
            atoms.calc = self
            self.set_atoms(atoms)

    def __getitem__(self, item):
        return getattr(self, item)

    def _set_restart(self, params_update):
        """constructs atoms, parameters and results from a previous
        calculation"""

        # read results, key parameters and non-key parameters
        self.read_restart()
        params_old = self.read_parameters()

        # filter out non-updateable parameters
        for p in list(params_update.keys()):
            if not self.parameter_updateable[p]:
                del params_update[p]
                warnings.warn('"' + p + '"' + ' cannot be changed')

        # update and verify parameters
        params_new = params_old.copy()
        params_new.update(params_update)
        self.set_parameters(params_new)
        self.verify_parameters()

        # if a define string is specified then run define
        if self.define_str:
            execute('define', input_str=self.define_str)

        # updates data groups in the control file
        if params_update or self.control_kdg or self.control_input:
            self._update_data_groups(params_old, params_update)

        self.initialized = True
        # more precise convergence tests are necessary to set these flags:
        self.update_energy = True
        self.update_forces = True
        self.update_geometry = True
        self.update_hessian = True

    def _update_data_groups(self, params_old, params_update):
        """updates data groups in the control file"""
        # construct a list of data groups to update
        grps = []
        for p in list(params_update.keys()):
            if self.parameter_group[p] is not None:
                grps.append(self.parameter_group[p])

        # construct a dictionary of data groups and update params
        dgs = {}
        for g in grps:
            dgs[g] = {}
            for p in self.parameter_key:
                if g == self.parameter_group[p]:
                    if self.parameter_group[p] == self.parameter_key[p]:
                        if p in list(params_update.keys()):
                            val = params_update[p]
                            pmap = list(self.parameter_mapping.keys())
                            if val is not None and p in pmap:
                                fun = self.parameter_mapping[p]['to_control']
                                val = fun(params_update[p])
                            dgs[g] = val
                    else:
                        if p in list(params_old.keys()):
                            val = params_old[p]
                            pmap = list(self.parameter_mapping.keys())
                            if val is not None and p in pmap:
                                fun = self.parameter_mapping[p]['to_control']
                                val = fun(params_old[p])
                            dgs[g][self.parameter_key[p]] = val
                        if p in list(params_update.keys()):
                            val = params_update[p]
                            pmap = list(self.parameter_mapping.keys())
                            if val is not None and p in pmap:
                                fun = self.parameter_mapping[p]['to_control']
                                val = fun(params_update[p])
                            dgs[g][self.parameter_key[p]] = val

        # write dgs dictionary to a data group
        for g in dgs:
            delete_data_group(g)
            if isinstance(dgs[g], dict):
                string = ''
                for key in list(dgs[g].keys()):
                    if dgs[g][key] is None:
                        continue
                    elif isinstance(dgs[g][key], bool):
                        if dgs[g][key]:
                            string += ' ' + key
                    else:
                        string += ' ' + key + '=' + str(dgs[g][key])
                add_data_group(g, string=string)
            else:
                if isinstance(dgs[g], bool):
                    if dgs[g]:
                        add_data_group(g, string='')
                else:
                    add_data_group(g, string=str(dgs[g]))

        self._set_post_define()

    def _set_post_define(self):
        """non-define keys, user-specified changes in the control file"""
        # process key parameters that are not written with define
        for p in list(self.parameters.keys()):
            if p in list(self.parameter_no_define.keys()):
                if self.parameter_no_define[p]:
                    if self.parameters[p]:
                        if p in list(self.parameter_mapping.keys()):
                            fun = self.parameter_mapping[p]['to_control']
                            val = fun(self.parameters[p])
                        else:
                            val = self.parameters[p]
                        delete_data_group(self.parameter_group[p])
                        add_data_group(self.parameter_group[p], str(val))
                    else:
                        delete_data_group(self.parameter_group[p])

        # delete user-specified data groups
        if self.control_kdg:
            for dg in self.control_kdg:
                delete_data_group(dg)

        # append user-defined input to control
        if self.control_input:
            for inp in self.control_input:
                add_data_group(inp, raw=True)

        # add point charges if pcpot defined:
        if self.pcpot:
            self.set_point_charges()

    def set_parameters(self, params):
        """loads the default parameters and updates with actual values"""
        self.parameters = self.default_parameters.copy()
        self.parameters.update(params)
        if self.parameters['use resolution of identity']:
            self.calculate_energy = 'ridft'
            self.calculate_forces = 'rdgrad'

    def verify_parameters(self):
        """detect wrong or not implemented parameters"""

        # kwargs parameters are ignored if user provides define_str
        if self.define_str is not None:
            assert isinstance(self.define_str, str)
            assert len(self.define_str) != 0
            return

        for par in self.parameters:
            assert par in self.parameter_spec, 'invalid parameter: ' + par

        if self.parameters['use dft']:
            func_list = [x.lower() for x in self.available_functionals]
            func = self.parameters['density functional']
            assert func.lower() in func_list, (
                'density functional not available / not supported'
            )

        assert self.parameters['multiplicity'], 'multiplicity not defined'

        if self.parameters['rohf']:
            raise NotImplementedError('ROHF not implemented')
        if self.parameters['initial guess'] not in ['eht', 'hcore']:
            if not (isinstance(self.parameters['initial guess'], dict) and
                    'use' in self.parameters['initial guess'].keys()):
                raise ValueError('Wrong input for initial guess')
        if not self.parameters['use basis set library']:
            raise NotImplementedError('Explicit basis set definition')
        if self.parameters['point group'] != 'c1':
            raise NotImplementedError('Point group not impemeneted')

    def reset(self):
        """removes all turbomole input, output and scratch files,
        and deletes results dict and the atoms object"""
        self.atoms = None
        self.results = {}
        self.results['calculation parameters'] = {}
        ase_files = [f for f in os.listdir('.') if f.startswith('ASE.TM.')]
        for f in self.tm_files + self.tm_tmp_files + ase_files:
            if os.path.exists(f):
                os.remove(f)
        self.initialized = False
        self.pc_initialized = False
        self.converged = False

    def set_atoms(self, atoms):
        """Create the self.atoms object and writes the coord file. If
        self.atoms exists a check for changes and an update of the atoms
        is performed. Note: Only positions changes are tracked in this
        version.
        """
        changes = self.check_state(atoms, tol=1e-13)
        if self.atoms == atoms or 'positions' not in changes:
            # print('two atoms obj are (almost) equal')
            if self.updated and os.path.isfile('coord'):
                self.updated = False
                a = read('coord').get_positions()
                if np.allclose(a, atoms.get_positions(), rtol=0, atol=1e-13):
                    return
            else:
                return

        changes = self.check_state(atoms, tol=self.reset_tolerance)
        if 'positions' in changes:
            # print(two atoms obj are different')
            self.reset()
        else:
            # print('two atoms obj are slightly different')
            if self.parameters['use redundant internals']:
                self.reset()

        write('coord', atoms)
        self.atoms = atoms.copy()
        self.update_energy = True
        self.update_forces = True
        self.update_geometry = True
        self.update_hessian = True

    def get_define_str(self):
        """construct a define string from the parameters dictionary"""
        define_str_tpl = (
            '\n__title__\na coord\n__inter__\n'
            'bb all __basis_set__\n*\neht\ny\n__charge_str____occ_str__'
            '__single_atom_str____norb_str____dft_str____ri_str__'
            '__scfiterlimit____fermi_str____damp_str__q\n'
        )

        params = self.parameters

        if params['use redundant internals']:
            internals_str = 'ired\n*'
        else:
            internals_str = '*\nno'
        charge_str = str(params['total charge']) + '\n'

        if params['multiplicity'] == 1:
            if params['uhf']:
                occ_str = 'n\ns\n*\n'
            else:
                occ_str = 'y\n'
        elif params['multiplicity'] == 2:
            occ_str = 'y\n'
        elif params['multiplicity'] == 3:
            occ_str = 'n\nt\n*\n'
        else:
            unpaired = params['multiplicity'] - 1
            if params['use fermi smearing']:
                occ_str = 'n\nuf ' + str(unpaired) + '\n*\n'
            else:
                occ_str = 'n\nu ' + str(unpaired) + '\n*\n'

        if len(self.atoms) != 1:
            single_atom_str = ''
        else:
            single_atom_str = '\n'

        if params['multiplicity'] == 1 and not params['uhf']:
            norb_str = ''
        else:
            norb_str = 'n\n'

        if params['use dft']:
            dft_str = 'dft\non\n*\n'
        else:
            dft_str = ''

        if params['density functional']:
            dft_str += 'dft\nfunc ' + params['density functional'] + '\n*\n'

        if params['grid size']:
            dft_str += 'dft\ngrid ' + params['grid size'] + '\n*\n'

        if params['use resolution of identity']:
            ri_str = 'ri\non\nm ' + str(params['ri memory']) + '\n*\n'
        else:
            ri_str = ''

        if params['scf iterations']:
            scfmaxiter = params['scf iterations']
            scfiter_str = 'scf\niter\n' + str(scfmaxiter) + '\n\n'
        else:
            scfiter_str = ''
        if params['scf energy convergence']:
            conv = floor(-log10(params['scf energy convergence'] / Ha))
            scfiter_str += 'scf\nconv\n' + str(int(conv)) + '\n\n'

        fermi_str = ''
        if params['use fermi smearing']:
            fermi_str = 'scf\nfermi\n'
            if params['fermi initial temperature']:
                par = str(params['fermi initial temperature'])
                fermi_str += '1\n' + par + '\n'
            if params['fermi final temperature']:
                par = str(params['fermi final temperature'])
                fermi_str += '2\n' + par + '\n'
            if params['fermi annealing factor']:
                par = str(params['fermi annealing factor'])
                fermi_str += '3\n' + par + '\n'
            if params['fermi homo-lumo gap criterion']:
                par = str(params['fermi homo-lumo gap criterion'])
                fermi_str += '4\n' + par + '\n'
            if params['fermi stopping criterion']:
                par = str(params['fermi stopping criterion'])
                fermi_str += '5\n' + par + '\n'
            fermi_str += '\n\n'

        damp_str = ''
        damp_keys = ('initial damping', 'damping adjustment step',
                     'minimal damping')
        damp_pars = [params[k] for k in damp_keys]
        if any(damp_pars):
            damp_str = 'scf\ndamp\n'
            for par in damp_pars:
                par_str = str(par) if par else ''
                damp_str += par_str + '\n'
            damp_str += '\n'

        define_str = define_str_tpl
        define_str = re.sub('__title__', params['title'], define_str)
        define_str = re.sub('__basis_set__', params['basis set name'],
                            define_str)
        define_str = re.sub('__charge_str__', charge_str, define_str)
        define_str = re.sub('__occ_str__', occ_str, define_str)
        define_str = re.sub('__norb_str__', norb_str, define_str)
        define_str = re.sub('__dft_str__', dft_str, define_str)
        define_str = re.sub('__ri_str__', ri_str, define_str)
        define_str = re.sub('__single_atom_str__', single_atom_str,
                            define_str)
        define_str = re.sub('__inter__', internals_str, define_str)
        define_str = re.sub('__scfiterlimit__', scfiter_str, define_str)
        define_str = re.sub('__fermi_str__', fermi_str, define_str)
        define_str = re.sub('__damp_str__', damp_str, define_str)

        return define_str

    def initialize(self):
        """prepare turbomole control file by running module 'define'"""
        if self.initialized:
            return
        self.verify_parameters()
        if not self.atoms:
            raise RuntimeError('atoms missing during initialization')
        if not os.path.isfile('coord'):
            raise IOError('file coord not found')

        if self.define_str is not None:
            define_str = self.define_str
        else:
            define_str = self.get_define_str()

        # run define
        execute('define', input_str=define_str)

        # process non-default initial guess
        iguess = self.parameters['initial guess']
        if isinstance(iguess, dict) and 'use' in iguess.keys():
            # "use" initial guess
            if self.parameters['multiplicity'] != 1 or self.parameters['uhf']:
                define_str = '\n\n\ny\nuse ' + iguess['use'] + '\nn\nn\nq\n'
            else:
                define_str = '\n\n\ny\nuse ' + iguess['use'] + '\nn\nq\n'
            execute('define', input_str=define_str)
        elif self.parameters['initial guess'] == 'hcore':
            # "hcore" initial guess
            if self.parameters['multiplicity'] != 1 or self.parameters['uhf']:
                delete_data_group('uhfmo_alpha')
                delete_data_group('uhfmo_beta')
                add_data_group('uhfmo_alpha', 'none file=alpha')
                add_data_group('uhfmo_beta', 'none file=beta')
            else:
                delete_data_group('scfmo')
                add_data_group('scfmo', 'none file=mos')

        self._set_post_define()

        self.initialized = True
        self.converged = False

    def calculation_required(self, atoms, properties):
        if self.atoms != atoms:
            return True
        for prop in properties:
            if prop == 'energy' and self.e_total is None:
                return True
            elif prop == 'forces' and self.forces is None:
                return True
        return False

    def calculate(self, atoms=None):
        """execute the requested job"""
        if atoms is None:
            atoms = self.atoms
        if self.parameters['task'] in ['energy', 'energy calculation']:
            self.get_potential_energy(atoms)
        if self.parameters['task'] in ['gradient', 'gradient calculation']:
            self.get_forces(atoms)
        if self.parameters['task'] in ['optimize', 'geometry optimization']:
            self.relax_geometry(atoms)
        if self.parameters['task'] in ['frequencies', 'normal mode analysis']:
            self.normal_mode_analysis(atoms)
        self.read_results()

    def relax_geometry(self, atoms=None):
        """execute geometry optimization with script jobex"""
        if atoms is None:
            atoms = self.atoms
        self.set_atoms(atoms)
        if self.converged and not self.update_geometry:
            return
        self.initialize()
        jobex_flags = ''
        if self.parameters['use resolution of identity']:
            jobex_flags += ' -ri'
        if self.parameters['force convergence']:
            par = self.parameters['force convergence']
            conv = floor(-log10(par / Ha * Bohr))
            jobex_flags += ' -gcart ' + str(int(conv))
        if self.parameters['energy convergence']:
            par = self.parameters['energy convergence']
            conv = floor(-log10(par / Ha))
            jobex_flags += ' -energy ' + str(int(conv))
        geom_iter = self.parameters['geometry optimization iterations']
        if geom_iter is not None:
            assert isinstance(geom_iter, int)
            jobex_flags += ' -c ' + str(geom_iter)
        self.converged = False
        execute('jobex' + jobex_flags)
        # check convergence
        self.converged = self.read_convergence()
        if self.converged:
            self.update_energy = False
            self.update_forces = False
            self.update_geometry = False
            self.update_hessian = True
        # read results
        new_struct = read('coord')
        atoms.set_positions(new_struct.get_positions())
        self.atoms = atoms.copy()
        self.read_energy()

    def normal_mode_analysis(self, atoms=None):
        """execute normal mode analysis with modules aoforce or NumForce"""
        from ase.constraints import FixAtoms
        if atoms is None:
            atoms = self.atoms
        self.set_atoms(atoms)
        self.initialize()
        if self.update_energy:
            self.get_potential_energy(atoms)
        if self.update_hessian:
            fixatoms = []
            for constr in atoms.constraints:
                if isinstance(constr, FixAtoms):
                    ckwargs = constr.todict()['kwargs']
                    if 'indices' in ckwargs.keys():
                        fixatoms.extend(ckwargs['indices'])
            if self.parameters['numerical hessian'] is None:
                if len(fixatoms) > 0:
                    define_str = '\n\ny\n'
                    for index in fixatoms:
                        define_str += 'm ' + str(index + 1) + ' 999.99999999\n'
                    define_str += '*\n*\nn\nq\n'
                    execute('define', input_str=define_str)
                    dg = read_data_group('atoms')
                    regex = r'(mass\s*=\s*)999.99999999'
                    dg = re.sub(regex, r'\g<1>9999999999.9', dg)
                    dg += '\n'
                    delete_data_group('atoms')
                    add_data_group(dg, raw=True)
                execute('aoforce')
            else:
                optstr = ''
                pdict = self.parameters['numerical hessian']
                if self.parameters['use resolution of identity']:
                    optstr += ' -ri'
                if len(fixatoms) > 0:
                    optstr += ' -frznuclei -central -c'
                if 'central' in pdict.keys():
                    optstr += ' -central'
                if 'delta' in pdict.keys():
                    optstr += ' -d ' + str(pdict['delta'] / Bohr)
                execute('NumForce' + optstr)
            self.update_hessian = False

    def read_restart(self):
        """read a previous calculation from control file"""
        self.atoms = read('coord')
        self.atoms.calc = self
        self.converged = self.read_convergence()
        read_methods = [
            self.read_energy,
            self.read_gradient,
            self.read_forces,
            self.read_basis_set,
            self.read_ecps,
            self.read_mos,
            self.read_occupation_numbers,
            self.read_dipole_moment,
            self.read_ssquare,
            self.read_hessian,
            self.read_vibrational_reduced_masses,
            self.read_normal_modes,
            self.read_vibrational_spectrum,
            self.read_charges,
            self.read_point_charges,
            self.read_run_parameters
        ]
        for method in read_methods:
            try:
                method()
            except ReadError as err:
                warnings.warn(err.args[0])

    def read_parameters(self):
        """read parameters from control file"""

        def parse_data_group(dg, dg_name):
            """parse a data group"""
            if len(dg) == 0:
                return None
            lsep = None
            ksep = None
            ndg = dg.replace('$' + dg_name, '').strip()
            if '\n' in ndg:
                lsep = '\n'
            if '=' in ndg:
                ksep = '='
            if not lsep and not ksep:
                return ndg
            result = {}
            lines = ndg.split(lsep)
            for line in lines:
                fields = line.strip().split(ksep)
                if len(fields) == 2:
                    result[fields[0]] = fields[1]
                elif len(fields) == 1:
                    result[fields[0]] = True
            return result

        params = {}
        pdgs = {}
        for p in self.parameter_group:
            if self.parameter_group[p] and self.parameter_key[p]:
                pdgs[p] = parse_data_group(
                    read_data_group(self.parameter_group[p]),
                    self.parameter_group[p]
                )

        for p in self.parameter_key:
            if self.parameter_key[p]:
                if self.parameter_key[p] == self.parameter_group[p]:
                    if pdgs[p] is None:
                        if self.parameter_type[p] is bool:
                            params[p] = False
                        else:
                            params[p] = None
                    else:
                        if self.parameter_type[p] is bool:
                            params[p] = True
                        else:
                            typ = self.parameter_type[p]
                            val = typ(pdgs[p])
                            mapping = self.parameter_mapping
                            if p in list(mapping.keys()):
                                fun = mapping[p]['from_control']
                                val = fun(val)
                            params[p] = val
                else:
                    if pdgs[p] is None:
                        params[p] = None
                    elif isinstance(pdgs[p], str):
                        if self.parameter_type[p] is bool:
                            params[p] = (pdgs[p] == self.parameter_key[p])
                    else:
                        if self.parameter_key[p] not in list(pdgs[p].keys()):
                            if self.parameter_type[p] is bool:
                                params[p] = False
                            else:
                                params[p] = None
                        else:
                            typ = self.parameter_type[p]
                            val = typ(pdgs[p][self.parameter_key[p]])
                            mapping = self.parameter_mapping
                            if p in list(mapping.keys()):
                                fun = mapping[p]['from_control']
                                val = fun(val)
                            params[p] = val

        # non-group or non-key parameters

        # per-element and per-atom basis sets not implemented in calculator
        basis_sets = set([bs['nickname'] for bs in self.results['basis set']])
        assert len(basis_sets) == 1
        params['basis set name'] = list(basis_sets)[0]
        params['basis set definition'] = self.results['basis set']

        # rohf, multiplicity and total charge
        orbs = self.results['molecular orbitals']
        params['rohf'] = (bool(len(read_data_group('rohf'))) or
                          bool(len(read_data_group('roothaan'))))
        core_charge = 0
        if self.results['ecps']:
            for ecp in self.results['ecps']:
                for symbol in self.atoms.get_chemical_symbols():
                    if symbol.lower() == ecp['element'].lower():
                        core_charge -= ecp['number of core electrons']
        if params['uhf']:
            alpha_occ = [o['occupancy'] for o in orbs if o['spin'] == 'alpha']
            beta_occ = [o['occupancy'] for o in orbs if o['spin'] == 'beta']
            spin = (np.sum(alpha_occ) - np.sum(beta_occ)) * 0.5
            params['multiplicity'] = int(2 * spin + 1)
            nuclear_charge = np.sum(self.atoms.numbers)
            electron_charge = -int(np.sum(alpha_occ) + np.sum(beta_occ))
            electron_charge += core_charge
            params['total charge'] = nuclear_charge + electron_charge
        elif not params['rohf']:  # restricted HF (closed shell)
            params['multiplicity'] = 1
            nuclear_charge = np.sum(self.atoms.numbers)
            electron_charge = -int(np.sum([o['occupancy'] for o in orbs]))
            electron_charge += core_charge
            params['total charge'] = nuclear_charge + electron_charge
        else:
            raise NotImplementedError('ROHF not implemented')

        # task-related parameters
        if os.path.exists('job.start'):
            with open('job.start', 'r') as log:
                lines = log.readlines()
            for line in lines:
                if 'CRITERION FOR TOTAL SCF-ENERGY' in line:
                    en = int(re.search(r'10\*{2}\(-(\d+)\)', line).group(1))
                    params['energy convergence'] = en
                if 'CRITERION FOR MAXIMUM NORM OF SCF-ENERGY GRADIENT' in line:
                    gr = int(re.search(r'10\*{2}\(-(\d+)\)', line).group(1))
                    params['force convergence'] = gr
                if 'AN OPTIMIZATION WITH MAX' in line:
                    cy = int(re.search(r'MAX. (\d+) CYCLES', line).group(1))
                    params['geometry optimization iterations'] = cy
        return params

    def read_convergence(self):
        """perform convergence checks"""
        if self.restart:
            if bool(len(read_data_group('restart'))):
                return False
            if bool(len(read_data_group('actual'))):
                return False
            if not bool(len(read_data_group('energy'))):
                return False
            if (os.path.exists('job.start') and
                os.path.exists('GEO_OPT_FAILED')):
                return False
            return True

        if self.parameters['task'] in ['optimize', 'geometry optimization']:
            if os.path.exists('GEO_OPT_CONVERGED'):
                return True
            elif os.path.exists('GEO_OPT_FAILED'):
                # check whether a failed scf convergence is the reason
                checkfiles = []
                for filename in os.listdir('.'):
                    if filename.startswith('job.'):
                        checkfiles.append(filename)
                for filename in checkfiles:
                    for line in open(filename):
                        if 'SCF FAILED TO CONVERGE' in line:
                            # scf did not converge in some jobex iteration
                            if filename == 'job.last':
                                raise RuntimeError('scf failed to converge')
                            else:
                                warnings.warn('scf failed to converge')
                warnings.warn('geometry optimization failed to converge')
                return False
            else:
                raise RuntimeError('error during geometry optimization')
        else:
            if os.path.isfile('dscf_problem'):
                raise RuntimeError('scf failed to converge')
            else:
                return True

    def read_results(self):
        """read all results and load them in the results entity"""
        self.read_energy()
        self.read_mos()
        self.read_basis_set()
        self.read_occupation_numbers()
        self.read_dipole_moment()
        self.read_ssquare()
        self.read_run_parameters()
        if self.parameters['task'] in ['gradient', 'optimize',
                                       'gradient calculation',
                                       'geometry optimization']:
            self.read_gradient()
            self.read_forces()
        if self.parameters['task'] in ['frequencies', 'normal mode analysis']:
            self.read_hessian()
            self.read_vibrational_reduced_masses()
            self.read_normal_modes()
            self.read_vibrational_spectrum()
        self.read_charges()

    def read_run_parameters(self):
        """read parameters set by define and not in self.parameters"""

        if 'calculation parameters' not in self.results.keys():
            self.results['calculation parameters'] = {}
        parameters = self.results['calculation parameters']
        dg = read_data_group('symmetry')
        parameters['point group'] = str(dg.split()[1])
        parameters['uhf'] = '$uhf' in read_data_group('uhf')
        # Gaussian function type
        gt = read_data_group('pople')
        if gt == '':
            parameters['gaussian type'] = 'spherical harmonic'
        else:
            gt = gt.split()[1]
            if gt == 'AO':
                parameters['gaussian type'] = 'spherical harmonic'
            elif gt == 'CAO':
                parameters['gaussian type'] = 'cartesian'
            else:
                parameters['gaussian type'] = None

        nvibro = read_data_group('nvibro')
        if nvibro:
            parameters['nuclear degrees of freedom'] = int(nvibro.split()[1])

    def read_energy(self):
        """Read energy from Turbomole energy file."""
        try:
            with open('energy', 'r') as enf:
                text = enf.read().lower()
        except IOError:
            raise ReadError('failed to read energy file')
        if text == '':
            raise ReadError('empty energy file')

        lines = iter(text.split('\n'))

        for line in lines:
            if line.startswith('$end'):
                break
            elif line.startswith('$'):
                pass
            else:
                energy_tmp = float(line.split()[1])
                if self.post_HF:
                    energy_tmp += float(line.split()[4])
        # update energy units
        self.e_total = energy_tmp * Ha
        self.results['total energy'] = self.e_total

    def read_forces(self):
        """Read Forces from Turbomole gradient file."""
        dg = read_data_group('grad')
        if len(dg) == 0:
            return
        file = open('gradient', 'r')
        lines = file.readlines()
        file.close()

        forces = np.array([[0, 0, 0]])

        nline = len(lines)
        iline = -1

        for i in range(nline):
            if 'cycle' in lines[i]:
                iline = i

        if iline < 0:
            raise RuntimeError('Please check TURBOMOLE gradients')

        # next line
        iline += len(self.atoms) + 1
        # $end line
        nline -= 1
        # read gradients
        for i in range(iline, nline):
            line = lines[i].replace('D', 'E')
            tmp = np.array([[float(f) for f in line.split()[0:3]]])
            forces = np.concatenate((forces, tmp))
        # Note the '-' sign for turbomole, to get forces
        self.forces = -np.delete(forces, np.s_[0:1], axis=0) * Ha / Bohr
        self.results['energy gradient'] = (-self.forces).tolist()

    def read_occupation_numbers(self):
        """read occupation numbers with module 'eiger' """
        if 'molecular orbitals' not in self.results.keys():
            return
        mos = self.results['molecular orbitals']
        args = ['eiger', '--all', '--pview']
        output = execute(args, error_test=False, stdout_tofile=False)
        lines = output.split('\n')
        for line in lines:
            regex = (
                r'^\s+(\d+)\.*\s+(\w*)\s+(\d+)\s+(\S+)'
                r'\s+(\d*\.*\d*)\s+([-+]?\d+\.\d*)'
            )
            match = re.search(regex, line)
            if match:
                orb_index = int(match.group(3))
                if match.group(2) == 'a':
                    spin = 'alpha'
                elif match.group(2) == 'b':
                    spin = 'beta'
                else:
                    spin = None
                ar_index = next(
                    index for (index, molecular_orbital) in enumerate(mos)
                    if (molecular_orbital['index'] == orb_index and
                        molecular_orbital['spin'] == spin)
                )
                mos[ar_index]['index by energy'] = int(match.group(1))
                irrep = str(match.group(4))
                mos[ar_index]['irreducible representation'] = irrep
                if match.group(5) != '':
                    mos[ar_index]['occupancy'] = float(match.group(5))
                else:
                    mos[ar_index]['occupancy'] = float(0)

    def read_mos(self):
        """read the molecular orbital coefficients and orbital energies
        from files mos, alpha and beta"""

        self.results['molecular orbitals'] = []
        mos = self.results['molecular orbitals']
        keywords = ['scfmo', 'uhfmo_alpha', 'uhfmo_beta']
        spin = [None, 'alpha', 'beta']

        for index, keyword in enumerate(keywords):
            flen = None
            mo = {}
            orbitals_coefficients_line = []
            mo_string = read_data_group(keyword)
            if mo_string == '':
                continue
            mo_string += '\n$end'
            lines = mo_string.split('\n')
            for line in lines:
                if re.match(r'^\s*#', line):
                    continue
                if 'eigenvalue' in line:
                    if len(orbitals_coefficients_line) != 0:
                        mo['eigenvector'] = orbitals_coefficients_line
                        mos.append(mo)
                        mo = {}
                        orbitals_coefficients_line = []
                    regex = (r'^\s*(\d+)\s+(\S+)\s+'
                             r'eigenvalue=([\+\-\d\.\w]+)\s')
                    match = re.search(regex, line)
                    mo['index'] = int(match.group(1))
                    mo['irreducible representation'] = str(match.group(2))
                    eig = float(re.sub('[dD]', 'E', match.group(3))) * Ha
                    mo['eigenvalue'] = eig
                    mo['spin'] = spin[index]
                    mo['degeneracy'] = 1
                    continue
                if keyword in line:
                    # e.g. format(4d20.14)
                    regex = r'format\(\d+[a-zA-Z](\d+)\.\d+\)'
                    match = re.search(regex, line)
                    if match:
                        flen = int(match.group(1))
                    if ('scfdump' in line or 'expanded' in line or
                        'scfconv' not in line):
                        self.converged = False
                    continue
                if '$end' in line:
                    if len(orbitals_coefficients_line) != 0:
                        mo['eigenvector'] = orbitals_coefficients_line
                        mos.append(mo)
                    break
                sfields = [line[i:i + flen]
                           for i in range(0, len(line), flen)]
                ffields = [float(f.replace('D', 'E').replace('d', 'E'))
                           for f in sfields]
                orbitals_coefficients_line += ffields

    def read_basis_set(self):
        """read the basis set"""
        self.results['basis set'] = []
        self.results['basis set formatted'] = {}
        bsf = read_data_group('basis')
        self.results['basis set formatted']['turbomole'] = bsf
        lines = bsf.split('\n')
        basis_set = {}
        functions = []
        function = {}
        primitives = []
        read_tag = False
        read_data = False
        for line in lines:
            if len(line.strip()) == 0:
                continue
            if '$basis' in line:
                continue
            if '$end' in line:
                break
            if re.match(r'^\s*#', line):
                continue
            if re.match(r'^\s*\*', line):
                if read_tag:
                    read_tag = False
                    read_data = True
                else:
                    if read_data:
                        # end primitives
                        function['primitive functions'] = primitives
                        function['number of primitives'] = len(primitives)
                        primitives = []
                        functions.append(function)
                        function = {}
                        # end contracted
                        basis_set['functions'] = functions
                        functions = []
                        self.results['basis set'].append(basis_set)
                        basis_set = {}
                        read_data = False
                    read_tag = True
                continue
            if read_tag:
                match = re.search(r'^\s*(\w+)\s+(.+)', line)
                if match:
                    basis_set['element'] = match.group(1)
                    basis_set['nickname'] = match.group(2)
                else:
                    raise RuntimeError('error reading basis set')
            else:
                match = re.search(r'^\s+(\d+)\s+(\w+)', line)
                if match:
                    if len(primitives) > 0:
                        # end primitives
                        function['primitive functions'] = primitives
                        function['number of primitives'] = len(primitives)
                        primitives = []
                        functions.append(function)
                        function = {}
                        # begin contracted
                    function['shell type'] = str(match.group(2))
                    continue
                regex = (
                    r'^\s*([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)'
                    r'\s+([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)'
                )
                match = re.search(regex, line)
                if match:
                    exponent = float(match.group(1))
                    coefficient = float(match.group(3))
                    primitives.append(
                        {'exponent': exponent, 'coefficient': coefficient}
                    )

    def read_ecps(self):
        """read the effective core potentials"""
        ecpf = read_data_group('ecp')
        if not bool(len(ecpf)):
            self.results['ecps'] = None
            self.results['ecps formatted'] = None
            return
        self.results['ecps'] = []
        self.results['ecps formatted'] = {}
        self.results['ecps formatted']['turbomole'] = ecpf
        lines = ecpf.split('\n')
        ecp = {}
        groups = []
        group = {}
        terms = []
        read_tag = False
        read_data = False
        for line in lines:
            if len(line.strip()) == 0:
                continue
            if '$ecp' in line:
                continue
            if '$end' in line:
                break
            if re.match(r'^\s*#', line):
                continue
            if re.match(r'^\s*\*', line):
                if read_tag:
                    read_tag = False
                    read_data = True
                else:
                    if read_data:
                        # end terms
                        group['terms'] = terms
                        group['number of terms'] = len(terms)
                        terms = []
                        groups.append(group)
                        group = {}
                        # end group
                        ecp['groups'] = groups
                        groups = []
                        self.results['ecps'].append(ecp)
                        ecp = {}
                        read_data = False
                    read_tag = True
                continue
            if read_tag:
                match = re.search(r'^\s*(\w+)\s+(.+)', line)
                if match:
                    ecp['element'] = match.group(1)
                    ecp['nickname'] = match.group(2)
                else:
                    raise RuntimeError('error reading ecp')
            else:
                regex = r'ncore\s*=\s*(\d+)\s+lmax\s*=\s*(\d+)'
                match = re.search(regex, line)
                if match:
                    ecp['number of core electrons'] = int(match.group(1))
                    ecp['maximum angular momentum number'] = \
                        int(match.group(2))
                    continue
                match = re.search(r'^(\w(\-\w)?)', line)
                if match:
                    if len(terms) > 0:
                        # end terms
                        group['terms'] = terms
                        group['number of terms'] = len(terms)
                        terms = []
                        groups.append(group)
                        group = {}
                        # begin group
                    group['title'] = str(match.group(1))
                    continue
                regex = (r'^\s*([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)\s+'
                         r'(\d)\s+([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)')
                match = re.search(regex, line)
                if match:
                    terms.append(
                        {
                            'coefficient': float(match.group(1)),
                            'power of r': float(match.group(3)),
                            'exponent': float(match.group(4))
                        }
                    )

    def read_gradient(self):
        """read all information in file 'gradient'"""
        from ase import Atom
        grad_string = read_data_group('grad')
        if len(grad_string) == 0:
            return
#       try to reuse ase:
#       structures = read('gradient', index=':')
        lines = grad_string.split('\n')
        history = []
        image = {}
        gradient = []
        atoms = Atoms()
        (cycle, energy, norm) = (None, None, None)
        for line in lines:
            # cycle lines
            regex = (
                r'^\s*cycle =\s*(\d+)\s+'
                r'SCF energy =\s*([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)\s+'
                r'\|dE\/dxyz\| =\s*([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)'
            )
            match = re.search(regex, line)
            if match:
                if len(atoms):
                    image['optimization cycle'] = cycle
                    image['total energy'] = energy
                    image['gradient norm'] = norm
                    image['energy gradient'] = gradient
                    history.append(image)
                    image = {}
                    atoms = Atoms()
                    gradient = []
                cycle = int(match.group(1))
                energy = float(match.group(2)) * Ha
                norm = float(match.group(4)) * Ha / Bohr
                continue
            # coordinate lines
            regex = (
                r'^\s*([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
                r'\s+([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
                r'\s+([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
                r'\s+(\w+)'
            )
            match = re.search(regex, line)
            if match:
                x = float(match.group(1)) * Bohr
                y = float(match.group(3)) * Bohr
                z = float(match.group(5)) * Bohr
                symbol = str(match.group(7)).capitalize()

                if symbol == 'Q':
                    symbol = 'X'
                atoms += Atom(symbol, (x, y, z))

                continue
            # gradient lines
            regex = (
                r'^\s*([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
                r'\s+([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
                r'\s+([-+]?[0-9]*\.?[0-9]+([eEdD][-+]?[0-9]+)?)'
            )
            match = re.search(regex, line)
            if match:
                gradx = float(match.group(1).replace('D', 'E')) * Ha / Bohr
                grady = float(match.group(3).replace('D', 'E')) * Ha / Bohr
                gradz = float(match.group(5).replace('D', 'E')) * Ha / Bohr
                gradient.append([gradx, grady, gradz])

        image['optimization cycle'] = cycle
        image['total energy'] = energy
        image['gradient norm'] = norm
        image['energy gradient'] = gradient
        history.append(image)
        self.results['geometry optimization history'] = history

    def read_hessian(self, noproj=False):
        """Read in the hessian matrix"""
        self.results['hessian matrix'] = {}
        self.results['hessian matrix']['array'] = []
        self.results['hessian matrix']['units'] = '?'
        self.results['hessian matrix']['projected'] = True
        self.results['hessian matrix']['mass weighted'] = True
        dg = read_data_group('nvibro')
        if len(dg) == 0:
            return
        nvibro = int(dg.split()[1])
        self.results['hessian matrix']['dimension'] = nvibro
        row = []
        key = 'hessian'
        if noproj:
            key = 'npr' + key
            self.results['hessian matrix']['projected'] = False
        lines = read_data_group(key).split('\n')
        for line in lines:
            if key in line:
                continue
            fields = line.split()
            row.extend(fields[2:len(fields)])
            if len(row) == nvibro:
                # check whether it is mass-weighted
                float_row = [float(element) for element in row]
                self.results['hessian matrix']['array'].append(float_row)
                row = []

    def read_normal_modes(self, noproj=False):
        """Read in vibrational normal modes"""
        self.results['normal modes'] = {}
        self.results['normal modes']['array'] = []
        self.results['normal modes']['projected'] = True
        self.results['normal modes']['mass weighted'] = True
        self.results['normal modes']['units'] = '?'
        dg = read_data_group('nvibro')
        if len(dg) == 0:
            return
        nvibro = int(dg.split()[1])
        self.results['normal modes']['dimension'] = nvibro
        row = []
        key = 'vibrational normal modes'
        if noproj:
            key = 'npr' + key
            self.results['normal modes']['projected'] = False
        lines = read_data_group(key).split('\n')
        for line in lines:
            if key in line:
                continue
            if '$end' in line:
                break
            fields = line.split()
            row.extend(fields[2:len(fields)])
            if len(row) == nvibro:
                # check whether it is mass-weighted
                float_row = [float(element) for element in row]
                self.results['normal modes']['array'].append(float_row)
                row = []

    def read_vibrational_reduced_masses(self):
        """Read vibrational reduced masses"""
        self.results['vibrational reduced masses'] = []
        dg = read_data_group('vibrational reduced masses')
        if len(dg) == 0:
            return
        lines = dg.split('\n')
        for line in lines:
            if '$vibrational' in line:
                continue
            if '$end' in line:
                break
            fields = [float(element) for element in line.split()]
            self.results['vibrational reduced masses'].extend(fields)

    def read_vibrational_spectrum(self, noproj=False):
        """Read the vibrational spectrum"""
        self.results['vibrational spectrum'] = []
        key = 'vibrational spectrum'
        if noproj:
            key = 'npr' + key
        lines = read_data_group(key).split('\n')
        for line in lines:
            dictionary = {}
            regex = (
                r'^\s+(\d+)\s+(\S*)\s+([-+]?\d+\.\d*)'
                r'\s+(\d+\.\d*)\s+(\S+)\s+(\S+)'
            )
            match = re.search(regex, line)
            if match:
                dictionary['mode number'] = int(match.group(1))
                dictionary['irreducible representation'] = str(match.group(2))
                dictionary['frequency'] = {
                    'units': 'cm^-1',
                    'value': float(match.group(3))
                }
                dictionary['infrared intensity'] = {
                    'units': 'km/mol',
                    'value': float(match.group(4))
                }

                if match.group(5) == 'YES':
                    dictionary['infrared active'] = True
                elif match.group(5) == 'NO':
                    dictionary['infrared active'] = False
                else:
                    dictionary['infrared active'] = None

                if match.group(6) == 'YES':
                    dictionary['Raman active'] = True
                elif match.group(6) == 'NO':
                    dictionary['Raman active'] = False
                else:
                    dictionary['Raman active'] = None

                self.results['vibrational spectrum'].append(dictionary)

    def read_ssquare(self):
        """Read the expectation value of S^2 operator"""
        s2_string = read_data_group('ssquare from dscf')
        if s2_string == '':
            return
        string = s2_string.split('\n')[1]
        ssquare = float(re.search(r'^\s*(\d+\.*\d*)', string).group(1))
        self.results['ssquare from scf calculation'] = ssquare

    def read_dipole_moment(self):
        """Read the dipole moment"""
        dip_string = read_data_group('dipole')
        if dip_string == '':
            return
        lines = dip_string.split('\n')
        for line in lines:
            regex = (
                r'^\s+x\s+([-+]?\d+\.\d*)\s+y\s+([-+]?\d+\.\d*)'
                r'\s+z\s+([-+]?\d+\.\d*)\s+a\.u\.'
            )
            match = re.search(regex, line)
            if match:
                dip_vec = [float(match.group(c)) for c in range(1, 4)]
            regex = r'^\s+\| dipole \| =\s+(\d+\.*\d*)\s+debye'
            match = re.search(regex, line)
            if match:
                dip_abs_val = float(match.group(1))
        self.results['electric dipole moment'] = {}
        self.results['electric dipole moment']['vector'] = {
            'array': dip_vec,
            'units': 'a.u.'
        }
        self.results['electric dipole moment']['absolute value'] = {
            'value': dip_abs_val,
            'units': 'Debye'
        }
        self.dipole = np.array(dip_vec) * Bohr

    def read_version(self):
        """read the version from the tm output if stored in a file"""
        versions = read_output(r'TURBOMOLE\s+V(\d+\.\d+)\s+')
        if len(set(versions)) > 1:
            warnings.warn('different turbomole versions detected')
            self.version = list(set(versions))
        elif len(versions) == 0:
            warnings.warn('no turbomole version detected')
            self.version = None
        else:
            self.version = versions[0]

    def read_datetime(self):
        """read the datetime of the most recent calculation
        from the tm output if stored in a file
        """
        datetimes = read_output(
            r'(\d{4}-[01]\d-[0-3]\d([T\s][0-2]\d:[0-5]'
            r'\d:[0-5]\d\.\d+)?([+-][0-2]\d:[0-5]\d|Z)?)')
        if len(datetimes) == 0:
            warnings.warn('no turbomole datetime detected')
            self.datetime = None
        else:
            # take the most recent time stamp
            self.datetime = sorted(datetimes, reverse=True)[0]

    def read_runtime(self):
        """read the total runtime of calculations"""
        hits = read_output(r'total wall-time\s+:\s+(\d+.\d+)\s+seconds')
        if len(hits) == 0:
            warnings.warn('no turbomole runtimes detected')
            self.runtime = None
        else:
            self.runtime = np.sum([float(a) for a in hits])

    def read_hostname(self):
        """read the hostname of the computer on which the calc has run"""
        hostnames = read_output(r'hostname is\s+(.+)')
        if len(set(hostnames)) > 1:
            warnings.warn('runs on different hosts detected')
            self.hostname = list(set(hostnames))
        else:
            self.hostname = hostnames[0]

    def get_optimizer(self, atoms, trajectory=None, logfile=None):
        """returns a TurbomoleOptimizer object"""
        self.parameters['task'] = 'optimize'
        self.verify_parameters()
        return TurbomoleOptimizer(atoms, self)

    def get_results(self):
        """returns the results dictionary"""
        return self.results

    def get_potential_energy(self, atoms, force_consistent=True):
        # update atoms
        self.updated = self.e_total is None
        self.set_atoms(atoms)
        self.initialize()
        # if update of energy is necessary
        if self.update_energy:
            # calculate energy
            execute(self.calculate_energy)
            # check convergence
            self.converged = self.read_convergence()
            if not self.converged:
                return None
            # read energy
            self.read_energy()

        self.update_energy = False
        return self.e_total

    def get_forces(self, atoms):
        # update atoms
        self.updated = self.forces is None
        self.set_atoms(atoms)
        # complete energy calculations
        if self.update_energy:
            self.get_potential_energy(atoms)
        # if update of forces is necessary
        if self.update_forces:
            # calculate forces
            execute(self.calculate_forces)
            # read forces
            self.read_forces()

        self.update_forces = False
        return self.forces.copy()

    def get_dipole_moment(self, atoms):
        self.get_potential_energy(atoms)
        self.read_dipole_moment()
        return self.dipole

    def get_property(self, name, atoms=None, allow_calculation=True):
        """return the value of a property"""

        if name not in self.implemented_properties:
            # an ugly work around; the caller should test the raised error
            # if name in ['magmom', 'magmoms', 'charges', 'stress']:
            # return None
            raise PropertyNotImplementedError(name)

        if atoms is None:
            atoms = self.atoms.copy()

        persist_property = {
            'energy': 'e_total',
            'forces': 'forces',
            'dipole': 'dipole',
            'free_energy': 'e_total',
            'charges': 'charges'
        }
        property_getter = {
            'energy': self.get_potential_energy,
            'forces': self.get_forces,
            'dipole': self.get_dipole_moment,
            'free_energy': self.get_potential_energy,
            'charges': self.get_charges
        }
        getter_args = {
            'energy': [atoms],
            'forces': [atoms],
            'dipole': [atoms],
            'free_energy': [atoms, True],
            'charges': [atoms]
        }

        if allow_calculation:
            result = property_getter[name](*getter_args[name])
        else:
            if hasattr(self, persist_property[name]):
                result = getattr(self, persist_property[name])
            else:
                result = None

        if isinstance(result, np.ndarray):
            result = result.copy()
        return result

    def get_charges(self, atoms):
        """return partial charges on atoms from an ESP fit"""
        self.get_potential_energy(atoms)
        self.read_charges()
        return self.charges

    def read_charges(self):
        """read partial charges on atoms from an ESP fit"""
        epsfit_defined = ('esp fit' in self.parameters and
                          self.parameters['esp fit'] is not None)
        if epsfit_defined or len(read_data_group('esp_fit')) > 0:
            filename = 'ASE.TM.' + self.calculate_energy + '.out'
            with open(filename, 'r') as infile:
                lines = infile.readlines()
            oklines = None
            for n, line in enumerate(lines):
                if 'atom  radius/au   charge' in line:
                    oklines = lines[n + 1:n + len(self.atoms) + 1]
            if oklines is not None:
                qm_charges = [float(line.split()[3]) for line in oklines]
                self.charges = np.array(qm_charges)

    def get_forces_on_point_charges(self):
        """return forces acting on point charges"""
        self.get_forces(self.atoms)
        lines = read_data_group('point_charge_gradients').split('\n')[1:]
        forces = []
        for line in lines:
            linef = line.strip().replace('D', 'E')
            forces.append([float(x) for x in linef.split()])
        # Note the '-' sign for turbomole, to get forces
        return -np.array(forces) * Ha / Bohr

    def set_point_charges(self, pcpot=None):
        """write external point charges to control"""
        if pcpot is not None and pcpot != self.pcpot:
            self.pcpot = pcpot
        if self.pcpot.mmcharges is None or self.pcpot.mmpositions is None:
            raise RuntimeError('external point charges not defined')

        if not self.pc_initialized:
            if len(read_data_group('point_charges')) == 0:
                add_data_group('point_charges', 'file=pc.txt')
            if len(read_data_group('point_charge_gradients')) == 0:
                add_data_group(
                    'point_charge_gradients',
                    'file=pc_gradients.txt'
                )
            drvopt = read_data_group('drvopt')
            if 'point charges' not in drvopt:
                drvopt += '\n   point charges\n'
                delete_data_group('drvopt')
                add_data_group(drvopt, raw=True)
            self.pc_initialized = True

        if self.pcpot.updated:
            with open('pc.txt', 'w') as pcfile:
                pcfile.write('$point_charges nocheck list\n')
                for (x, y, z), charge in zip(
                        self.pcpot.mmpositions, self.pcpot.mmcharges):
                    pcfile.write('%20.14f  %20.14f  %20.14f  %20.14f\n'
                                 % (x / Bohr, y / Bohr, z / Bohr, charge))
                pcfile.write('$end \n')
            self.pcpot.updated = False

    def read_point_charges(self):
        """read point charges from previous calculation"""
        pcs = read_data_group('point_charges')
        if len(pcs) > 0:
            lines = pcs.split('\n')[1:]
            (charges, positions) = ([], [])
            for line in lines:
                columns = [float(col) for col in line.strip().split()]
                positions.append([col * Bohr for col in columns[0:3]])
                charges.append(columns[3])
            self.pcpot = PointChargePotential(charges, positions)

    def embed(self, charges=None, positions=None):
        """embed atoms in an array of point-charges; function used in
            qmmm calculations."""
        self.pcpot = PointChargePotential(charges, positions)
        return self.pcpot


class PointChargePotential:
    """Point-charge potential for Turbomole"""
    def __init__(self, mmcharges, mmpositions=None):
        self.mmcharges = mmcharges
        self.mmpositions = mmpositions
        self.mmforces = None
        self.updated = True

    def set_positions(self, mmpositions):
        """set the positions of point charges"""
        self.mmpositions = mmpositions
        self.updated = True

    def set_charges(self, mmcharges):
        """set the values of point charges"""
        self.mmcharges = mmcharges
        self.updated = True

    def get_forces(self, calc):
        """forces acting on point charges"""
        self.mmforces = calc.get_forces_on_point_charges()
        return self.mmforces