1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
|
from math import sqrt
from warnings import warn
import numpy as np
from ase.calculators.calculator import PropertyNotImplementedError
from ase.geometry import (find_mic, wrap_positions, get_distances_derivatives,
get_angles_derivatives, get_dihedrals_derivatives,
conditional_find_mic, get_angles, get_dihedrals)
from ase.utils.parsemath import eval_expression
from scipy.linalg import expm, logm
__all__ = [
'FixCartesian', 'FixBondLength', 'FixedMode',
'FixConstraintSingle', 'FixAtoms', 'UnitCellFilter', 'ExpCellFilter',
'FixScaled', 'StrainFilter', 'FixCom', 'FixedPlane', 'Filter',
'FixConstraint', 'FixedLine', 'FixBondLengths', 'FixLinearTriatomic',
'FixInternals', 'Hookean', 'ExternalForce', 'MirrorForce', 'MirrorTorque',
"FixScaledParametricRelations", "FixCartesianParametricRelations"]
def dict2constraint(dct):
if dct['name'] not in __all__:
raise ValueError
return globals()[dct['name']](**dct['kwargs'])
def slice2enlist(s, n):
"""Convert a slice object into a list of (new, old) tuples."""
if isinstance(s, slice):
return enumerate(range(*s.indices(n)))
return enumerate(s)
def constrained_indices(atoms, only_include=None):
"""Returns a list of indices for the atoms that are constrained
by a constraint that is applied. By setting only_include to a
specific type of constraint you can make it only look for that
given constraint.
"""
indices = []
for constraint in atoms.constraints:
if only_include is not None:
if not isinstance(constraint, only_include):
continue
indices.extend(np.array(constraint.get_indices()))
return np.array(np.unique(indices))
class FixConstraint:
"""Base class for classes that fix one or more atoms in some way."""
def index_shuffle(self, atoms, ind):
"""Change the indices.
When the ordering of the atoms in the Atoms object changes,
this method can be called to shuffle the indices of the
constraints.
ind -- List or tuple of indices.
"""
raise NotImplementedError
def repeat(self, m, n):
""" basic method to multiply by m, needs to know the length
of the underlying atoms object for the assignment of
multiplied constraints to work.
"""
msg = ("Repeat is not compatible with your atoms' constraints."
' Use atoms.set_constraint() before calling repeat to '
'remove your constraints.')
raise NotImplementedError(msg)
def adjust_momenta(self, atoms, momenta):
"""Adjusts momenta in identical manner to forces."""
self.adjust_forces(atoms, momenta)
def copy(self):
return dict2constraint(self.todict().copy())
class FixConstraintSingle(FixConstraint):
"""Base class for classes that fix a single atom."""
def __init__(self, a):
self.a = a
def index_shuffle(self, atoms, ind):
"""The atom index must be stored as self.a."""
newa = None # Signal error
if self.a < 0:
self.a += len(atoms)
for new, old in slice2enlist(ind, len(atoms)):
if old == self.a:
newa = new
break
if newa is None:
raise IndexError('Constraint not part of slice')
self.a = newa
def get_indices(self):
return [self.a]
class FixAtoms(FixConstraint):
"""Constraint object for fixing some chosen atoms."""
def __init__(self, indices=None, mask=None):
"""Constrain chosen atoms.
Parameters
----------
indices : list of int
Indices for those atoms that should be constrained.
mask : list of bool
One boolean per atom indicating if the atom should be
constrained or not.
Examples
--------
Fix all Copper atoms:
>>> mask = [s == 'Cu' for s in atoms.get_chemical_symbols()]
>>> c = FixAtoms(mask=mask)
>>> atoms.set_constraint(c)
Fix all atoms with z-coordinate less than 1.0 Angstrom:
>>> c = FixAtoms(mask=atoms.positions[:, 2] < 1.0)
>>> atoms.set_constraint(c)
"""
if indices is None and mask is None:
raise ValueError('Use "indices" or "mask".')
if indices is not None and mask is not None:
raise ValueError('Use only one of "indices" and "mask".')
if mask is not None:
indices = np.arange(len(mask))[np.asarray(mask, bool)]
else:
# Check for duplicates:
srt = np.sort(indices)
if (np.diff(srt) == 0).any():
raise ValueError(
'FixAtoms: The indices array contained duplicates. '
'Perhaps you wanted to specify a mask instead, but '
'forgot the mask= keyword.')
self.index = np.asarray(indices, int)
if self.index.ndim != 1:
raise ValueError('Wrong argument to FixAtoms class!')
self.removed_dof = 3 * len(self.index)
def adjust_positions(self, atoms, new):
new[self.index] = atoms.positions[self.index]
def adjust_forces(self, atoms, forces):
forces[self.index] = 0.0
def index_shuffle(self, atoms, ind):
# See docstring of superclass
index = []
for new, old in slice2enlist(ind, len(atoms)):
if old in self.index:
index.append(new)
if len(index) == 0:
raise IndexError('All indices in FixAtoms not part of slice')
self.index = np.asarray(index, int)
def get_indices(self):
return self.index
def __repr__(self):
return 'FixAtoms(indices=%s)' % ints2string(self.index)
def todict(self):
return {'name': 'FixAtoms',
'kwargs': {'indices': self.index.tolist()}}
def repeat(self, m, n):
i0 = 0
natoms = 0
if isinstance(m, int):
m = (m, m, m)
index_new = []
for m2 in range(m[2]):
for m1 in range(m[1]):
for m0 in range(m[0]):
i1 = i0 + n
index_new += [i + natoms for i in self.index]
i0 = i1
natoms += n
self.index = np.asarray(index_new, int)
return self
def delete_atoms(self, indices, natoms):
"""Removes atom number ind from the index array, if present.
Required for removing atoms with existing FixAtoms constraints.
"""
i = np.zeros(natoms, int) - 1
new = np.delete(np.arange(natoms), indices)
i[new] = np.arange(len(new))
index = i[self.index]
self.index = index[index >= 0]
if len(self.index) == 0:
return None
return self
class FixCom(FixConstraint):
"""Constraint class for fixing the center of mass.
References
https://pubs.acs.org/doi/abs/10.1021/jp9722824
"""
def __init__(self):
self.removed_dof = 3
def adjust_positions(self, atoms, new):
masses = atoms.get_masses()
old_cm = atoms.get_center_of_mass()
new_cm = np.dot(masses, new) / masses.sum()
d = old_cm - new_cm
new += d
def adjust_forces(self, atoms, forces):
m = atoms.get_masses()
mm = np.tile(m, (3, 1)).T
lb = np.sum(mm * forces, axis=0) / sum(m**2)
forces -= mm * lb
def todict(self):
return {'name': 'FixCom',
'kwargs': {}}
def ints2string(x, threshold=None):
"""Convert ndarray of ints to string."""
if threshold is None or len(x) <= threshold:
return str(x.tolist())
return str(x[:threshold].tolist())[:-1] + ', ...]'
class FixBondLengths(FixConstraint):
maxiter = 500
def __init__(self, pairs, tolerance=1e-13,
bondlengths=None, iterations=None):
"""iterations:
Ignored"""
self.pairs = np.asarray(pairs)
self.tolerance = tolerance
self.bondlengths = bondlengths
self.removed_dof = len(pairs)
def adjust_positions(self, atoms, new):
old = atoms.positions
masses = atoms.get_masses()
if self.bondlengths is None:
self.bondlengths = self.initialize_bond_lengths(atoms)
for i in range(self.maxiter):
converged = True
for j, ab in enumerate(self.pairs):
a = ab[0]
b = ab[1]
cd = self.bondlengths[j]
r0 = old[a] - old[b]
d0, _ = find_mic(r0, atoms.cell, atoms.pbc)
d1 = new[a] - new[b] - r0 + d0
m = 1 / (1 / masses[a] + 1 / masses[b])
x = 0.5 * (cd**2 - np.dot(d1, d1)) / np.dot(d0, d1)
if abs(x) > self.tolerance:
new[a] += x * m / masses[a] * d0
new[b] -= x * m / masses[b] * d0
converged = False
if converged:
break
else:
raise RuntimeError('Did not converge')
def adjust_momenta(self, atoms, p):
old = atoms.positions
masses = atoms.get_masses()
if self.bondlengths is None:
self.bondlengths = self.initialize_bond_lengths(atoms)
for i in range(self.maxiter):
converged = True
for j, ab in enumerate(self.pairs):
a = ab[0]
b = ab[1]
cd = self.bondlengths[j]
d = old[a] - old[b]
d, _ = find_mic(d, atoms.cell, atoms.pbc)
dv = p[a] / masses[a] - p[b] / masses[b]
m = 1 / (1 / masses[a] + 1 / masses[b])
x = -np.dot(dv, d) / cd**2
if abs(x) > self.tolerance:
p[a] += x * m * d
p[b] -= x * m * d
converged = False
if converged:
break
else:
raise RuntimeError('Did not converge')
def adjust_forces(self, atoms, forces):
self.constraint_forces = -forces
self.adjust_momenta(atoms, forces)
self.constraint_forces += forces
def initialize_bond_lengths(self, atoms):
bondlengths = np.zeros(len(self.pairs))
for i, ab in enumerate(self.pairs):
bondlengths[i] = atoms.get_distance(ab[0], ab[1], mic=True)
return bondlengths
def get_indices(self):
return np.unique(self.pairs.ravel())
def todict(self):
return {'name': 'FixBondLengths',
'kwargs': {'pairs': self.pairs.tolist(),
'tolerance': self.tolerance}}
def index_shuffle(self, atoms, ind):
"""Shuffle the indices of the two atoms in this constraint"""
map = np.zeros(len(atoms), int)
map[ind] = 1
n = map.sum()
map[:] = -1
map[ind] = range(n)
pairs = map[self.pairs]
self.pairs = pairs[(pairs != -1).all(1)]
if len(self.pairs) == 0:
raise IndexError('Constraint not part of slice')
def FixBondLength(a1, a2):
"""Fix distance between atoms with indices a1 and a2."""
return FixBondLengths([(a1, a2)])
class FixLinearTriatomic(FixConstraint):
"""Holonomic constraints for rigid linear triatomic molecules."""
def __init__(self, triples):
"""Apply RATTLE-type bond constraints between outer atoms n and m
and linear vectorial constraints to the position of central
atoms o to fix the geometry of linear triatomic molecules of the
type:
n--o--m
Parameters:
triples: list
Indices of the atoms forming the linear molecules to constrain
as triples. Sequence should be (n, o, m) or (m, o, n).
When using these constraints in molecular dynamics or structure
optimizations, atomic forces need to be redistributed within a
triple. The function redistribute_forces_optimization implements
the redistribution of forces for structure optimization, while
the function redistribute_forces_md implements the redistribution
for molecular dynamics.
References:
Ciccotti et al. Molecular Physics 47 (1982)
https://doi.org/10.1080/00268978200100942
"""
self.triples = np.asarray(triples)
if self.triples.shape[1] != 3:
raise ValueError('"triples" has wrong size')
self.bondlengths = None
self.removed_dof = 4 * len(triples)
@property
def n_ind(self):
return self.triples[:, 0]
@property
def m_ind(self):
return self.triples[:, 2]
@property
def o_ind(self):
return self.triples[:, 1]
def initialize(self, atoms):
masses = atoms.get_masses()
self.mass_n, self.mass_m, self.mass_o = self.get_slices(masses)
self.bondlengths = self.initialize_bond_lengths(atoms)
self.bondlengths_nm = self.bondlengths.sum(axis=1)
C1 = self.bondlengths[:, ::-1] / self.bondlengths_nm[:, None]
C2 = (C1[:, 0] ** 2 * self.mass_o * self.mass_m +
C1[:, 1] ** 2 * self.mass_n * self.mass_o +
self.mass_n * self.mass_m)
C2 = C1 / C2[:, None]
C3 = self.mass_n * C1[:, 1] - self.mass_m * C1[:, 0]
C3 = C2 * self.mass_o[:, None] * C3[:, None]
C3[:, 1] *= -1
C3 = (C3 + 1) / np.vstack((self.mass_n, self.mass_m)).T
C4 = (C1[:, 0]**2 + C1[:, 1]**2 + 1)
C4 = C1 / C4[:, None]
self.C1 = C1
self.C2 = C2
self.C3 = C3
self.C4 = C4
def adjust_positions(self, atoms, new):
old = atoms.positions
new_n, new_m, new_o = self.get_slices(new)
if self.bondlengths is None:
self.initialize(atoms)
r0 = old[self.n_ind] - old[self.m_ind]
d0, _ = find_mic(r0, atoms.cell, atoms.pbc)
d1 = new_n - new_m - r0 + d0
a = np.einsum('ij,ij->i', d0, d0)
b = np.einsum('ij,ij->i', d1, d0)
c = np.einsum('ij,ij->i', d1, d1) - self.bondlengths_nm ** 2
g = (b - (b**2 - a * c)**0.5) / (a * self.C3.sum(axis=1))
g = g[:, None] * self.C3
new_n -= g[:, 0, None] * d0
new_m += g[:, 1, None] * d0
if np.allclose(d0, r0):
new_o = (self.C1[:, 0, None] * new_n
+ self.C1[:, 1, None] * new_m)
else:
v1, _ = find_mic(new_n, atoms.cell, atoms.pbc)
v2, _ = find_mic(new_m, atoms.cell, atoms.pbc)
rb = self.C1[:, 0, None] * v1 + self.C1[:, 1, None] * v2
new_o = wrap_positions(rb, atoms.cell, atoms.pbc)
self.set_slices(new_n, new_m, new_o, new)
def adjust_momenta(self, atoms, p):
old = atoms.positions
p_n, p_m, p_o = self.get_slices(p)
if self.bondlengths is None:
self.initialize(atoms)
mass_nn = self.mass_n[:, None]
mass_mm = self.mass_m[:, None]
mass_oo = self.mass_o[:, None]
d = old[self.n_ind] - old[self.m_ind]
d, _ = find_mic(d, atoms.cell, atoms.pbc)
dv = p_n / mass_nn - p_m / mass_mm
k = np.einsum('ij,ij->i', dv, d) / self.bondlengths_nm ** 2
k = self.C3 / (self.C3.sum(axis=1)[:, None]) * k[:, None]
p_n -= k[:, 0, None] * mass_nn * d
p_m += k[:, 1, None] * mass_mm * d
p_o = (mass_oo * (self.C1[:, 0, None] * p_n / mass_nn +
self.C1[:, 1, None] * p_m / mass_mm))
self.set_slices(p_n, p_m, p_o, p)
def adjust_forces(self, atoms, forces):
if self.bondlengths is None:
self.initialize(atoms)
A = self.C4 * np.diff(self.C1)
A[:, 0] *= -1
A -= 1
B = np.diff(self.C4) / (A.sum(axis=1))[:, None]
A /= (A.sum(axis=1))[:, None]
self.constraint_forces = -forces
old = atoms.positions
fr_n, fr_m, fr_o = self.redistribute_forces_optimization(forces)
d = old[self.n_ind] - old[self.m_ind]
d, _ = find_mic(d, atoms.cell, atoms.pbc)
df = fr_n - fr_m
k = -np.einsum('ij,ij->i', df, d) / self.bondlengths_nm ** 2
forces[self.n_ind] = fr_n + k[:, None] * d * A[:, 0, None]
forces[self.m_ind] = fr_m - k[:, None] * d * A[:, 1, None]
forces[self.o_ind] = fr_o + k[:, None] * d * B
self.constraint_forces += forces
def redistribute_forces_optimization(self, forces):
"""Redistribute forces within a triple when performing structure
optimizations.
The redistributed forces needs to be further adjusted using the
appropriate Lagrange multipliers as implemented in adjust_forces."""
forces_n, forces_m, forces_o = self.get_slices(forces)
C1_1 = self.C1[:, 0, None]
C1_2 = self.C1[:, 1, None]
C4_1 = self.C4[:, 0, None]
C4_2 = self.C4[:, 1, None]
fr_n = ((1 - C4_1 * C1_1) * forces_n -
C4_1 * (C1_2 * forces_m - forces_o))
fr_m = ((1 - C4_2 * C1_2) * forces_m -
C4_2 * (C1_1 * forces_n - forces_o))
fr_o = ((1 - 1 / (C1_1**2 + C1_2**2 + 1)) * forces_o +
C4_1 * forces_n + C4_2 * forces_m)
return fr_n, fr_m, fr_o
def redistribute_forces_md(self, atoms, forces, rand=False):
"""Redistribute forces within a triple when performing molecular
dynamics.
When rand=True, use the equations for random force terms, as
used e.g. by Langevin dynamics, otherwise apply the standard
equations for deterministic forces (see Ciccotti et al. Molecular
Physics 47 (1982))."""
if self.bondlengths is None:
self.initialize(atoms)
forces_n, forces_m, forces_o = self.get_slices(forces)
C1_1 = self.C1[:, 0, None]
C1_2 = self.C1[:, 1, None]
C2_1 = self.C2[:, 0, None]
C2_2 = self.C2[:, 1, None]
mass_nn = self.mass_n[:, None]
mass_mm = self.mass_m[:, None]
mass_oo = self.mass_o[:, None]
if rand:
mr1 = (mass_mm / mass_nn) ** 0.5
mr2 = (mass_oo / mass_nn) ** 0.5
mr3 = (mass_nn / mass_mm) ** 0.5
mr4 = (mass_oo / mass_mm) ** 0.5
else:
mr1 = 1.0
mr2 = 1.0
mr3 = 1.0
mr4 = 1.0
fr_n = ((1 - C1_1 * C2_1 * mass_oo * mass_mm) * forces_n -
C2_1 * (C1_2 * mr1 * mass_oo * mass_nn * forces_m -
mr2 * mass_mm * mass_nn * forces_o))
fr_m = ((1 - C1_2 * C2_2 * mass_oo * mass_nn) * forces_m -
C2_2 * (C1_1 * mr3 * mass_oo * mass_mm * forces_n -
mr4 * mass_mm * mass_nn * forces_o))
self.set_slices(fr_n, fr_m, 0.0, forces)
def get_slices(self, a):
a_n = a[self.n_ind]
a_m = a[self.m_ind]
a_o = a[self.o_ind]
return a_n, a_m, a_o
def set_slices(self, a_n, a_m, a_o, a):
a[self.n_ind] = a_n
a[self.m_ind] = a_m
a[self.o_ind] = a_o
def initialize_bond_lengths(self, atoms):
bondlengths = np.zeros((len(self.triples), 2))
for i in range(len(self.triples)):
bondlengths[i, 0] = atoms.get_distance(self.n_ind[i],
self.o_ind[i], mic=True)
bondlengths[i, 1] = atoms.get_distance(self.o_ind[i],
self.m_ind[i], mic=True)
return bondlengths
def get_indices(self):
return np.unique(self.triples.ravel())
def todict(self):
return {'name': 'FixLinearTriatomic',
'kwargs': {'triples': self.triples.tolist()}}
def index_shuffle(self, atoms, ind):
"""Shuffle the indices of the three atoms in this constraint"""
map = np.zeros(len(atoms), int)
map[ind] = 1
n = map.sum()
map[:] = -1
map[ind] = range(n)
triples = map[self.triples]
self.triples = triples[(triples != -1).all(1)]
if len(self.triples) == 0:
raise IndexError('Constraint not part of slice')
class FixedMode(FixConstraint):
"""Constrain atoms to move along directions orthogonal to
a given mode only."""
def __init__(self, mode):
self.mode = (np.asarray(mode) / np.sqrt((mode**2).sum())).reshape(-1)
def adjust_positions(self, atoms, newpositions):
newpositions = newpositions.ravel()
oldpositions = atoms.positions.ravel()
step = newpositions - oldpositions
newpositions -= self.mode * np.dot(step, self.mode)
def adjust_forces(self, atoms, forces):
forces = forces.ravel()
forces -= self.mode * np.dot(forces, self.mode)
def index_shuffle(self, atoms, ind):
eps = 1e-12
mode = self.mode.reshape(-1, 3)
excluded = np.ones(len(mode), dtype=bool)
excluded[ind] = False
if (abs(mode[excluded]) > eps).any():
raise IndexError('All nonzero parts of mode not in slice')
self.mode = mode[ind].ravel()
def get_indices(self):
# This function will never properly work because it works on all
# atoms and it has no idea how to tell how many atoms it is
# attached to. If it is being used, surely the user knows
# everything is being constrained.
return []
def todict(self):
return {'name': 'FixedMode',
'kwargs': {'mode': self.mode.tolist()}}
def __repr__(self):
return 'FixedMode(%s)' % self.mode.tolist()
class FixedPlane(FixConstraintSingle):
"""Constrain an atom index *a* to move in a given plane only.
The plane is defined by its normal vector *direction*."""
removed_dof = 1
def __init__(self, a, direction):
self.a = a
self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))
def adjust_positions(self, atoms, newpositions):
step = newpositions[self.a] - atoms.positions[self.a]
newpositions[self.a] -= self.dir * np.dot(step, self.dir)
def adjust_forces(self, atoms, forces):
forces[self.a] -= self.dir * np.dot(forces[self.a], self.dir)
def todict(self):
return {'name': 'FixedPlane',
'kwargs': {'a': self.a, 'direction': self.dir.tolist()}}
def __repr__(self):
return 'FixedPlane(%d, %s)' % (self.a, self.dir.tolist())
class FixedLine(FixConstraintSingle):
"""Constrain an atom index *a* to move on a given line only.
The line is defined by its vector *direction*."""
removed_dof = 2
def __init__(self, a, direction):
self.a = a
self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))
def adjust_positions(self, atoms, newpositions):
step = newpositions[self.a] - atoms.positions[self.a]
x = np.dot(step, self.dir)
newpositions[self.a] = atoms.positions[self.a] + x * self.dir
def adjust_forces(self, atoms, forces):
forces[self.a] = self.dir * np.dot(forces[self.a], self.dir)
def __repr__(self):
return 'FixedLine(%d, %s)' % (self.a, self.dir.tolist())
def todict(self):
return {'name': 'FixedLine',
'kwargs': {'a': self.a, 'direction': self.dir.tolist()}}
class FixCartesian(FixConstraintSingle):
'Fix an atom index *a* in the directions of the cartesian coordinates.'
def __init__(self, a, mask=(1, 1, 1)):
self.a = a
self.mask = ~np.asarray(mask, bool)
self.removed_dof = 3 - self.mask.sum()
def adjust_positions(self, atoms, new):
step = new[self.a] - atoms.positions[self.a]
step *= self.mask
new[self.a] = atoms.positions[self.a] + step
def adjust_forces(self, atoms, forces):
forces[self.a] *= self.mask
def __repr__(self):
return 'FixCartesian(a={0}, mask={1})'.format(self.a,
list(~self.mask))
def todict(self):
return {'name': 'FixCartesian',
'kwargs': {'a': self.a, 'mask': ~self.mask.tolist()}}
class FixScaled(FixConstraintSingle):
'Fix an atom index *a* in the directions of the unit vectors.'
def __init__(self, cell, a, mask=(1, 1, 1)):
self.cell = np.asarray(cell)
self.a = a
self.mask = np.array(mask, bool)
self.removed_dof = self.mask.sum()
def adjust_positions(self, atoms, new):
scaled_old = atoms.cell.scaled_positions(atoms.positions)
scaled_new = atoms.cell.scaled_positions(new)
for n in range(3):
if self.mask[n]:
scaled_new[self.a, n] = scaled_old[self.a, n]
new[self.a] = atoms.cell.cartesian_positions(scaled_new)[self.a]
def adjust_forces(self, atoms, forces):
# Forces are covarient to the coordinate transformation,
# use the inverse transformations
scaled_forces = atoms.cell.cartesian_positions(forces)
scaled_forces[self.a] *= -(self.mask - 1)
forces[self.a] = atoms.cell.scaled_positions(scaled_forces)[self.a]
def todict(self):
return {'name': 'FixScaled',
'kwargs': {'a': self.a,
'cell': self.cell.tolist(),
'mask': self.mask.tolist()}}
def __repr__(self):
return 'FixScaled(%s, %d, %s)' % (repr(self.cell),
self.a,
repr(self.mask))
# TODO: Better interface might be to use dictionaries in place of very
# nested lists/tuples
class FixInternals(FixConstraint):
"""Constraint object for fixing multiple internal coordinates.
Allows fixing bonds, angles, and dihedrals.
Please provide angular units in degrees using angles_deg and
dihedrals_deg.
"""
def __init__(self, bonds=None, angles=None, dihedrals=None,
angles_deg=None, dihedrals_deg=None,
bondcombos=None, anglecombos=None, dihedralcombos=None,
mic=False, epsilon=1.e-7):
# deprecate public API using radians; degrees is preferred
warn_msg = 'Please specify {} in degrees using the {} argument.'
if angles:
warn(FutureWarning(warn_msg.format('angles', 'angle_deg')))
angles = np.asarray(angles)
angles[:, 0] = angles[:, 0] / np.pi * 180
angles = angles.tolist()
else:
angles = angles_deg
if dihedrals:
warn(FutureWarning(warn_msg.format('dihedrals', 'dihedrals_deg')))
dihedrals = np.asarray(dihedrals)
dihedrals[:, 0] = dihedrals[:, 0] / np.pi * 180
dihedrals = dihedrals.tolist()
else:
dihedrals = dihedrals_deg
self.bonds = bonds or []
self.angles = angles or []
self.dihedrals = dihedrals or []
self.bondcombos = bondcombos or []
self.anglecombos = anglecombos or []
self.dihedralcombos = dihedralcombos or []
self.mic = mic
# Initialize these at run-time:
self.n = 0
self.constraints = []
self.epsilon = epsilon
self.initialized = False
self.removed_dof = self.n
def initialize(self, atoms):
if self.initialized:
return
masses = np.repeat(atoms.get_masses(), 3)
self.n = (len(self.bonds) + len(self.angles) + len(self.dihedrals)
+ len(self.bondcombos) + len(self.anglecombos)
+ len(self.dihedralcombos))
cell = None
pbc = None
if self.mic:
cell = atoms.cell
pbc = atoms.pbc
self.constraints = []
for data, make_constr in [(self.bonds, self.FixBondLengthAlt),
(self.angles, self.FixAngle),
(self.dihedrals, self.FixDihedral),
(self.bondcombos, self.FixBondCombo),
(self.anglecombos, self.FixAngleCombo),
(self.dihedralcombos, self.FixDihedralCombo)]:
for datum in data:
constr = make_constr(datum[0], datum[1], masses, cell, pbc)
self.constraints.append(constr)
self.initialized = True
def shuffle_definitions(self, shuffle_dic, internal_type):
dfns = [] # definitions
for dfn in internal_type: # e.g. for bond in self.bonds
append = True
new_dfn = [dfn[0], list(dfn[1])]
for old in dfn[1]:
if old in shuffle_dic:
new_dfn[1][dfn[1].index(old)] = shuffle_dic[old]
else:
append = False
break
if append:
dfns.append(new_dfn)
return dfns
def shuffle_combos(self, shuffle_dic, internal_type):
dfns = [] # definitions
for dfn in internal_type: # e.g. for bondcombo in self.bondcombos
append = True
all_indices = [idx[0:-1] for idx in dfn[1]]
new_dfn = [dfn[0], list(dfn[1])]
for i, indices in enumerate(all_indices):
for old in indices:
if old in shuffle_dic:
new_dfn[1][i][indices.index(old)] = shuffle_dic[old]
else:
append = False
break
if not append:
break
if append:
dfns.append(new_dfn)
return dfns
def index_shuffle(self, atoms, ind):
# See docstring of superclass
self.initialize(atoms)
shuffle_dic = dict(slice2enlist(ind, len(atoms)))
shuffle_dic = {old: new for new, old in shuffle_dic.items()}
self.bonds = self.shuffle_definitions(shuffle_dic, self.bonds)
self.angles = self.shuffle_definitions(shuffle_dic, self.angles)
self.dihedrals = self.shuffle_definitions(shuffle_dic, self.dihedrals)
self.bondcombos = self.shuffle_combos(shuffle_dic, self.bondcombos)
self.anglecombos = self.shuffle_combos(shuffle_dic, self.anglecombos)
self.dihedralcombos = self.shuffle_combos(shuffle_dic,
self.dihedralcombos)
self.initialized = False
self.initialize(atoms)
if len(self.constraints) == 0:
raise IndexError('Constraint not part of slice')
def get_indices(self):
cons = []
for dfn in self.bonds + self.dihedrals + self.angles:
cons.extend(dfn[1])
for dfn in self.bondcombos + self.anglecombos + self.dihedralcombos:
for partial_dfn in dfn[1]:
cons.extend(partial_dfn[0:-1]) # last index is the coefficient
return list(set(cons))
def todict(self):
return {'name': 'FixInternals',
'kwargs': {'bonds': self.bonds,
'angles': self.angles,
'dihedrals': self.dihedrals,
'bondcombos': self.bondcombos,
'anglecombos': self.anglecombos,
'dihedralcombos': self.dihedralcombos,
'mic': self.mic,
'epsilon': self.epsilon}}
def adjust_positions(self, atoms, new):
self.initialize(atoms)
for constraint in self.constraints:
constraint.prepare_jacobian(atoms.positions)
for j in range(50):
maxerr = 0.0
for constraint in self.constraints:
constraint.adjust_positions(atoms.positions, new)
maxerr = max(abs(constraint.sigma), maxerr)
if maxerr < self.epsilon:
return
raise ValueError('Shake did not converge.')
def adjust_forces(self, atoms, forces):
"""Project out translations and rotations and all other constraints"""
self.initialize(atoms)
positions = atoms.positions
N = len(forces)
list2_constraints = list(np.zeros((6, N, 3)))
tx, ty, tz, rx, ry, rz = list2_constraints
list_constraints = [r.ravel() for r in list2_constraints]
tx[:, 0] = 1.0
ty[:, 1] = 1.0
tz[:, 2] = 1.0
ff = forces.ravel()
# Calculate the center of mass
center = positions.sum(axis=0) / N
rx[:, 1] = -(positions[:, 2] - center[2])
rx[:, 2] = positions[:, 1] - center[1]
ry[:, 0] = positions[:, 2] - center[2]
ry[:, 2] = -(positions[:, 0] - center[0])
rz[:, 0] = -(positions[:, 1] - center[1])
rz[:, 1] = positions[:, 0] - center[0]
# Normalizing transl., rotat. constraints
for r in list2_constraints:
r /= np.linalg.norm(r.ravel())
# Add all angle, etc. constraint vectors
for constraint in self.constraints:
constraint.prepare_jacobian(positions)
constraint.adjust_forces(positions, forces)
list_constraints.insert(0, constraint.jacobian)
# QR DECOMPOSITION - GRAM SCHMIDT
list_constraints = [r.ravel() for r in list_constraints]
aa = np.column_stack(list_constraints)
(aa, bb) = np.linalg.qr(aa)
# Projection
hh = []
for i, constraint in enumerate(self.constraints):
hh.append(aa[:, i] * np.row_stack(aa[:, i]))
txx = aa[:, self.n] * np.row_stack(aa[:, self.n])
tyy = aa[:, self.n + 1] * np.row_stack(aa[:, self.n + 1])
tzz = aa[:, self.n + 2] * np.row_stack(aa[:, self.n + 2])
rxx = aa[:, self.n + 3] * np.row_stack(aa[:, self.n + 3])
ryy = aa[:, self.n + 4] * np.row_stack(aa[:, self.n + 4])
rzz = aa[:, self.n + 5] * np.row_stack(aa[:, self.n + 5])
T = txx + tyy + tzz + rxx + ryy + rzz
for vec in hh:
T += vec
ff = np.dot(T, np.row_stack(ff))
forces[:, :] -= np.dot(T, np.row_stack(ff)).reshape(-1, 3)
def __repr__(self):
constraints = repr(self.constraints)
return 'FixInternals(_copy_init=%s, epsilon=%s)' % (constraints,
repr(self.epsilon))
def __str__(self):
return '\n'.join([repr(c) for c in self.constraints])
# Classes for internal use in FixInternals
class FixInternalsBase:
"""Base class for subclasses of FixInternals."""
def __init__(self, targetvalue, indices, masses, cell, pbc):
self.targetvalue = targetvalue # constant target value
self.indices = [defin[0:-1] for defin in indices] # indices, defs
self.coefs = np.asarray([defin[-1] for defin in indices]) # coefs
self.masses = masses
self.jacobian = [] # geometric Jacobian matrix, Wilson B-matrix
self.sigma = 1. # difference between current and target value
self.projected_force = None # helps optimizers scan along constr.
self.cell = cell
self.pbc = pbc
def finalize_jacobian(self, pos, n_internals, n, derivs):
"""Populate jacobian with derivatives for `n_internals` defined
internals. n = 2 (bonds), 3 (angles), 4 (dihedrals)."""
jacobian = np.zeros((n_internals, *pos.shape))
for i, idx in enumerate(self.indices):
for j in range(n):
jacobian[i, idx[j]] = derivs[i, j]
jacobian = jacobian.reshape((n_internals, 3 * len(pos)))
self.jacobian = self.coefs @ jacobian
def finalize_positions(self, newpos):
jacobian = self.jacobian / self.masses
lamda = -self.sigma / np.dot(jacobian, self.jacobian)
dnewpos = lamda * jacobian
newpos += dnewpos.reshape(newpos.shape)
def adjust_forces(self, positions, forces):
self.projected_force = np.dot(self.jacobian, forces.ravel())
self.jacobian /= np.linalg.norm(self.jacobian)
class FixBondCombo(FixInternalsBase):
"""Constraint subobject for fixing linear combination of bond lengths
within FixInternals.
sum_i( coef_i * bond_length_i ) = constant
"""
def prepare_jacobian(self, pos):
bondvectors = [pos[k] - pos[h] for h, k in self.indices]
derivs = get_distances_derivatives(bondvectors, cell=self.cell,
pbc=self.pbc)
self.finalize_jacobian(pos, len(bondvectors), 2, derivs)
def adjust_positions(self, oldpos, newpos):
bondvectors = [newpos[k] - newpos[h] for h, k in self.indices]
(_, ), (dists, ) = conditional_find_mic([bondvectors],
cell=self.cell,
pbc=self.pbc)
value = np.dot(self.coefs, dists)
self.sigma = value - self.targetvalue
self.finalize_positions(newpos)
def __repr__(self):
return 'FixBondCombo({}, {}, {})'.format(repr(self.targetvalue),
self.indices, self.coefs)
class FixBondLengthAlt(FixBondCombo):
"""Constraint subobject for fixing bond length within FixInternals.
Fix distance between atoms with indices a1, a2."""
def __init__(self, targetvalue, indices, masses, cell, pbc):
indices = [list(indices) + [1.]] # bond definition with coef 1.
super().__init__(targetvalue, indices, masses, cell=cell, pbc=pbc)
def __repr__(self):
return 'FixBondLengthAlt({}, {})'.format(self.targetvalue,
*self.indices)
class FixAngleCombo(FixInternalsBase):
"""Constraint subobject for fixing linear combination of angles
within FixInternals.
sum_i( coef_i * angle_i ) = constant
"""
def gather_vectors(self, pos):
v0 = [pos[h] - pos[k] for h, k, l in self.indices]
v1 = [pos[l] - pos[k] for h, k, l in self.indices]
return v0, v1
def prepare_jacobian(self, pos):
v0, v1 = self.gather_vectors(pos)
derivs = get_angles_derivatives(v0, v1, cell=self.cell,
pbc=self.pbc)
self.finalize_jacobian(pos, len(v0), 3, derivs)
def adjust_positions(self, oldpos, newpos):
v0, v1 = self.gather_vectors(newpos)
value = get_angles(v0, v1, cell=self.cell, pbc=self.pbc)
value = np.dot(self.coefs, value)
self.sigma = value - self.targetvalue
self.finalize_positions(newpos)
def __repr__(self):
return 'FixAngleCombo({}, {}, {})'.format(self.targetvalue,
self.indices, self.coefs)
class FixAngle(FixAngleCombo):
"""Constraint object for fixing an angle within
FixInternals using the SHAKE algorithm.
SHAKE convergence is potentially problematic for angles very close to
0 or 180 degrees as there is a singularity in the Cartesian derivative.
"""
def __init__(self, targetvalue, indices, masses, cell, pbc):
"""Fix atom movement to construct a constant angle."""
indices = [list(indices) + [1.]] # angle definition with coef 1.
super().__init__(targetvalue, indices, masses, cell=cell, pbc=pbc)
def __repr__(self):
return 'FixAngle({}, {})'.format(self.targetvalue, *self.indices)
class FixDihedralCombo(FixInternalsBase):
"""Constraint subobject for fixing linear combination of dihedrals
within FixInternals.
sum_i( coef_i * dihedral_i ) = constant
"""
def gather_vectors(self, pos):
v0 = [pos[k] - pos[h] for h, k, l, m in self.indices]
v1 = [pos[l] - pos[k] for h, k, l, m in self.indices]
v2 = [pos[m] - pos[l] for h, k, l, m in self.indices]
return v0, v1, v2
def prepare_jacobian(self, pos):
v0, v1, v2 = self.gather_vectors(pos)
derivs = get_dihedrals_derivatives(v0, v1, v2, cell=self.cell,
pbc=self.pbc)
self.finalize_jacobian(pos, len(v0), 4, derivs)
def adjust_positions(self, oldpos, newpos):
v0, v1, v2 = self.gather_vectors(newpos)
value = get_dihedrals(v0, v1, v2, cell=self.cell, pbc=self.pbc)
value = np.dot(self.coefs, value)
self.sigma = value - self.targetvalue
self.finalize_positions(newpos)
def __repr__(self):
return 'FixDihedralCombo({}, {}, {})'.format(self.targetvalue,
self.indices,
self.coefs)
class FixDihedral(FixDihedralCombo):
"""Constraint object for fixing a dihedral angle using
the SHAKE algorithm. This one allows also other constraints.
SHAKE convergence is potentially problematic for near-undefined
dihedral angles (i.e. when one of the two angles a012 or a123
approaches 0 or 180 degrees).
"""
def __init__(self, targetvalue, indices, masses, cell, pbc):
indices = [list(indices) + [1.]] # dihedral def. with coef 1.
super().__init__(targetvalue, indices, masses, cell=cell, pbc=pbc)
def adjust_positions(self, oldpos, newpos):
v0, v1, v2 = self.gather_vectors(newpos)
value = get_dihedrals(v0, v1, v2, cell=self.cell, pbc=self.pbc)
# apply minimum dihedral difference 'convention': (diff <= 180)
self.sigma = (value - self.targetvalue + 180) % 360 - 180
self.finalize_positions(newpos)
def __repr__(self):
return 'FixDihedral({}, {})'.format(self.targetvalue, *self.indices)
class FixParametricRelations(FixConstraint):
def __init__(
self,
indices,
Jacobian,
const_shift,
params=None,
eps=1e-12,
use_cell=False,
):
"""Constrains the degrees of freedom to act in a reduced parameter space defined by the Jacobian
These constraints are based off the work in: https://arxiv.org/abs/1908.01610
The constraints linearly maps the full 3N degrees of freedom, where N is number of active
lattice vectors/atoms onto a reduced subset of M free parameters, where M <= 3*N. The
Jacobian matrix and constant shift vector map the full set of degrees of freedom onto the
reduced parameter space.
Currently the constraint is set up to handle either atomic positions or lattice vectors
at one time, but not both. To do both simply add a two constraints for each set. This is
done to keep the mathematics behind the operations separate.
It would be possible to extend these constraints to allow non-linear transformations
if functionality to update the Jacobian at each position update was included. This would
require passing an update function evaluate it every time adjust_positions is callled.
This is currently NOT supported, and there are no plans to implement it in the future.
Args:
indices (list of int): indices of the constrained atoms
(if not None or empty then cell_indices must be None or Empty)
Jacobian (np.ndarray(shape=(3*len(indices), len(params)))): The Jacobian describing
the parameter space transformation
const_shift (np.ndarray(shape=(3*len(indices)))): A vector describing the constant term
in the transformation not accounted for in the Jacobian
params (list of str): parameters used in the parametric representation
if None a list is generated based on the shape of the Jacobian
eps (float): a small number to compare the similarity of numbers and set the precision used
to generate the constraint expressions
use_cell (bool): if True then act on the cell object
"""
self.indices = np.array(indices)
self.Jacobian = np.array(Jacobian)
self.const_shift = np.array(const_shift)
assert self.const_shift.shape[0] == 3*len(self.indices)
assert self.Jacobian.shape[0] == 3*len(self.indices)
self.eps = eps
self.use_cell = use_cell
if params is None:
params = []
if self.Jacobian.shape[1] > 0:
int_fmt_str = "{:0" + str(int(np.ceil(np.log10(self.Jacobian.shape[1])))) + "d}"
for param_ind in range(self.Jacobian.shape[1]):
params.append("param_" + int_fmt_str.format(param_ind))
else:
assert len(params) == self.Jacobian.shape[-1]
self.params = params
self.Jacobian_inv = np.linalg.inv(self.Jacobian.T @ self.Jacobian) @ self.Jacobian.T
@classmethod
def from_expressions(cls, indices, params, expressions, eps=1e-12, use_cell=False):
"""Converts the expressions into a Jacobian Matrix/const_shift vector and constructs a FixParametricRelations constraint
The expressions must be a list like object of size 3*N and elements must be ordered as:
[n_0,i; n_0,j; n_0,k; n_1,i; n_1,j; .... ; n_N-1,i; n_N-1,j; n_N-1,k],
where i, j, and k are the first, second and third component of the atomic position/lattice
vector. Currently only linear operations are allowed to be included in the expressions so
only terms like:
- const * param_0
- sqrt[const] * param_1
- const * param_0 +/- const * param_1 +/- ... +/- const * param_M
where const is any real number and param_0, param_1, ..., param_M are the parameters passed in
params, are allowed.
For example, the fractional atomic position constraints for wurtzite are:
params = ["z1", "z2"]
expressions = [
"1.0/3.0", "2.0/3.0", "z1",
"2.0/3.0", "1.0/3.0", "0.5 + z1",
"1.0/3.0", "2.0/3.0", "z2",
"2.0/3.0", "1.0/3.0", "0.5 + z2",
]
For diamond are:
params = []
expressions = [
"0.0", "0.0", "0.0",
"0.25", "0.25", "0.25",
],
and for stannite are
params=["x4", "z4"]
expressions = [
"0.0", "0.0", "0.0",
"0.0", "0.5", "0.5",
"0.75", "0.25", "0.5",
"0.25", "0.75", "0.5",
"x4 + z4", "x4 + z4", "2*x4",
"x4 - z4", "x4 - z4", "-2*x4",
"0.0", "-1.0 * (x4 + z4)", "x4 - z4",
"0.0", "x4 - z4", "-1.0 * (x4 + z4)",
]
Args:
indices (list of int): indices of the constrained atoms
(if not None or empty then cell_indices must be None or Empty)
params (list of str): parameters used in the parametric representation
expressions (list of str): expressions used to convert from the parametric to the real space
representation
eps (float): a small number to compare the similarity of numbers and set the precision used
to generate the constraint expressions
use_cell (bool): if True then act on the cell object
Returns:
cls(
indices,
Jacobian generated from expressions,
const_shift generated from expressions,
params,
eps-12,
use_cell,
)
"""
Jacobian = np.zeros((3*len(indices), len(params)))
const_shift = np.zeros(3*len(indices))
for expr_ind, expression in enumerate(expressions):
expression = expression.strip()
# Convert subtraction to addition
expression = expression.replace("-", "+(-1.0)*")
if "+" == expression[0]:
expression = expression[1:]
elif "(+" == expression[:2]:
expression = "(" + expression[2:]
# Explicitly add leading zeros so when replacing param_1 with 0.0 param_11 does not become 0.01
int_fmt_str = "{:0" + str(int(np.ceil(np.log10(len(params)+1)))) + "d}"
param_dct = dict()
param_map = dict()
# Construct a standardized param template for A/B filling
for param_ind, param in enumerate(params):
param_str = "param_" + int_fmt_str.format(param_ind)
param_map[param] = param_str
param_dct[param_str] = 0.0
# Replace the parameters according to the map
# Sort by string length (long to short) to prevent cases like x11 becoming f"{param_map["x1"]}1"
for param in sorted(params, key=lambda s: -1.0*len(s)):
expression = expression.replace(param, param_map[param])
# Partial linearity check
for express_sec in expression.split("+"):
in_sec = [param in express_sec for param in param_dct]
n_params_in_sec = len(np.where(np.array(in_sec))[0])
if n_params_in_sec > 1:
raise ValueError("The FixParametricRelations expressions must be linear.")
const_shift[expr_ind] = float(eval_expression(expression, param_dct))
for param_ind in range(len(params)):
param_str = "param_" + int_fmt_str.format(param_ind)
if param_str not in expression:
Jacobian[expr_ind, param_ind] = 0.0
continue
param_dct[param_str] = 1.0
test_1 = float(eval_expression(expression, param_dct))
test_1 -= const_shift[expr_ind]
Jacobian[expr_ind, param_ind] = test_1
param_dct[param_str] = 2.0
test_2 = float(eval_expression(expression, param_dct))
test_2 -= const_shift[expr_ind]
if abs(test_2 / test_1 - 2.0) > eps:
raise ValueError("The FixParametricRelations expressions must be linear.")
param_dct[param_str] = 0.0
args = [
indices,
Jacobian,
const_shift,
params,
eps,
use_cell,
]
if cls is FixScaledParametricRelations:
args = args[:-1]
return cls(*args)
@property
def expressions(self):
"""Generate the expressions represented by the current self.Jacobian and self.const_shift objects"""
expressions = []
per = int(round(-1 * np.log10(self.eps)))
fmt_str = "{:." + str(per + 1) + "g}"
for index, shift_val in enumerate(self.const_shift):
exp = ""
if np.all(np.abs(self.Jacobian[index]) < self.eps) or np.abs(shift_val) > self.eps:
exp += fmt_str.format(shift_val)
param_exp = ""
for param_index, jacob_val in enumerate(self.Jacobian[index]):
abs_jacob_val = np.round(np.abs(jacob_val), per + 1)
if abs_jacob_val < self.eps:
continue
param = self.params[param_index]
if param_exp or exp:
if jacob_val > -1.0*self.eps:
param_exp += " + "
else:
param_exp += " - "
elif (not exp) and (not param_exp) and (jacob_val < -1.0*self.eps):
param_exp += "-"
if np.abs(abs_jacob_val-1.0) <= self.eps:
param_exp += "{:s}".format(param)
else:
param_exp += (fmt_str + "*{:s}").format(abs_jacob_val, param)
exp += param_exp
expressions.append(exp)
return np.array(expressions).reshape((-1, 3))
def todict(self):
"""Create a dictionary representation of the constraint"""
return {
"name": type(self).__name__,
"kwargs": {
"indices": self.indices,
"params": self.params,
"Jacobian": self.Jacobian,
"const_shift": self.const_shift,
"eps": self.eps,
"use_cell": self.use_cell,
}
}
def __repr__(self):
"""The str representation of the constraint"""
if len(self.indices) > 1:
indices_str = "[{:d}, ..., {:d}]".format(self.indices[0], self.indices[-1])
else:
indices_str = "[{:d}]".format(self.indices[0])
if len(self.params) > 1:
params_str = "[{:s}, ..., {:s}]".format(self.params[0], self.params[-1])
elif len(self.params) == 1:
params_str = "[{:s}]".format(self.params[0])
else:
params_str = "[]"
return '{:s}({:s}, {:s}, ..., {:e})'.format(
type(self).__name__,
indices_str,
params_str,
self.eps
)
class FixScaledParametricRelations(FixParametricRelations):
def __init__(
self,
indices,
Jacobian,
const_shift,
params=None,
eps=1e-12,
):
"""The fractional coordinate version of FixParametricRelations
All arguments are the same, but since this is for fractional coordinates use_cell is false
"""
super(FixScaledParametricRelations, self).__init__(
indices,
Jacobian,
const_shift,
params,
eps,
False,
)
def adjust_contravariant(self, cell, vecs, B):
"""Adjust the values of a set of vectors that are contravariant with the unit transformation"""
scaled = cell.scaled_positions(vecs).flatten()
scaled = self.Jacobian_inv @ (scaled - B)
scaled = ((self.Jacobian @ scaled) + B).reshape((-1, 3))
return cell.cartesian_positions(scaled)
def adjust_positions(self, atoms, positions):
"""Adjust positions of the atoms to match the constraints"""
positions[self.indices] = self.adjust_contravariant(
atoms.cell,
positions[self.indices],
self.const_shift,
)
positions[self.indices] = self.adjust_B(atoms.cell, positions[self.indices])
def adjust_B(self, cell, positions):
"""Wraps the positions back to the unit cell and adjust B to keep track of this change"""
fractional = cell.scaled_positions(positions)
wrapped_fractional = (fractional % 1.0) % 1.0
self.const_shift += np.round(wrapped_fractional - fractional).flatten()
return cell.cartesian_positions(wrapped_fractional)
def adjust_momenta(self, atoms, momenta):
"""Adjust momenta of the atoms to match the constraints"""
momenta[self.indices] = self.adjust_contravariant(
atoms.cell,
momenta[self.indices],
np.zeros(self.const_shift.shape),
)
def adjust_forces(self, atoms, forces):
"""Adjust forces of the atoms to match the constraints"""
# Forces are coavarient to the coordinate transformation, use the inverse transformations
cart2frac_jacob = np.zeros(2*(3*len(atoms),))
for i_atom in range(len(atoms)):
cart2frac_jacob[3*i_atom:3*(i_atom+1), 3*i_atom:3*(i_atom+1)] = atoms.cell.T
jacobian = cart2frac_jacob @ self.Jacobian
jacobian_inv = np.linalg.inv(jacobian.T @ jacobian) @ jacobian.T
reduced_forces = jacobian.T @ forces.flatten()
forces[self.indices] = (jacobian_inv.T @ reduced_forces).reshape(-1, 3)
def todict(self):
"""Create a dictionary representation of the constraint"""
dct = super(FixScaledParametricRelations, self).todict()
del(dct["kwargs"]["use_cell"])
return dct
class FixCartesianParametricRelations(FixParametricRelations):
def __init__(
self,
indices,
Jacobian,
const_shift,
params=None,
eps=1e-12,
use_cell=False,
):
"""The Cartesian coordinate version of FixParametricRelations"""
super(FixCartesianParametricRelations, self).__init__(
indices,
Jacobian,
const_shift,
params,
eps,
use_cell,
)
def adjust_contravariant(self, vecs, B):
"""Adjust the values of a set of vectors that are contravariant with the unit transformation"""
vecs = self.Jacobian_inv @ (vecs.flatten() - B)
vecs = ((self.Jacobian @ vecs) + B).reshape((-1, 3))
return vecs
def adjust_positions(self, atoms, positions):
"""Adjust positions of the atoms to match the constraints"""
if self.use_cell:
return
positions[self.indices] = self.adjust_contravariant(
positions[self.indices],
self.const_shift,
)
def adjust_momenta(self, atoms, momenta):
"""Adjust momenta of the atoms to match the constraints"""
if self.use_cell:
return
momenta[self.indices] = self.adjust_contravariant(
momenta[self.indices],
np.zeros(self.const_shift.shape),
)
def adjust_forces(self, atoms, forces):
"""Adjust forces of the atoms to match the constraints"""
if self.use_cell:
return
forces_reduced = self.Jacobian.T @ forces[self.indices].flatten()
forces[self.indices] = (self.Jacobian_inv.T @ forces_reduced).reshape(-1, 3)
def adjust_cell(self, atoms, cell):
"""Adjust the cell of the atoms to match the constraints"""
if not self.use_cell:
return
cell[self.indices] = self.adjust_contravariant(
cell[self.indices],
np.zeros(self.const_shift.shape),
)
def adjust_stress(self, atoms, stress):
"""Adjust the stress of the atoms to match the constraints"""
if not self.use_cell:
return
stress_3x3 = voigt_6_to_full_3x3_stress(stress)
stress_reduced = self.Jacobian.T @ stress_3x3[self.indices].flatten()
stress_3x3[self.indices] = (self.Jacobian_inv.T @ stress_reduced).reshape(-1, 3)
stress[:] = full_3x3_to_voigt_6_stress(stress_3x3)
class Hookean(FixConstraint):
"""Applies a Hookean restorative force between a pair of atoms, an atom
and a point, or an atom and a plane."""
def __init__(self, a1, a2, k, rt=None):
"""Forces two atoms to stay close together by applying no force if
they are below a threshold length, rt, and applying a Hookean
restorative force when the distance between them exceeds rt. Can
also be used to tether an atom to a fixed point in space or to a
distance above a plane.
a1 : int
Index of atom 1
a2 : one of three options
1) index of atom 2
2) a fixed point in cartesian space to which to tether a1
3) a plane given as (A, B, C, D) in A x + B y + C z + D = 0.
k : float
Hooke's law (spring) constant to apply when distance
exceeds threshold_length. Units of eV A^-2.
rt : float
The threshold length below which there is no force. The
length is 1) between two atoms, 2) between atom and point.
This argument is not supplied in case 3. Units of A.
If a plane is specified, the Hooke's law force is applied if the atom
is on the normal side of the plane. For instance, the plane with
(A, B, C, D) = (0, 0, 1, -7) defines a plane in the xy plane with a z
intercept of +7 and a normal vector pointing in the +z direction.
If the atom has z > 7, then a downward force would be applied of
k * (atom.z - 7). The same plane with the normal vector pointing in
the -z direction would be given by (A, B, C, D) = (0, 0, -1, 7).
"""
if isinstance(a2, int):
self._type = 'two atoms'
self.indices = [a1, a2]
elif len(a2) == 3:
self._type = 'point'
self.index = a1
self.origin = np.array(a2)
elif len(a2) == 4:
self._type = 'plane'
self.index = a1
self.plane = a2
else:
raise RuntimeError('Unknown type for a2')
self.threshold = rt
self.spring = k
def todict(self):
dct = {'name': 'Hookean'}
dct['kwargs'] = {'rt': self.threshold,
'k': self.spring}
if self._type == 'two atoms':
dct['kwargs']['a1'] = self.indices[0]
dct['kwargs']['a2'] = self.indices[1]
elif self._type == 'point':
dct['kwargs']['a1'] = self.index
dct['kwargs']['a2'] = self.origin
elif self._type == 'plane':
dct['kwargs']['a1'] = self.index
dct['kwargs']['a2'] = self.plane
else:
raise NotImplementedError('Bad type: %s' % self._type)
return dct
def adjust_positions(self, atoms, newpositions):
pass
def adjust_momenta(self, atoms, momenta):
pass
def adjust_forces(self, atoms, forces):
positions = atoms.positions
if self._type == 'plane':
A, B, C, D = self.plane
x, y, z = positions[self.index]
d = ((A * x + B * y + C * z + D) /
np.sqrt(A**2 + B**2 + C**2))
if d < 0:
return
magnitude = self.spring * d
direction = - np.array((A, B, C)) / np.linalg.norm((A, B, C))
forces[self.index] += direction * magnitude
return
if self._type == 'two atoms':
p1, p2 = positions[self.indices]
elif self._type == 'point':
p1 = positions[self.index]
p2 = self.origin
displace, _ = find_mic(p2 - p1, atoms.cell, atoms.pbc)
bondlength = np.linalg.norm(displace)
if bondlength > self.threshold:
magnitude = self.spring * (bondlength - self.threshold)
direction = displace / np.linalg.norm(displace)
if self._type == 'two atoms':
forces[self.indices[0]] += direction * magnitude
forces[self.indices[1]] -= direction * magnitude
else:
forces[self.index] += direction * magnitude
def adjust_potential_energy(self, atoms):
"""Returns the difference to the potential energy due to an active
constraint. (That is, the quantity returned is to be added to the
potential energy.)"""
positions = atoms.positions
if self._type == 'plane':
A, B, C, D = self.plane
x, y, z = positions[self.index]
d = ((A * x + B * y + C * z + D) /
np.sqrt(A**2 + B**2 + C**2))
if d > 0:
return 0.5 * self.spring * d**2
else:
return 0.
if self._type == 'two atoms':
p1, p2 = positions[self.indices]
elif self._type == 'point':
p1 = positions[self.index]
p2 = self.origin
displace, _ = find_mic(p2 - p1, atoms.cell, atoms.pbc)
bondlength = np.linalg.norm(displace)
if bondlength > self.threshold:
return 0.5 * self.spring * (bondlength - self.threshold)**2
else:
return 0.
def get_indices(self):
if self._type == 'two atoms':
return self.indices
elif self._type == 'point':
return self.index
elif self._type == 'plane':
return self.index
def index_shuffle(self, atoms, ind):
# See docstring of superclass
if self._type == 'two atoms':
newa = [-1, -1] # Signal error
for new, old in slice2enlist(ind, len(atoms)):
for i, a in enumerate(self.indices):
if old == a:
newa[i] = new
if newa[0] == -1 or newa[1] == -1:
raise IndexError('Constraint not part of slice')
self.indices = newa
elif (self._type == 'point') or (self._type == 'plane'):
newa = -1 # Signal error
for new, old in slice2enlist(ind, len(atoms)):
if old == self.index:
newa = new
break
if newa == -1:
raise IndexError('Constraint not part of slice')
self.index = newa
def __repr__(self):
if self._type == 'two atoms':
return 'Hookean(%d, %d)' % tuple(self.indices)
elif self._type == 'point':
return 'Hookean(%d) to cartesian' % self.index
else:
return 'Hookean(%d) to plane' % self.index
class ExternalForce(FixConstraint):
"""Constraint object for pulling two atoms apart by an external force.
You can combine this constraint for example with FixBondLength but make
sure that *ExternalForce* comes first in the list if there are overlaps
between atom1-2 and atom3-4:
>>> con1 = ExternalForce(atom1, atom2, f_ext)
>>> con2 = FixBondLength(atom3, atom4)
>>> atoms.set_constraint([con1, con2])
see ase/test/external_force.py"""
def __init__(self, a1, a2, f_ext):
self.indices = [a1, a2]
self.external_force = f_ext
def adjust_positions(self, atoms, new):
pass
def adjust_forces(self, atoms, forces):
dist = np.subtract.reduce(atoms.positions[self.indices])
force = self.external_force * dist / np.linalg.norm(dist)
forces[self.indices] += (force, -force)
def adjust_potential_energy(self, atoms):
dist = np.subtract.reduce(atoms.positions[self.indices])
return -np.linalg.norm(dist) * self.external_force
def index_shuffle(self, atoms, ind):
"""Shuffle the indices of the two atoms in this constraint"""
newa = [-1, -1] # Signal error
for new, old in slice2enlist(ind, len(atoms)):
for i, a in enumerate(self.indices):
if old == a:
newa[i] = new
if newa[0] == -1 or newa[1] == -1:
raise IndexError('Constraint not part of slice')
self.indices = newa
def __repr__(self):
return 'ExternalForce(%d, %d, %f)' % (self.indices[0],
self.indices[1],
self.external_force)
def todict(self):
return {'name': 'ExternalForce',
'kwargs': {'a1': self.indices[0], 'a2': self.indices[1],
'f_ext': self.external_force}}
class MirrorForce(FixConstraint):
"""Constraint object for mirroring the force between two atoms.
This class is designed to find a transition state with the help of a
single optimization. It can be used if the transition state belongs to a
bond breaking reaction. First the given bond length will be fixed until
all other degrees of freedom are optimized, then the forces of the two
atoms will be mirrored to find the transition state. The mirror plane is
perpendicular to the connecting line of the atoms. Transition states in
dependence of the force can be obtained by stretching the molecule and
fixing its total length with *FixBondLength* or by using *ExternalForce*
during the optimization with *MirrorForce*.
Parameters
----------
a1: int
First atom index.
a2: int
Second atom index.
max_dist: float
Upper limit of the bond length interval where the transition state
can be found.
min_dist: float
Lower limit of the bond length interval where the transition state
can be found.
fmax: float
Maximum force used for the optimization.
Notes
-----
You can combine this constraint for example with FixBondLength but make
sure that *MirrorForce* comes first in the list if there are overlaps
between atom1-2 and atom3-4:
>>> con1 = MirrorForce(atom1, atom2)
>>> con2 = FixBondLength(atom3, atom4)
>>> atoms.set_constraint([con1, con2])
"""
def __init__(self, a1, a2, max_dist=2.5, min_dist=1., fmax=0.1):
self.indices = [a1, a2]
self.min_dist = min_dist
self.max_dist = max_dist
self.fmax = fmax
def adjust_positions(self, atoms, new):
pass
def adjust_forces(self, atoms, forces):
dist = np.subtract.reduce(atoms.positions[self.indices])
d = np.linalg.norm(dist)
if (d < self.min_dist) or (d > self.max_dist):
# Stop structure optimization
forces[:] *= 0
return
dist /= d
df = np.subtract.reduce(forces[self.indices])
f = df.dot(dist)
con_saved = atoms.constraints
try:
con = [con for con in con_saved
if not isinstance(con, MirrorForce)]
atoms.set_constraint(con)
forces_copy = atoms.get_forces()
finally:
atoms.set_constraint(con_saved)
df1 = -1 / 2. * f * dist
forces_copy[self.indices] += (df1, -df1)
# Check if forces would be converged if the bond with mirrored forces
# would also be fixed
if (forces_copy**2).sum(axis=1).max() < self.fmax**2:
factor = 1.
else:
factor = 0.
df1 = -(1 + factor) / 2. * f * dist
forces[self.indices] += (df1, -df1)
def index_shuffle(self, atoms, ind):
"""Shuffle the indices of the two atoms in this constraint
"""
newa = [-1, -1] # Signal error
for new, old in slice2enlist(ind, len(atoms)):
for i, a in enumerate(self.indices):
if old == a:
newa[i] = new
if newa[0] == -1 or newa[1] == -1:
raise IndexError('Constraint not part of slice')
self.indices = newa
def __repr__(self):
return 'MirrorForce(%d, %d, %f, %f, %f)' % (
self.indices[0], self.indices[1], self.max_dist, self.min_dist,
self.fmax)
def todict(self):
return {'name': 'MirrorForce',
'kwargs': {'a1': self.indices[0], 'a2': self.indices[1],
'max_dist': self.max_dist,
'min_dist': self.min_dist, 'fmax': self.fmax}}
class MirrorTorque(FixConstraint):
"""Constraint object for mirroring the torque acting on a dihedral
angle defined by four atoms.
This class is designed to find a transition state with the help of a
single optimization. It can be used if the transition state belongs to a
cis-trans-isomerization with a change of dihedral angle. First the given
dihedral angle will be fixed until all other degrees of freedom are
optimized, then the torque acting on the dihedral angle will be mirrored
to find the transition state. Transition states in
dependence of the force can be obtained by stretching the molecule and
fixing its total length with *FixBondLength* or by using *ExternalForce*
during the optimization with *MirrorTorque*.
This constraint can be used to find
transition states of cis-trans-isomerization.
a1 a4
| |
a2 __ a3
Parameters
----------
a1: int
First atom index.
a2: int
Second atom index.
a3: int
Third atom index.
a4: int
Fourth atom index.
max_angle: float
Upper limit of the dihedral angle interval where the transition state
can be found.
min_angle: float
Lower limit of the dihedral angle interval where the transition state
can be found.
fmax: float
Maximum force used for the optimization.
Notes
-----
You can combine this constraint for example with FixBondLength but make
sure that *MirrorTorque* comes first in the list if there are overlaps
between atom1-4 and atom5-6:
>>> con1 = MirrorTorque(atom1, atom2, atom3, atom4)
>>> con2 = FixBondLength(atom5, atom6)
>>> atoms.set_constraint([con1, con2])
"""
def __init__(self, a1, a2, a3, a4, max_angle=2 * np.pi, min_angle=0.,
fmax=0.1):
self.indices = [a1, a2, a3, a4]
self.min_angle = min_angle
self.max_angle = max_angle
self.fmax = fmax
def adjust_positions(self, atoms, new):
pass
def adjust_forces(self, atoms, forces):
angle = atoms.get_dihedral(self.indices[0], self.indices[1],
self.indices[2], self.indices[3])
angle *= np.pi / 180.
if (angle < self.min_angle) or (angle > self.max_angle):
# Stop structure optimization
forces[:] *= 0
return
p = atoms.positions[self.indices]
f = forces[self.indices]
f0 = (f[1] + f[2]) / 2.
ff = f - f0
p0 = (p[2] + p[1]) / 2.
m0 = np.cross(p[1] - p0, ff[1]) / (p[1] - p0).dot(p[1] - p0)
fff = ff - np.cross(m0, p - p0)
d1 = np.cross(np.cross(p[1] - p0, p[0] - p[1]), p[1] - p0) / \
(p[1] - p0).dot(p[1] - p0)
d2 = np.cross(np.cross(p[2] - p0, p[3] - p[2]), p[2] - p0) / \
(p[2] - p0).dot(p[2] - p0)
omegap1 = (np.cross(d1, fff[0]) / d1.dot(d1)).dot(p[1] - p0) / \
np.linalg.norm(p[1] - p0)
omegap2 = (np.cross(d2, fff[3]) / d2.dot(d2)).dot(p[2] - p0) / \
np.linalg.norm(p[2] - p0)
omegap = omegap1 + omegap2
con_saved = atoms.constraints
try:
con = [con for con in con_saved
if not isinstance(con, MirrorTorque)]
atoms.set_constraint(con)
forces_copy = atoms.get_forces()
finally:
atoms.set_constraint(con_saved)
df1 = -1 / 2. * omegap * np.cross(p[1] - p0, d1) / \
np.linalg.norm(p[1] - p0)
df2 = -1 / 2. * omegap * np.cross(p[2] - p0, d2) / \
np.linalg.norm(p[2] - p0)
forces_copy[self.indices] += (df1, [0., 0., 0.], [0., 0., 0.], df2)
# Check if forces would be converged if the dihedral angle with
# mirrored torque would also be fixed
if (forces_copy**2).sum(axis=1).max() < self.fmax**2:
factor = 1.
else:
factor = 0.
df1 = -(1 + factor) / 2. * omegap * np.cross(p[1] - p0, d1) / \
np.linalg.norm(p[1] - p0)
df2 = -(1 + factor) / 2. * omegap * np.cross(p[2] - p0, d2) / \
np.linalg.norm(p[2] - p0)
forces[self.indices] += (df1, [0., 0., 0.], [0., 0., 0.], df2)
def index_shuffle(self, atoms, ind):
# See docstring of superclass
indices = []
for new, old in slice2enlist(ind, len(atoms)):
if old in self.indices:
indices.append(new)
if len(indices) == 0:
raise IndexError('All indices in MirrorTorque not part of slice')
self.indices = np.asarray(indices, int)
def __repr__(self):
return 'MirrorTorque(%d, %d, %d, %d, %f, %f, %f)' % (
self.indices[0], self.indices[1], self.indices[2],
self.indices[3], self.max_angle, self.min_angle, self.fmax)
def todict(self):
return {'name': 'MirrorTorque',
'kwargs': {'a1': self.indices[0], 'a2': self.indices[1],
'a3': self.indices[2], 'a4': self.indices[3],
'max_angle': self.max_angle,
'min_angle': self.min_angle, 'fmax': self.fmax}}
class Filter:
"""Subset filter class."""
def __init__(self, atoms, indices=None, mask=None):
"""Filter atoms.
This filter can be used to hide degrees of freedom in an Atoms
object.
Parameters
----------
indices : list of int
Indices for those atoms that should remain visible.
mask : list of bool
One boolean per atom indicating if the atom should remain
visible or not.
If a Trajectory tries to save this object, it will instead
save the underlying Atoms object. To prevent this, override
the iterimages method.
"""
self.atoms = atoms
self.constraints = []
# Make self.info a reference to the underlying atoms' info dictionary.
self.info = self.atoms.info
if indices is None and mask is None:
raise ValueError('Use "indices" or "mask".')
if indices is not None and mask is not None:
raise ValueError('Use only one of "indices" and "mask".')
if mask is not None:
self.index = np.asarray(mask, bool)
self.n = self.index.sum()
else:
self.index = np.asarray(indices, int)
self.n = len(self.index)
def iterimages(self):
# Present the real atoms object to Trajectory and friends
return self.atoms.iterimages()
def get_cell(self):
"""Returns the computational cell.
The computational cell is the same as for the original system.
"""
return self.atoms.get_cell()
def get_pbc(self):
"""Returns the periodic boundary conditions.
The boundary conditions are the same as for the original system.
"""
return self.atoms.get_pbc()
def get_positions(self):
'Return the positions of the visible atoms.'
return self.atoms.get_positions()[self.index]
def set_positions(self, positions, **kwargs):
'Set the positions of the visible atoms.'
pos = self.atoms.get_positions()
pos[self.index] = positions
self.atoms.set_positions(pos, **kwargs)
positions = property(get_positions, set_positions,
doc='Positions of the atoms')
def get_momenta(self):
'Return the momenta of the visible atoms.'
return self.atoms.get_momenta()[self.index]
def set_momenta(self, momenta, **kwargs):
'Set the momenta of the visible atoms.'
mom = self.atoms.get_momenta()
mom[self.index] = momenta
self.atoms.set_momenta(mom, **kwargs)
def get_atomic_numbers(self):
'Return the atomic numbers of the visible atoms.'
return self.atoms.get_atomic_numbers()[self.index]
def set_atomic_numbers(self, atomic_numbers):
'Set the atomic numbers of the visible atoms.'
z = self.atoms.get_atomic_numbers()
z[self.index] = atomic_numbers
self.atoms.set_atomic_numbers(z)
def get_tags(self):
'Return the tags of the visible atoms.'
return self.atoms.get_tags()[self.index]
def set_tags(self, tags):
'Set the tags of the visible atoms.'
tg = self.atoms.get_tags()
tg[self.index] = tags
self.atoms.set_tags(tg)
def get_forces(self, *args, **kwargs):
return self.atoms.get_forces(*args, **kwargs)[self.index]
def get_stress(self, *args, **kwargs):
return self.atoms.get_stress(*args, **kwargs)
def get_stresses(self, *args, **kwargs):
return self.atoms.get_stresses(*args, **kwargs)[self.index]
def get_masses(self):
return self.atoms.get_masses()[self.index]
def get_potential_energy(self, **kwargs):
"""Calculate potential energy.
Returns the potential energy of the full system.
"""
return self.atoms.get_potential_energy(**kwargs)
def get_chemical_symbols(self):
return self.atoms.get_chemical_symbols()
def get_initial_magnetic_moments(self):
return self.atoms.get_initial_magnetic_moments()
def get_calculator(self):
"""Returns the calculator.
WARNING: The calculator is unaware of this filter, and sees a
different number of atoms.
"""
return self.atoms.calc
@property
def calc(self):
return self.atoms.calc
def get_celldisp(self):
return self.atoms.get_celldisp()
def has(self, name):
'Check for existence of array.'
return self.atoms.has(name)
def __len__(self):
'Return the number of movable atoms.'
return self.n
def __getitem__(self, i):
'Return an atom.'
return self.atoms[self.index[i]]
class StrainFilter(Filter):
"""Modify the supercell while keeping the scaled positions fixed.
Presents the strain of the supercell as the generalized positions,
and the global stress tensor (times the volume) as the generalized
force.
This filter can be used to relax the unit cell until the stress is
zero. If MDMin is used for this, the timestep (dt) to be used
depends on the system size. 0.01/x where x is a typical dimension
seems like a good choice.
The stress and strain are presented as 6-vectors, the order of the
components follow the standard engingeering practice: xx, yy, zz,
yz, xz, xy.
"""
def __init__(self, atoms, mask=None, include_ideal_gas=False):
"""Create a filter applying a homogeneous strain to a list of atoms.
The first argument, atoms, is the atoms object.
The optional second argument, mask, is a list of six booleans,
indicating which of the six independent components of the
strain that are allowed to become non-zero. It defaults to
[1,1,1,1,1,1].
"""
self.strain = np.zeros(6)
self.include_ideal_gas = include_ideal_gas
if mask is None:
mask = np.ones(6)
else:
mask = np.array(mask)
Filter.__init__(self, atoms, mask=mask)
self.mask = mask
self.origcell = atoms.get_cell()
def get_positions(self):
return self.strain.reshape((2, 3)).copy()
def set_positions(self, new):
new = new.ravel() * self.mask
eps = np.array([[1.0 + new[0], 0.5 * new[5], 0.5 * new[4]],
[0.5 * new[5], 1.0 + new[1], 0.5 * new[3]],
[0.5 * new[4], 0.5 * new[3], 1.0 + new[2]]])
self.atoms.set_cell(np.dot(self.origcell, eps), scale_atoms=True)
self.strain[:] = new
def get_forces(self, **kwargs):
stress = self.atoms.get_stress(include_ideal_gas=self.include_ideal_gas)
return -self.atoms.get_volume() * (stress * self.mask).reshape((2, 3))
def has(self, x):
return self.atoms.has(x)
def __len__(self):
return 2
# The indices of the full stiffness matrix of (orthorhombic) interest
voigt_notation = [(0, 0), (1, 1), (2, 2), (1, 2), (0, 2), (0, 1)]
def full_3x3_to_voigt_6_index(i, j):
if i == j:
return i
return 6 - i - j
def voigt_6_to_full_3x3_strain(strain_vector):
"""
Form a 3x3 strain matrix from a 6 component vector in Voigt notation
"""
e1, e2, e3, e4, e5, e6 = np.transpose(strain_vector)
return np.transpose([[1.0 + e1, 0.5 * e6, 0.5 * e5],
[0.5 * e6, 1.0 + e2, 0.5 * e4],
[0.5 * e5, 0.5 * e4, 1.0 + e3]])
def voigt_6_to_full_3x3_stress(stress_vector):
"""
Form a 3x3 stress matrix from a 6 component vector in Voigt notation
"""
s1, s2, s3, s4, s5, s6 = np.transpose(stress_vector)
return np.transpose([[s1, s6, s5],
[s6, s2, s4],
[s5, s4, s3]])
def full_3x3_to_voigt_6_strain(strain_matrix):
"""
Form a 6 component strain vector in Voigt notation from a 3x3 matrix
"""
strain_matrix = np.asarray(strain_matrix)
return np.transpose([strain_matrix[..., 0, 0] - 1.0,
strain_matrix[..., 1, 1] - 1.0,
strain_matrix[..., 2, 2] - 1.0,
strain_matrix[..., 1, 2] + strain_matrix[..., 2, 1],
strain_matrix[..., 0, 2] + strain_matrix[..., 2, 0],
strain_matrix[..., 0, 1] + strain_matrix[..., 1, 0]])
def full_3x3_to_voigt_6_stress(stress_matrix):
"""
Form a 6 component stress vector in Voigt notation from a 3x3 matrix
"""
stress_matrix = np.asarray(stress_matrix)
return np.transpose([stress_matrix[..., 0, 0],
stress_matrix[..., 1, 1],
stress_matrix[..., 2, 2],
(stress_matrix[..., 1, 2] +
stress_matrix[..., 1, 2]) / 2,
(stress_matrix[..., 0, 2] +
stress_matrix[..., 0, 2]) / 2,
(stress_matrix[..., 0, 1] +
stress_matrix[..., 0, 1]) / 2])
class UnitCellFilter(Filter):
"""Modify the supercell and the atom positions. """
def __init__(self, atoms, mask=None,
cell_factor=None,
hydrostatic_strain=False,
constant_volume=False,
scalar_pressure=0.0):
"""Create a filter that returns the atomic forces and unit cell
stresses together, so they can simultaneously be minimized.
The first argument, atoms, is the atoms object. The optional second
argument, mask, is a list of booleans, indicating which of the six
independent components of the strain are relaxed.
- True = relax to zero
- False = fixed, ignore this component
Degrees of freedom are the positions in the original undeformed cell,
plus the deformation tensor (extra 3 "atoms"). This gives forces
consistent with numerical derivatives of the potential energy
with respect to the cell degreees of freedom.
For full details see:
E. B. Tadmor, G. S. Smith, N. Bernstein, and E. Kaxiras,
Phys. Rev. B 59, 235 (1999)
You can still use constraints on the atoms, e.g. FixAtoms, to control
the relaxation of the atoms.
>>> # this should be equivalent to the StrainFilter
>>> atoms = Atoms(...)
>>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
>>> ucf = UnitCellFilter(atoms)
You should not attach this UnitCellFilter object to a
trajectory. Instead, create a trajectory for the atoms, and
attach it to an optimizer like this:
>>> atoms = Atoms(...)
>>> ucf = UnitCellFilter(atoms)
>>> qn = QuasiNewton(ucf)
>>> traj = Trajectory('TiO2.traj', 'w', atoms)
>>> qn.attach(traj)
>>> qn.run(fmax=0.05)
Helpful conversion table:
- 0.05 eV/A^3 = 8 GPA
- 0.003 eV/A^3 = 0.48 GPa
- 0.0006 eV/A^3 = 0.096 GPa
- 0.0003 eV/A^3 = 0.048 GPa
- 0.0001 eV/A^3 = 0.02 GPa
Additional optional arguments:
cell_factor: float (default float(len(atoms)))
Factor by which deformation gradient is multiplied to put
it on the same scale as the positions when assembling
the combined position/cell vector. The stress contribution to
the forces is scaled down by the same factor. This can be thought
of as a very simple preconditioners. Default is number of atoms
which gives approximately the correct scaling.
hydrostatic_strain: bool (default False)
Constrain the cell by only allowing hydrostatic deformation.
The virial tensor is replaced by np.diag([np.trace(virial)]*3).
constant_volume: bool (default False)
Project out the diagonal elements of the virial tensor to allow
relaxations at constant volume, e.g. for mapping out an
energy-volume curve. Note: this only approximately conserves
the volume and breaks energy/force consistency so can only be
used with optimizers that do require do a line minimisation
(e.g. FIRE).
scalar_pressure: float (default 0.0)
Applied pressure to use for enthalpy pV term. As above, this
breaks energy/force consistency.
"""
Filter.__init__(self, atoms, indices=range(len(atoms)))
self.atoms = atoms
self.orig_cell = atoms.get_cell()
self.stress = None
if mask is None:
mask = np.ones(6)
mask = np.asarray(mask)
if mask.shape == (6,):
self.mask = voigt_6_to_full_3x3_stress(mask)
elif mask.shape == (3, 3):
self.mask = mask
else:
raise ValueError('shape of mask should be (3,3) or (6,)')
if cell_factor is None:
cell_factor = float(len(atoms))
self.hydrostatic_strain = hydrostatic_strain
self.constant_volume = constant_volume
self.scalar_pressure = scalar_pressure
self.cell_factor = cell_factor
self.copy = self.atoms.copy
self.arrays = self.atoms.arrays
def deform_grad(self):
return np.linalg.solve(self.orig_cell, self.atoms.cell).T
def get_positions(self):
"""
this returns an array with shape (natoms + 3,3).
the first natoms rows are the positions of the atoms, the last
three rows are the deformation tensor associated with the unit cell,
scaled by self.cell_factor.
"""
cur_deform_grad = self.deform_grad()
natoms = len(self.atoms)
pos = np.zeros((natoms + 3, 3))
# UnitCellFilter's positions are the self.atoms.positions but without
# the applied deformation gradient
pos[:natoms] = np.linalg.solve(cur_deform_grad,
self.atoms.positions.T).T
# UnitCellFilter's cell DOFs are the deformation gradient times a
# scaling factor
pos[natoms:] = self.cell_factor * cur_deform_grad
return pos
def set_positions(self, new, **kwargs):
"""
new is an array with shape (natoms+3,3).
the first natoms rows are the positions of the atoms, the last
three rows are the deformation tensor used to change the cell shape.
the new cell is first set from original cell transformed by the new
deformation gradient, then the positions are set with respect to the
current cell by transforming them with the same deformation gradient
"""
natoms = len(self.atoms)
new_atom_positions = new[:natoms]
new_deform_grad = new[natoms:] / self.cell_factor
# Set the new cell from the original cell and the new
# deformation gradient. Both current and final structures should
# preserve symmetry, so if set_cell() calls FixSymmetry.adjust_cell(),
# it should be OK
self.atoms.set_cell(self.orig_cell @ new_deform_grad.T,
scale_atoms=True)
# Set the positions from the ones passed in (which are without the
# deformation gradient applied) and the new deformation gradient.
# This should also preserve symmetry, so if set_positions() calls
# FixSymmetyr.adjust_positions(), it should be OK
self.atoms.set_positions(new_atom_positions @ new_deform_grad.T,
**kwargs)
def get_potential_energy(self, force_consistent=True):
"""
returns potential energy including enthalpy PV term.
"""
atoms_energy = self.atoms.get_potential_energy(
force_consistent=force_consistent)
return atoms_energy + self.scalar_pressure * self.atoms.get_volume()
def get_forces(self, **kwargs):
"""
returns an array with shape (natoms+3,3) of the atomic forces
and unit cell stresses.
the first natoms rows are the forces on the atoms, the last
three rows are the forces on the unit cell, which are
computed from the stress tensor.
"""
stress = self.atoms.get_stress(**kwargs)
atoms_forces = self.atoms.get_forces(**kwargs)
volume = self.atoms.get_volume()
virial = -volume * (voigt_6_to_full_3x3_stress(stress) +
np.diag([self.scalar_pressure] * 3))
cur_deform_grad = self.deform_grad()
atoms_forces = atoms_forces @ cur_deform_grad
virial = np.linalg.solve(cur_deform_grad, virial.T).T
if self.hydrostatic_strain:
vtr = virial.trace()
virial = np.diag([vtr / 3.0, vtr / 3.0, vtr / 3.0])
# Zero out components corresponding to fixed lattice elements
if (self.mask != 1.0).any():
virial *= self.mask
if self.constant_volume:
vtr = virial.trace()
np.fill_diagonal(virial, np.diag(virial) - vtr / 3.0)
natoms = len(self.atoms)
forces = np.zeros((natoms + 3, 3))
forces[:natoms] = atoms_forces
forces[natoms:] = virial / self.cell_factor
self.stress = -full_3x3_to_voigt_6_stress(virial) / volume
return forces
def get_stress(self):
raise PropertyNotImplementedError
def has(self, x):
return self.atoms.has(x)
def __len__(self):
return (len(self.atoms) + 3)
class ExpCellFilter(UnitCellFilter):
"""Modify the supercell and the atom positions."""
def __init__(self, atoms, mask=None,
cell_factor=None,
hydrostatic_strain=False,
constant_volume=False,
scalar_pressure=0.0):
r"""Create a filter that returns the atomic forces and unit cell
stresses together, so they can simultaneously be minimized.
The first argument, atoms, is the atoms object. The optional second
argument, mask, is a list of booleans, indicating which of the six
independent components of the strain are relaxed.
- True = relax to zero
- False = fixed, ignore this component
Degrees of freedom are the positions in the original undeformed cell,
plus the log of the deformation tensor (extra 3 "atoms"). This gives
forces consistent with numerical derivatives of the potential energy
with respect to the cell degrees of freedom.
For full details see:
E. B. Tadmor, G. S. Smith, N. Bernstein, and E. Kaxiras,
Phys. Rev. B 59, 235 (1999)
You can still use constraints on the atoms, e.g. FixAtoms, to control
the relaxation of the atoms.
>>> # this should be equivalent to the StrainFilter
>>> atoms = Atoms(...)
>>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
>>> ecf = ExpCellFilter(atoms)
You should not attach this ExpCellFilter object to a
trajectory. Instead, create a trajectory for the atoms, and
attach it to an optimizer like this:
>>> atoms = Atoms(...)
>>> ecf = ExpCellFilter(atoms)
>>> qn = QuasiNewton(ecf)
>>> traj = Trajectory('TiO2.traj', 'w', atoms)
>>> qn.attach(traj)
>>> qn.run(fmax=0.05)
Helpful conversion table:
- 0.05 eV/A^3 = 8 GPA
- 0.003 eV/A^3 = 0.48 GPa
- 0.0006 eV/A^3 = 0.096 GPa
- 0.0003 eV/A^3 = 0.048 GPa
- 0.0001 eV/A^3 = 0.02 GPa
Additional optional arguments:
cell_factor: (DEPRECATED)
Retained for backwards compatibility, but no longer used.
hydrostatic_strain: bool (default False)
Constrain the cell by only allowing hydrostatic deformation.
The virial tensor is replaced by np.diag([np.trace(virial)]*3).
constant_volume: bool (default False)
Project out the diagonal elements of the virial tensor to allow
relaxations at constant volume, e.g. for mapping out an
energy-volume curve.
scalar_pressure: float (default 0.0)
Applied pressure to use for enthalpy pV term. As above, this
breaks energy/force consistency.
Implementation details:
The implementation is based on that of Christoph Ortner in JuLIP.jl:
https://github.com/libAtoms/JuLIP.jl/blob/expcell/src/Constraints.jl#L244
We decompose the deformation gradient as
F = exp(U) F0
x = F * F0^{-1} z = exp(U) z
If we write the energy as a function of U we can transform the
stress associated with a perturbation V into a derivative using a
linear map V -> L(U, V).
\phi( exp(U+tV) (z+tv) ) ~ \phi'(x) . (exp(U) v) + \phi'(x) .
( L(U, V) exp(-U) exp(U) z )
where
\nabla E(U) : V = [S exp(-U)'] : L(U,V)
= L'(U, S exp(-U)') : V
= L(U', S exp(-U)') : V
= L(U, S exp(-U)) : V (provided U = U')
where the : operator represents double contraction,
i.e. A:B = trace(A'B), and
F = deformation tensor - 3x3 matrix
F0 = reference deformation tensor - 3x3 matrix, np.eye(3) here
U = cell degrees of freedom used here - 3x3 matrix
V = perturbation to cell DoFs - 3x3 matrix
v = perturbation to position DoFs
x = atomic positions in deformed cell
z = atomic positions in original cell
\phi = potential energy
S = stress tensor [3x3 matrix]
L(U, V) = directional derivative of exp at U in direction V, i.e
d/dt exp(U + t V)|_{t=0} = L(U, V)
This means we can write
d/dt E(U + t V)|_{t=0} = L(U, S exp (-U)) : V
and therefore the contribution to the gradient of the energy is
\nabla E(U) / \nabla U_ij = [L(U, S exp(-U))]_ij
"""
Filter.__init__(self, atoms, indices=range(len(atoms)))
UnitCellFilter.__init__(self, atoms, mask, cell_factor,
hydrostatic_strain,
constant_volume, scalar_pressure)
if cell_factor is not None:
warn("cell_factor is deprecated")
self.cell_factor = 1.0
def get_positions(self):
pos = UnitCellFilter.get_positions(self)
natoms = len(self.atoms)
pos[natoms:] = logm(self.deform_grad())
return pos
def set_positions(self, new, **kwargs):
natoms = len(self.atoms)
new2 = new.copy()
new2[natoms:] = expm(new[natoms:])
UnitCellFilter.set_positions(self, new2, **kwargs)
def get_forces(self, **kwargs):
forces = UnitCellFilter.get_forces(self, **kwargs)
# forces on atoms are same as UnitCellFilter, we just
# need to modify the stress contribution
stress = self.atoms.get_stress(**kwargs)
volume = self.atoms.get_volume()
virial = -volume * (voigt_6_to_full_3x3_stress(stress) +
np.diag([self.scalar_pressure] * 3))
cur_deform_grad = self.deform_grad()
cur_deform_grad_log = logm(cur_deform_grad)
if self.hydrostatic_strain:
vtr = virial.trace()
virial = np.diag([vtr / 3.0, vtr / 3.0, vtr / 3.0])
# Zero out components corresponding to fixed lattice elements
if (self.mask != 1.0).any():
virial *= self.mask
deform_grad_log_force_naive = virial.copy()
Y = np.zeros((6, 6))
Y[0:3, 0:3] = cur_deform_grad_log
Y[3:6, 3:6] = cur_deform_grad_log
Y[0:3, 3:6] = - virial @ expm(-cur_deform_grad_log)
deform_grad_log_force = -expm(Y)[0:3, 3:6]
for (i1, i2) in [(0, 1), (0, 2), (1, 2)]:
ff = 0.5 * (deform_grad_log_force[i1, i2] +
deform_grad_log_force[i2, i1])
deform_grad_log_force[i1, i2] = ff
deform_grad_log_force[i2, i1] = ff
# check for reasonable alignment between naive and
# exact search directions
all_are_equal = np.all(np.isclose(deform_grad_log_force,
deform_grad_log_force_naive))
if all_are_equal or \
(np.sum(deform_grad_log_force * deform_grad_log_force_naive) /
np.sqrt(np.sum(deform_grad_log_force**2) *
np.sum(deform_grad_log_force_naive**2)) > 0.8):
deform_grad_log_force = deform_grad_log_force_naive
# Cauchy stress used for convergence testing
convergence_crit_stress = -(virial / volume)
if self.constant_volume:
# apply constraint to force
dglf_trace = deform_grad_log_force.trace()
np.fill_diagonal(deform_grad_log_force,
np.diag(deform_grad_log_force) - dglf_trace / 3.0)
# apply constraint to Cauchy stress used for convergence testing
ccs_trace = convergence_crit_stress.trace()
np.fill_diagonal(convergence_crit_stress,
np.diag(convergence_crit_stress) - ccs_trace / 3.0)
# pack gradients into vector
natoms = len(self.atoms)
forces[natoms:] = deform_grad_log_force
self.stress = full_3x3_to_voigt_6_stress(convergence_crit_stress)
return forces
|