File: constraints.py

package info (click to toggle)
python-ase 3.21.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,936 kB
  • sloc: python: 122,428; xml: 946; makefile: 111; javascript: 47
file content (2714 lines) | stat: -rw-r--r-- 101,942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
from math import sqrt
from warnings import warn

import numpy as np
from ase.calculators.calculator import PropertyNotImplementedError
from ase.geometry import (find_mic, wrap_positions, get_distances_derivatives,
                          get_angles_derivatives, get_dihedrals_derivatives,
                          conditional_find_mic, get_angles, get_dihedrals)
from ase.utils.parsemath import eval_expression
from scipy.linalg import expm, logm

__all__ = [
    'FixCartesian', 'FixBondLength', 'FixedMode',
    'FixConstraintSingle', 'FixAtoms', 'UnitCellFilter', 'ExpCellFilter',
    'FixScaled', 'StrainFilter', 'FixCom', 'FixedPlane', 'Filter',
    'FixConstraint', 'FixedLine', 'FixBondLengths', 'FixLinearTriatomic',
    'FixInternals', 'Hookean', 'ExternalForce', 'MirrorForce', 'MirrorTorque',
    "FixScaledParametricRelations", "FixCartesianParametricRelations"]


def dict2constraint(dct):
    if dct['name'] not in __all__:
        raise ValueError
    return globals()[dct['name']](**dct['kwargs'])


def slice2enlist(s, n):
    """Convert a slice object into a list of (new, old) tuples."""
    if isinstance(s, slice):
        return enumerate(range(*s.indices(n)))
    return enumerate(s)


def constrained_indices(atoms, only_include=None):
    """Returns a list of indices for the atoms that are constrained
    by a constraint that is applied.  By setting only_include to a
    specific type of constraint you can make it only look for that
    given constraint.
    """
    indices = []
    for constraint in atoms.constraints:
        if only_include is not None:
            if not isinstance(constraint, only_include):
                continue
        indices.extend(np.array(constraint.get_indices()))
    return np.array(np.unique(indices))


class FixConstraint:
    """Base class for classes that fix one or more atoms in some way."""

    def index_shuffle(self, atoms, ind):
        """Change the indices.

        When the ordering of the atoms in the Atoms object changes,
        this method can be called to shuffle the indices of the
        constraints.

        ind -- List or tuple of indices.

        """
        raise NotImplementedError

    def repeat(self, m, n):
        """ basic method to multiply by m, needs to know the length
        of the underlying atoms object for the assignment of
        multiplied constraints to work.
        """
        msg = ("Repeat is not compatible with your atoms' constraints."
               ' Use atoms.set_constraint() before calling repeat to '
               'remove your constraints.')
        raise NotImplementedError(msg)

    def adjust_momenta(self, atoms, momenta):
        """Adjusts momenta in identical manner to forces."""
        self.adjust_forces(atoms, momenta)

    def copy(self):
        return dict2constraint(self.todict().copy())


class FixConstraintSingle(FixConstraint):
    """Base class for classes that fix a single atom."""

    def __init__(self, a):
        self.a = a

    def index_shuffle(self, atoms, ind):
        """The atom index must be stored as self.a."""
        newa = None   # Signal error
        if self.a < 0:
            self.a += len(atoms)
        for new, old in slice2enlist(ind, len(atoms)):
            if old == self.a:
                newa = new
                break
        if newa is None:
            raise IndexError('Constraint not part of slice')
        self.a = newa

    def get_indices(self):
        return [self.a]


class FixAtoms(FixConstraint):
    """Constraint object for fixing some chosen atoms."""

    def __init__(self, indices=None, mask=None):
        """Constrain chosen atoms.

        Parameters
        ----------
        indices : list of int
           Indices for those atoms that should be constrained.
        mask : list of bool
           One boolean per atom indicating if the atom should be
           constrained or not.

        Examples
        --------
        Fix all Copper atoms:

        >>> mask = [s == 'Cu' for s in atoms.get_chemical_symbols()]
        >>> c = FixAtoms(mask=mask)
        >>> atoms.set_constraint(c)

        Fix all atoms with z-coordinate less than 1.0 Angstrom:

        >>> c = FixAtoms(mask=atoms.positions[:, 2] < 1.0)
        >>> atoms.set_constraint(c)
        """

        if indices is None and mask is None:
            raise ValueError('Use "indices" or "mask".')
        if indices is not None and mask is not None:
            raise ValueError('Use only one of "indices" and "mask".')

        if mask is not None:
            indices = np.arange(len(mask))[np.asarray(mask, bool)]
        else:
            # Check for duplicates:
            srt = np.sort(indices)
            if (np.diff(srt) == 0).any():
                raise ValueError(
                    'FixAtoms: The indices array contained duplicates. '
                    'Perhaps you wanted to specify a mask instead, but '
                    'forgot the mask= keyword.')
        self.index = np.asarray(indices, int)

        if self.index.ndim != 1:
            raise ValueError('Wrong argument to FixAtoms class!')

        self.removed_dof = 3 * len(self.index)

    def adjust_positions(self, atoms, new):
        new[self.index] = atoms.positions[self.index]

    def adjust_forces(self, atoms, forces):
        forces[self.index] = 0.0

    def index_shuffle(self, atoms, ind):
        # See docstring of superclass
        index = []
        for new, old in slice2enlist(ind, len(atoms)):
            if old in self.index:
                index.append(new)
        if len(index) == 0:
            raise IndexError('All indices in FixAtoms not part of slice')
        self.index = np.asarray(index, int)

    def get_indices(self):
        return self.index

    def __repr__(self):
        return 'FixAtoms(indices=%s)' % ints2string(self.index)

    def todict(self):
        return {'name': 'FixAtoms',
                'kwargs': {'indices': self.index.tolist()}}

    def repeat(self, m, n):
        i0 = 0
        natoms = 0
        if isinstance(m, int):
            m = (m, m, m)
        index_new = []
        for m2 in range(m[2]):
            for m1 in range(m[1]):
                for m0 in range(m[0]):
                    i1 = i0 + n
                    index_new += [i + natoms for i in self.index]
                    i0 = i1
                    natoms += n
        self.index = np.asarray(index_new, int)
        return self

    def delete_atoms(self, indices, natoms):
        """Removes atom number ind from the index array, if present.

        Required for removing atoms with existing FixAtoms constraints.
        """

        i = np.zeros(natoms, int) - 1
        new = np.delete(np.arange(natoms), indices)
        i[new] = np.arange(len(new))
        index = i[self.index]
        self.index = index[index >= 0]
        if len(self.index) == 0:
            return None
        return self


class FixCom(FixConstraint):
    """Constraint class for fixing the center of mass.

    References

    https://pubs.acs.org/doi/abs/10.1021/jp9722824

    """

    def __init__(self):

        self.removed_dof = 3

    def adjust_positions(self, atoms, new):
        masses = atoms.get_masses()
        old_cm = atoms.get_center_of_mass()
        new_cm = np.dot(masses, new) / masses.sum()
        d = old_cm - new_cm
        new += d

    def adjust_forces(self, atoms, forces):
        m = atoms.get_masses()
        mm = np.tile(m, (3, 1)).T
        lb = np.sum(mm * forces, axis=0) / sum(m**2)
        forces -= mm * lb

    def todict(self):
        return {'name': 'FixCom',
                'kwargs': {}}


def ints2string(x, threshold=None):
    """Convert ndarray of ints to string."""
    if threshold is None or len(x) <= threshold:
        return str(x.tolist())
    return str(x[:threshold].tolist())[:-1] + ', ...]'


class FixBondLengths(FixConstraint):
    maxiter = 500

    def __init__(self, pairs, tolerance=1e-13,
                 bondlengths=None, iterations=None):
        """iterations:
                Ignored"""
        self.pairs = np.asarray(pairs)
        self.tolerance = tolerance
        self.bondlengths = bondlengths

        self.removed_dof = len(pairs)

    def adjust_positions(self, atoms, new):
        old = atoms.positions
        masses = atoms.get_masses()

        if self.bondlengths is None:
            self.bondlengths = self.initialize_bond_lengths(atoms)

        for i in range(self.maxiter):
            converged = True
            for j, ab in enumerate(self.pairs):
                a = ab[0]
                b = ab[1]
                cd = self.bondlengths[j]
                r0 = old[a] - old[b]
                d0, _ = find_mic(r0, atoms.cell, atoms.pbc)
                d1 = new[a] - new[b] - r0 + d0
                m = 1 / (1 / masses[a] + 1 / masses[b])
                x = 0.5 * (cd**2 - np.dot(d1, d1)) / np.dot(d0, d1)
                if abs(x) > self.tolerance:
                    new[a] += x * m / masses[a] * d0
                    new[b] -= x * m / masses[b] * d0
                    converged = False
            if converged:
                break
        else:
            raise RuntimeError('Did not converge')

    def adjust_momenta(self, atoms, p):
        old = atoms.positions
        masses = atoms.get_masses()

        if self.bondlengths is None:
            self.bondlengths = self.initialize_bond_lengths(atoms)

        for i in range(self.maxiter):
            converged = True
            for j, ab in enumerate(self.pairs):
                a = ab[0]
                b = ab[1]
                cd = self.bondlengths[j]
                d = old[a] - old[b]
                d, _ = find_mic(d, atoms.cell, atoms.pbc)
                dv = p[a] / masses[a] - p[b] / masses[b]
                m = 1 / (1 / masses[a] + 1 / masses[b])
                x = -np.dot(dv, d) / cd**2
                if abs(x) > self.tolerance:
                    p[a] += x * m * d
                    p[b] -= x * m * d
                    converged = False
            if converged:
                break
        else:
            raise RuntimeError('Did not converge')

    def adjust_forces(self, atoms, forces):
        self.constraint_forces = -forces
        self.adjust_momenta(atoms, forces)
        self.constraint_forces += forces

    def initialize_bond_lengths(self, atoms):
        bondlengths = np.zeros(len(self.pairs))

        for i, ab in enumerate(self.pairs):
            bondlengths[i] = atoms.get_distance(ab[0], ab[1], mic=True)

        return bondlengths

    def get_indices(self):
        return np.unique(self.pairs.ravel())

    def todict(self):
        return {'name': 'FixBondLengths',
                'kwargs': {'pairs': self.pairs.tolist(),
                           'tolerance': self.tolerance}}

    def index_shuffle(self, atoms, ind):
        """Shuffle the indices of the two atoms in this constraint"""
        map = np.zeros(len(atoms), int)
        map[ind] = 1
        n = map.sum()
        map[:] = -1
        map[ind] = range(n)
        pairs = map[self.pairs]
        self.pairs = pairs[(pairs != -1).all(1)]
        if len(self.pairs) == 0:
            raise IndexError('Constraint not part of slice')


def FixBondLength(a1, a2):
    """Fix distance between atoms with indices a1 and a2."""
    return FixBondLengths([(a1, a2)])


class FixLinearTriatomic(FixConstraint):
    """Holonomic constraints for rigid linear triatomic molecules."""

    def __init__(self, triples):
        """Apply RATTLE-type bond constraints between outer atoms n and m
           and linear vectorial constraints to the position of central
           atoms o to fix the geometry of linear triatomic molecules of the
           type:

           n--o--m

           Parameters:

           triples: list
               Indices of the atoms forming the linear molecules to constrain
               as triples. Sequence should be (n, o, m) or (m, o, n).

           When using these constraints in molecular dynamics or structure
           optimizations, atomic forces need to be redistributed within a
           triple. The function redistribute_forces_optimization implements
           the redistribution of forces for structure optimization, while
           the function redistribute_forces_md implements the redistribution
           for molecular dynamics.

           References:

           Ciccotti et al. Molecular Physics 47 (1982)
           https://doi.org/10.1080/00268978200100942
        """
        self.triples = np.asarray(triples)
        if self.triples.shape[1] != 3:
            raise ValueError('"triples" has wrong size')
        self.bondlengths = None

        self.removed_dof = 4 * len(triples)

    @property
    def n_ind(self):
        return self.triples[:, 0]

    @property
    def m_ind(self):
        return self.triples[:, 2]

    @property
    def o_ind(self):
        return self.triples[:, 1]

    def initialize(self, atoms):
        masses = atoms.get_masses()
        self.mass_n, self.mass_m, self.mass_o = self.get_slices(masses)

        self.bondlengths = self.initialize_bond_lengths(atoms)
        self.bondlengths_nm = self.bondlengths.sum(axis=1)

        C1 = self.bondlengths[:, ::-1] / self.bondlengths_nm[:, None]
        C2 = (C1[:, 0] ** 2 * self.mass_o * self.mass_m +
              C1[:, 1] ** 2 * self.mass_n * self.mass_o +
              self.mass_n * self.mass_m)
        C2 = C1 / C2[:, None]
        C3 = self.mass_n * C1[:, 1] - self.mass_m * C1[:, 0]
        C3 = C2 * self.mass_o[:, None] * C3[:, None]
        C3[:, 1] *= -1
        C3 = (C3 + 1) / np.vstack((self.mass_n, self.mass_m)).T
        C4 = (C1[:, 0]**2 + C1[:, 1]**2 + 1)
        C4 = C1 / C4[:, None]

        self.C1 = C1
        self.C2 = C2
        self.C3 = C3
        self.C4 = C4

    def adjust_positions(self, atoms, new):
        old = atoms.positions
        new_n, new_m, new_o = self.get_slices(new)

        if self.bondlengths is None:
            self.initialize(atoms)

        r0 = old[self.n_ind] - old[self.m_ind]
        d0, _ = find_mic(r0, atoms.cell, atoms.pbc)
        d1 = new_n - new_m - r0 + d0
        a = np.einsum('ij,ij->i', d0, d0)
        b = np.einsum('ij,ij->i', d1, d0)
        c = np.einsum('ij,ij->i', d1, d1) - self.bondlengths_nm ** 2
        g = (b - (b**2 - a * c)**0.5) / (a * self.C3.sum(axis=1))
        g = g[:, None] * self.C3
        new_n -= g[:, 0, None] * d0
        new_m += g[:, 1, None] * d0
        if np.allclose(d0, r0):
            new_o = (self.C1[:, 0, None] * new_n
                     + self.C1[:, 1, None] * new_m)
        else:
            v1, _ = find_mic(new_n, atoms.cell, atoms.pbc)
            v2, _ = find_mic(new_m, atoms.cell, atoms.pbc)
            rb = self.C1[:, 0, None] * v1 + self.C1[:, 1, None] * v2
            new_o = wrap_positions(rb, atoms.cell, atoms.pbc)

        self.set_slices(new_n, new_m, new_o, new)

    def adjust_momenta(self, atoms, p):
        old = atoms.positions
        p_n, p_m, p_o = self.get_slices(p)

        if self.bondlengths is None:
            self.initialize(atoms)

        mass_nn = self.mass_n[:, None]
        mass_mm = self.mass_m[:, None]
        mass_oo = self.mass_o[:, None]

        d = old[self.n_ind] - old[self.m_ind]
        d, _ = find_mic(d, atoms.cell, atoms.pbc)
        dv = p_n / mass_nn - p_m / mass_mm
        k = np.einsum('ij,ij->i', dv, d) / self.bondlengths_nm ** 2
        k = self.C3 / (self.C3.sum(axis=1)[:, None]) * k[:, None]
        p_n -= k[:, 0, None] * mass_nn * d
        p_m += k[:, 1, None] * mass_mm * d
        p_o = (mass_oo * (self.C1[:, 0, None] * p_n / mass_nn +
                          self.C1[:, 1, None] * p_m / mass_mm))

        self.set_slices(p_n, p_m, p_o, p)

    def adjust_forces(self, atoms, forces):

        if self.bondlengths is None:
            self.initialize(atoms)

        A = self.C4 * np.diff(self.C1)
        A[:, 0] *= -1
        A -= 1
        B = np.diff(self.C4) / (A.sum(axis=1))[:, None]
        A /= (A.sum(axis=1))[:, None]

        self.constraint_forces = -forces
        old = atoms.positions

        fr_n, fr_m, fr_o = self.redistribute_forces_optimization(forces)

        d = old[self.n_ind] - old[self.m_ind]
        d, _ = find_mic(d, atoms.cell, atoms.pbc)
        df = fr_n - fr_m
        k = -np.einsum('ij,ij->i', df, d) / self.bondlengths_nm ** 2
        forces[self.n_ind] = fr_n + k[:, None] * d * A[:, 0, None]
        forces[self.m_ind] = fr_m - k[:, None] * d * A[:, 1, None]
        forces[self.o_ind] = fr_o + k[:, None] * d * B

        self.constraint_forces += forces

    def redistribute_forces_optimization(self, forces):
        """Redistribute forces within a triple when performing structure
        optimizations.

        The redistributed forces needs to be further adjusted using the
        appropriate Lagrange multipliers as implemented in adjust_forces."""
        forces_n, forces_m, forces_o = self.get_slices(forces)
        C1_1 = self.C1[:, 0, None]
        C1_2 = self.C1[:, 1, None]
        C4_1 = self.C4[:, 0, None]
        C4_2 = self.C4[:, 1, None]

        fr_n = ((1 - C4_1 * C1_1) * forces_n -
                C4_1 * (C1_2 * forces_m - forces_o))
        fr_m = ((1 - C4_2 * C1_2) * forces_m -
                C4_2 * (C1_1 * forces_n - forces_o))
        fr_o = ((1 - 1 / (C1_1**2 + C1_2**2 + 1)) * forces_o +
                C4_1 * forces_n + C4_2 * forces_m)

        return fr_n, fr_m, fr_o

    def redistribute_forces_md(self, atoms, forces, rand=False):
        """Redistribute forces within a triple when performing molecular
        dynamics.

        When rand=True, use the equations for random force terms, as
        used e.g. by Langevin dynamics, otherwise apply the standard
        equations for deterministic forces (see Ciccotti et al. Molecular
        Physics 47 (1982))."""
        if self.bondlengths is None:
            self.initialize(atoms)
        forces_n, forces_m, forces_o = self.get_slices(forces)
        C1_1 = self.C1[:, 0, None]
        C1_2 = self.C1[:, 1, None]
        C2_1 = self.C2[:, 0, None]
        C2_2 = self.C2[:, 1, None]
        mass_nn = self.mass_n[:, None]
        mass_mm = self.mass_m[:, None]
        mass_oo = self.mass_o[:, None]
        if rand:
            mr1 = (mass_mm / mass_nn) ** 0.5
            mr2 = (mass_oo / mass_nn) ** 0.5
            mr3 = (mass_nn / mass_mm) ** 0.5
            mr4 = (mass_oo / mass_mm) ** 0.5
        else:
            mr1 = 1.0
            mr2 = 1.0
            mr3 = 1.0
            mr4 = 1.0

        fr_n = ((1 - C1_1 * C2_1 * mass_oo * mass_mm) * forces_n -
                C2_1 * (C1_2 * mr1 * mass_oo * mass_nn * forces_m -
                        mr2 * mass_mm * mass_nn * forces_o))

        fr_m = ((1 - C1_2 * C2_2 * mass_oo * mass_nn) * forces_m -
                C2_2 * (C1_1 * mr3 * mass_oo * mass_mm * forces_n -
                        mr4 * mass_mm * mass_nn * forces_o))

        self.set_slices(fr_n, fr_m, 0.0, forces)

    def get_slices(self, a):
        a_n = a[self.n_ind]
        a_m = a[self.m_ind]
        a_o = a[self.o_ind]

        return a_n, a_m, a_o

    def set_slices(self, a_n, a_m, a_o, a):
        a[self.n_ind] = a_n
        a[self.m_ind] = a_m
        a[self.o_ind] = a_o

    def initialize_bond_lengths(self, atoms):
        bondlengths = np.zeros((len(self.triples), 2))

        for i in range(len(self.triples)):
            bondlengths[i, 0] = atoms.get_distance(self.n_ind[i],
                                                   self.o_ind[i], mic=True)
            bondlengths[i, 1] = atoms.get_distance(self.o_ind[i],
                                                   self.m_ind[i], mic=True)

        return bondlengths

    def get_indices(self):
        return np.unique(self.triples.ravel())

    def todict(self):
        return {'name': 'FixLinearTriatomic',
                'kwargs': {'triples': self.triples.tolist()}}

    def index_shuffle(self, atoms, ind):
        """Shuffle the indices of the three atoms in this constraint"""
        map = np.zeros(len(atoms), int)
        map[ind] = 1
        n = map.sum()
        map[:] = -1
        map[ind] = range(n)
        triples = map[self.triples]
        self.triples = triples[(triples != -1).all(1)]
        if len(self.triples) == 0:
            raise IndexError('Constraint not part of slice')


class FixedMode(FixConstraint):
    """Constrain atoms to move along directions orthogonal to
    a given mode only."""

    def __init__(self, mode):
        self.mode = (np.asarray(mode) / np.sqrt((mode**2).sum())).reshape(-1)

    def adjust_positions(self, atoms, newpositions):
        newpositions = newpositions.ravel()
        oldpositions = atoms.positions.ravel()
        step = newpositions - oldpositions
        newpositions -= self.mode * np.dot(step, self.mode)

    def adjust_forces(self, atoms, forces):
        forces = forces.ravel()
        forces -= self.mode * np.dot(forces, self.mode)

    def index_shuffle(self, atoms, ind):
        eps = 1e-12
        mode = self.mode.reshape(-1, 3)
        excluded = np.ones(len(mode), dtype=bool)
        excluded[ind] = False
        if (abs(mode[excluded]) > eps).any():
            raise IndexError('All nonzero parts of mode not in slice')
        self.mode = mode[ind].ravel()

    def get_indices(self):
        # This function will never properly work because it works on all
        # atoms and it has no idea how to tell how many atoms it is
        # attached to.  If it is being used, surely the user knows
        # everything is being constrained.
        return []

    def todict(self):
        return {'name': 'FixedMode',
                'kwargs': {'mode': self.mode.tolist()}}

    def __repr__(self):
        return 'FixedMode(%s)' % self.mode.tolist()


class FixedPlane(FixConstraintSingle):
    """Constrain an atom index *a* to move in a given plane only.

    The plane is defined by its normal vector *direction*."""

    removed_dof = 1

    def __init__(self, a, direction):
        self.a = a
        self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))

    def adjust_positions(self, atoms, newpositions):
        step = newpositions[self.a] - atoms.positions[self.a]
        newpositions[self.a] -= self.dir * np.dot(step, self.dir)

    def adjust_forces(self, atoms, forces):
        forces[self.a] -= self.dir * np.dot(forces[self.a], self.dir)

    def todict(self):
        return {'name': 'FixedPlane',
                'kwargs': {'a': self.a, 'direction': self.dir.tolist()}}

    def __repr__(self):
        return 'FixedPlane(%d, %s)' % (self.a, self.dir.tolist())


class FixedLine(FixConstraintSingle):
    """Constrain an atom index *a* to move on a given line only.

    The line is defined by its vector *direction*."""

    removed_dof = 2

    def __init__(self, a, direction):
        self.a = a
        self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))

    def adjust_positions(self, atoms, newpositions):
        step = newpositions[self.a] - atoms.positions[self.a]
        x = np.dot(step, self.dir)
        newpositions[self.a] = atoms.positions[self.a] + x * self.dir

    def adjust_forces(self, atoms, forces):
        forces[self.a] = self.dir * np.dot(forces[self.a], self.dir)

    def __repr__(self):
        return 'FixedLine(%d, %s)' % (self.a, self.dir.tolist())

    def todict(self):
        return {'name': 'FixedLine',
                'kwargs': {'a': self.a, 'direction': self.dir.tolist()}}


class FixCartesian(FixConstraintSingle):
    'Fix an atom index *a* in the directions of the cartesian coordinates.'

    def __init__(self, a, mask=(1, 1, 1)):
        self.a = a
        self.mask = ~np.asarray(mask, bool)
        self.removed_dof = 3 - self.mask.sum()

    def adjust_positions(self, atoms, new):
        step = new[self.a] - atoms.positions[self.a]
        step *= self.mask
        new[self.a] = atoms.positions[self.a] + step

    def adjust_forces(self, atoms, forces):
        forces[self.a] *= self.mask

    def __repr__(self):
        return 'FixCartesian(a={0}, mask={1})'.format(self.a,
                                                      list(~self.mask))

    def todict(self):
        return {'name': 'FixCartesian',
                'kwargs': {'a': self.a, 'mask': ~self.mask.tolist()}}


class FixScaled(FixConstraintSingle):
    'Fix an atom index *a* in the directions of the unit vectors.'

    def __init__(self, cell, a, mask=(1, 1, 1)):
        self.cell = np.asarray(cell)
        self.a = a
        self.mask = np.array(mask, bool)
        self.removed_dof = self.mask.sum()

    def adjust_positions(self, atoms, new):
        scaled_old = atoms.cell.scaled_positions(atoms.positions)
        scaled_new = atoms.cell.scaled_positions(new)
        for n in range(3):
            if self.mask[n]:
                scaled_new[self.a, n] = scaled_old[self.a, n]
        new[self.a] = atoms.cell.cartesian_positions(scaled_new)[self.a]

    def adjust_forces(self, atoms, forces):
        # Forces are covarient to the coordinate transformation,
        # use the inverse transformations
        scaled_forces = atoms.cell.cartesian_positions(forces)
        scaled_forces[self.a] *= -(self.mask - 1)
        forces[self.a] = atoms.cell.scaled_positions(scaled_forces)[self.a]

    def todict(self):
        return {'name': 'FixScaled',
                'kwargs': {'a': self.a,
                           'cell': self.cell.tolist(),
                           'mask': self.mask.tolist()}}

    def __repr__(self):
        return 'FixScaled(%s, %d, %s)' % (repr(self.cell),
                                          self.a,
                                          repr(self.mask))


# TODO: Better interface might be to use dictionaries in place of very
# nested lists/tuples
class FixInternals(FixConstraint):
    """Constraint object for fixing multiple internal coordinates.

    Allows fixing bonds, angles, and dihedrals.
    Please provide angular units in degrees using angles_deg and
    dihedrals_deg.
    """
    def __init__(self, bonds=None, angles=None, dihedrals=None,
                 angles_deg=None, dihedrals_deg=None,
                 bondcombos=None, anglecombos=None, dihedralcombos=None,
                 mic=False, epsilon=1.e-7):

        # deprecate public API using radians; degrees is preferred
        warn_msg = 'Please specify {} in degrees using the {} argument.'
        if angles:
            warn(FutureWarning(warn_msg.format('angles', 'angle_deg')))
            angles = np.asarray(angles)
            angles[:, 0] = angles[:, 0] / np.pi * 180
            angles = angles.tolist()
        else:
            angles = angles_deg
        if dihedrals:
            warn(FutureWarning(warn_msg.format('dihedrals', 'dihedrals_deg')))
            dihedrals = np.asarray(dihedrals)
            dihedrals[:, 0] = dihedrals[:, 0] / np.pi * 180
            dihedrals = dihedrals.tolist()
        else:
            dihedrals = dihedrals_deg

        self.bonds = bonds or []
        self.angles = angles or []
        self.dihedrals = dihedrals or []
        self.bondcombos = bondcombos or []
        self.anglecombos = anglecombos or []
        self.dihedralcombos = dihedralcombos or []
        self.mic = mic

        # Initialize these at run-time:
        self.n = 0
        self.constraints = []
        self.epsilon = epsilon

        self.initialized = False
        self.removed_dof = self.n

    def initialize(self, atoms):
        if self.initialized:
            return
        masses = np.repeat(atoms.get_masses(), 3)
        self.n = (len(self.bonds) + len(self.angles) + len(self.dihedrals)
                  + len(self.bondcombos) + len(self.anglecombos)
                  + len(self.dihedralcombos))
        cell = None
        pbc = None
        if self.mic:
            cell = atoms.cell
            pbc = atoms.pbc
        self.constraints = []
        for data, make_constr in [(self.bonds, self.FixBondLengthAlt),
                                  (self.angles, self.FixAngle),
                                  (self.dihedrals, self.FixDihedral),
                                  (self.bondcombos, self.FixBondCombo),
                                  (self.anglecombos, self.FixAngleCombo),
                                  (self.dihedralcombos, self.FixDihedralCombo)]:
            for datum in data:
                constr = make_constr(datum[0], datum[1], masses, cell, pbc)
                self.constraints.append(constr)
        self.initialized = True

    def shuffle_definitions(self, shuffle_dic, internal_type):
        dfns = []  # definitions
        for dfn in internal_type:  # e.g. for bond in self.bonds
            append = True
            new_dfn = [dfn[0], list(dfn[1])]
            for old in dfn[1]:
                if old in shuffle_dic:
                    new_dfn[1][dfn[1].index(old)] = shuffle_dic[old]
                else:
                    append = False
                    break
            if append:
                dfns.append(new_dfn)
        return dfns

    def shuffle_combos(self, shuffle_dic, internal_type):
        dfns = []  # definitions
        for dfn in internal_type:  # e.g. for bondcombo in self.bondcombos
            append = True
            all_indices = [idx[0:-1] for idx in dfn[1]]
            new_dfn = [dfn[0], list(dfn[1])]
            for i, indices in enumerate(all_indices):
                for old in indices:
                    if old in shuffle_dic:
                        new_dfn[1][i][indices.index(old)] = shuffle_dic[old]
                    else:
                        append = False
                        break
                if not append:
                    break
            if append:
                dfns.append(new_dfn)
        return dfns

    def index_shuffle(self, atoms, ind):
        # See docstring of superclass
        self.initialize(atoms)
        shuffle_dic = dict(slice2enlist(ind, len(atoms)))
        shuffle_dic = {old: new for new, old in shuffle_dic.items()}
        self.bonds = self.shuffle_definitions(shuffle_dic, self.bonds)
        self.angles = self.shuffle_definitions(shuffle_dic, self.angles)
        self.dihedrals = self.shuffle_definitions(shuffle_dic, self.dihedrals)
        self.bondcombos = self.shuffle_combos(shuffle_dic, self.bondcombos)
        self.anglecombos = self.shuffle_combos(shuffle_dic, self.anglecombos)
        self.dihedralcombos = self.shuffle_combos(shuffle_dic,
                                                  self.dihedralcombos)
        self.initialized = False
        self.initialize(atoms)
        if len(self.constraints) == 0:
            raise IndexError('Constraint not part of slice')

    def get_indices(self):
        cons = []
        for dfn in self.bonds + self.dihedrals + self.angles:
            cons.extend(dfn[1])
        for dfn in self.bondcombos + self.anglecombos + self.dihedralcombos:
            for partial_dfn in dfn[1]:
                cons.extend(partial_dfn[0:-1])  # last index is the coefficient
        return list(set(cons))

    def todict(self):
        return {'name': 'FixInternals',
                'kwargs': {'bonds': self.bonds,
                           'angles': self.angles,
                           'dihedrals': self.dihedrals,
                           'bondcombos': self.bondcombos,
                           'anglecombos': self.anglecombos,
                           'dihedralcombos': self.dihedralcombos,
                           'mic': self.mic,
                           'epsilon': self.epsilon}}

    def adjust_positions(self, atoms, new):
        self.initialize(atoms)
        for constraint in self.constraints:
            constraint.prepare_jacobian(atoms.positions)
        for j in range(50):
            maxerr = 0.0
            for constraint in self.constraints:
                constraint.adjust_positions(atoms.positions, new)
                maxerr = max(abs(constraint.sigma), maxerr)
            if maxerr < self.epsilon:
                return
        raise ValueError('Shake did not converge.')

    def adjust_forces(self, atoms, forces):
        """Project out translations and rotations and all other constraints"""
        self.initialize(atoms)
        positions = atoms.positions
        N = len(forces)
        list2_constraints = list(np.zeros((6, N, 3)))
        tx, ty, tz, rx, ry, rz = list2_constraints

        list_constraints = [r.ravel() for r in list2_constraints]

        tx[:, 0] = 1.0
        ty[:, 1] = 1.0
        tz[:, 2] = 1.0
        ff = forces.ravel()

        # Calculate the center of mass
        center = positions.sum(axis=0) / N

        rx[:, 1] = -(positions[:, 2] - center[2])
        rx[:, 2] = positions[:, 1] - center[1]
        ry[:, 0] = positions[:, 2] - center[2]
        ry[:, 2] = -(positions[:, 0] - center[0])
        rz[:, 0] = -(positions[:, 1] - center[1])
        rz[:, 1] = positions[:, 0] - center[0]

        # Normalizing transl., rotat. constraints
        for r in list2_constraints:
            r /= np.linalg.norm(r.ravel())

        # Add all angle, etc. constraint vectors
        for constraint in self.constraints:
            constraint.prepare_jacobian(positions)
            constraint.adjust_forces(positions, forces)
            list_constraints.insert(0, constraint.jacobian)
        # QR DECOMPOSITION - GRAM SCHMIDT

        list_constraints = [r.ravel() for r in list_constraints]
        aa = np.column_stack(list_constraints)
        (aa, bb) = np.linalg.qr(aa)
        # Projection
        hh = []
        for i, constraint in enumerate(self.constraints):
            hh.append(aa[:, i] * np.row_stack(aa[:, i]))

        txx = aa[:, self.n] * np.row_stack(aa[:, self.n])
        tyy = aa[:, self.n + 1] * np.row_stack(aa[:, self.n + 1])
        tzz = aa[:, self.n + 2] * np.row_stack(aa[:, self.n + 2])
        rxx = aa[:, self.n + 3] * np.row_stack(aa[:, self.n + 3])
        ryy = aa[:, self.n + 4] * np.row_stack(aa[:, self.n + 4])
        rzz = aa[:, self.n + 5] * np.row_stack(aa[:, self.n + 5])
        T = txx + tyy + tzz + rxx + ryy + rzz
        for vec in hh:
            T += vec
        ff = np.dot(T, np.row_stack(ff))
        forces[:, :] -= np.dot(T, np.row_stack(ff)).reshape(-1, 3)

    def __repr__(self):
        constraints = repr(self.constraints)
        return 'FixInternals(_copy_init=%s, epsilon=%s)' % (constraints,
                                                            repr(self.epsilon))

    def __str__(self):
        return '\n'.join([repr(c) for c in self.constraints])

    # Classes for internal use in FixInternals
    class FixInternalsBase:
        """Base class for subclasses of FixInternals."""
        def __init__(self, targetvalue, indices, masses, cell, pbc):
            self.targetvalue = targetvalue  # constant target value
            self.indices = [defin[0:-1] for defin in indices]  # indices, defs
            self.coefs = np.asarray([defin[-1] for defin in indices])  # coefs
            self.masses = masses
            self.jacobian = []  # geometric Jacobian matrix, Wilson B-matrix
            self.sigma = 1.  # difference between current and target value
            self.projected_force = None  # helps optimizers scan along constr.
            self.cell = cell
            self.pbc = pbc

        def finalize_jacobian(self, pos, n_internals, n, derivs):
            """Populate jacobian with derivatives for `n_internals` defined
            internals. n = 2 (bonds), 3 (angles), 4 (dihedrals)."""
            jacobian = np.zeros((n_internals, *pos.shape))
            for i, idx in enumerate(self.indices):
                for j in range(n):
                    jacobian[i, idx[j]] = derivs[i, j]
            jacobian = jacobian.reshape((n_internals, 3 * len(pos)))
            self.jacobian = self.coefs @ jacobian

        def finalize_positions(self, newpos):
            jacobian = self.jacobian / self.masses
            lamda = -self.sigma / np.dot(jacobian, self.jacobian)
            dnewpos = lamda * jacobian
            newpos += dnewpos.reshape(newpos.shape)

        def adjust_forces(self, positions, forces):
            self.projected_force = np.dot(self.jacobian, forces.ravel())
            self.jacobian /= np.linalg.norm(self.jacobian)

    class FixBondCombo(FixInternalsBase):
        """Constraint subobject for fixing linear combination of bond lengths
        within FixInternals.

        sum_i( coef_i * bond_length_i ) = constant
        """
        def prepare_jacobian(self, pos):
            bondvectors = [pos[k] - pos[h] for h, k in self.indices]
            derivs = get_distances_derivatives(bondvectors, cell=self.cell,
                                               pbc=self.pbc)
            self.finalize_jacobian(pos, len(bondvectors), 2, derivs)

        def adjust_positions(self, oldpos, newpos):
            bondvectors = [newpos[k] - newpos[h] for h, k in self.indices]
            (_, ), (dists, ) = conditional_find_mic([bondvectors],
                                                    cell=self.cell,
                                                    pbc=self.pbc)
            value = np.dot(self.coefs, dists)
            self.sigma = value - self.targetvalue
            self.finalize_positions(newpos)

        def __repr__(self):
            return 'FixBondCombo({}, {}, {})'.format(repr(self.targetvalue),
                                                     self.indices, self.coefs)

    class FixBondLengthAlt(FixBondCombo):
        """Constraint subobject for fixing bond length within FixInternals.
        Fix distance between atoms with indices a1, a2."""
        def __init__(self, targetvalue, indices, masses, cell, pbc):
            indices = [list(indices) + [1.]]  # bond definition with coef 1.
            super().__init__(targetvalue, indices, masses, cell=cell, pbc=pbc)

        def __repr__(self):
            return 'FixBondLengthAlt({}, {})'.format(self.targetvalue,
                                                     *self.indices)

    class FixAngleCombo(FixInternalsBase):
        """Constraint subobject for fixing linear combination of angles
        within FixInternals.

        sum_i( coef_i * angle_i ) = constant
        """
        def gather_vectors(self, pos):
            v0 = [pos[h] - pos[k] for h, k, l in self.indices]
            v1 = [pos[l] - pos[k] for h, k, l in self.indices]
            return v0, v1

        def prepare_jacobian(self, pos):
            v0, v1 = self.gather_vectors(pos)
            derivs = get_angles_derivatives(v0, v1, cell=self.cell,
                                            pbc=self.pbc)
            self.finalize_jacobian(pos, len(v0), 3, derivs)

        def adjust_positions(self, oldpos, newpos):
            v0, v1 = self.gather_vectors(newpos)
            value = get_angles(v0, v1, cell=self.cell, pbc=self.pbc)
            value = np.dot(self.coefs, value)
            self.sigma = value - self.targetvalue
            self.finalize_positions(newpos)

        def __repr__(self):
            return 'FixAngleCombo({}, {}, {})'.format(self.targetvalue,
                                                      self.indices, self.coefs)

    class FixAngle(FixAngleCombo):
        """Constraint object for fixing an angle within
        FixInternals using the SHAKE algorithm.

        SHAKE convergence is potentially problematic for angles very close to
        0 or 180 degrees as there is a singularity in the Cartesian derivative.
        """
        def __init__(self, targetvalue, indices, masses, cell, pbc):
            """Fix atom movement to construct a constant angle."""
            indices = [list(indices) + [1.]]  # angle definition with coef 1.
            super().__init__(targetvalue, indices, masses, cell=cell, pbc=pbc)

        def __repr__(self):
            return 'FixAngle({}, {})'.format(self.targetvalue, *self.indices)

    class FixDihedralCombo(FixInternalsBase):
        """Constraint subobject for fixing linear combination of dihedrals
        within FixInternals.

        sum_i( coef_i * dihedral_i ) = constant
        """
        def gather_vectors(self, pos):
            v0 = [pos[k] - pos[h] for h, k, l, m in self.indices]
            v1 = [pos[l] - pos[k] for h, k, l, m in self.indices]
            v2 = [pos[m] - pos[l] for h, k, l, m in self.indices]
            return v0, v1, v2

        def prepare_jacobian(self, pos):
            v0, v1, v2 = self.gather_vectors(pos)
            derivs = get_dihedrals_derivatives(v0, v1, v2, cell=self.cell,
                                               pbc=self.pbc)
            self.finalize_jacobian(pos, len(v0), 4, derivs)

        def adjust_positions(self, oldpos, newpos):
            v0, v1, v2 = self.gather_vectors(newpos)
            value = get_dihedrals(v0, v1, v2, cell=self.cell, pbc=self.pbc)
            value = np.dot(self.coefs, value)
            self.sigma = value - self.targetvalue
            self.finalize_positions(newpos)

        def __repr__(self):
            return 'FixDihedralCombo({}, {}, {})'.format(self.targetvalue,
                                                         self.indices,
                                                         self.coefs)

    class FixDihedral(FixDihedralCombo):
        """Constraint object for fixing a dihedral angle using
        the SHAKE algorithm. This one allows also other constraints.

        SHAKE convergence is potentially problematic for near-undefined
        dihedral angles (i.e. when one of the two angles a012 or a123
        approaches 0 or 180 degrees).
        """
        def __init__(self, targetvalue, indices, masses, cell, pbc):
            indices = [list(indices) + [1.]]  # dihedral def. with coef 1.
            super().__init__(targetvalue, indices, masses, cell=cell, pbc=pbc)

        def adjust_positions(self, oldpos, newpos):
            v0, v1, v2 = self.gather_vectors(newpos)
            value = get_dihedrals(v0, v1, v2, cell=self.cell, pbc=self.pbc)
            # apply minimum dihedral difference 'convention': (diff <= 180)
            self.sigma = (value - self.targetvalue + 180) % 360 - 180
            self.finalize_positions(newpos)

        def __repr__(self):
            return 'FixDihedral({}, {})'.format(self.targetvalue, *self.indices)


class FixParametricRelations(FixConstraint):

    def __init__(
        self,
        indices,
        Jacobian,
        const_shift,
        params=None,
        eps=1e-12,
        use_cell=False,
    ):
        """Constrains the degrees of freedom to act in a reduced parameter space defined by the Jacobian

        These constraints are based off the work in: https://arxiv.org/abs/1908.01610

        The constraints linearly maps the full 3N degrees of freedom, where N is number of active
        lattice vectors/atoms onto a reduced subset of M free parameters, where M <= 3*N. The
        Jacobian matrix and constant shift vector map the full set of degrees of freedom onto the
        reduced parameter space.

        Currently the constraint is set up to handle either atomic positions or lattice vectors
        at one time, but not both. To do both simply add a two constraints for each set. This is
        done to keep the mathematics behind the operations separate.

        It would be possible to extend these constraints to allow non-linear transformations
        if functionality to update the Jacobian at each position update was included. This would
        require passing an update function evaluate it every time adjust_positions is callled.
        This is currently NOT supported, and there are no plans to implement it in the future.

        Args:
            indices (list of int): indices of the constrained atoms
                (if not None or empty then cell_indices must be None or Empty)
            Jacobian (np.ndarray(shape=(3*len(indices), len(params)))): The Jacobian describing
                the parameter space transformation
            const_shift (np.ndarray(shape=(3*len(indices)))): A vector describing the constant term
                in the transformation not accounted for in the Jacobian
            params (list of str): parameters used in the parametric representation
                if None a list is generated based on the shape of the Jacobian
            eps (float): a small number to compare the similarity of numbers and set the precision used
                to generate the constraint expressions
            use_cell (bool): if True then act on the cell object
        """
        self.indices = np.array(indices)
        self.Jacobian = np.array(Jacobian)
        self.const_shift = np.array(const_shift)

        assert self.const_shift.shape[0] == 3*len(self.indices)
        assert self.Jacobian.shape[0] == 3*len(self.indices)

        self.eps = eps
        self.use_cell = use_cell

        if params is None:
            params = []
            if self.Jacobian.shape[1] > 0:
                int_fmt_str = "{:0" + str(int(np.ceil(np.log10(self.Jacobian.shape[1])))) + "d}"
                for param_ind in range(self.Jacobian.shape[1]):
                    params.append("param_" + int_fmt_str.format(param_ind))
        else:
            assert len(params) == self.Jacobian.shape[-1]

        self.params = params

        self.Jacobian_inv = np.linalg.inv(self.Jacobian.T @ self.Jacobian) @ self.Jacobian.T

    @classmethod
    def from_expressions(cls, indices, params, expressions, eps=1e-12, use_cell=False):
        """Converts the expressions into a Jacobian Matrix/const_shift vector and constructs a FixParametricRelations constraint

        The expressions must be a list like object of size 3*N and elements must be ordered as:
        [n_0,i; n_0,j; n_0,k; n_1,i; n_1,j; .... ; n_N-1,i; n_N-1,j; n_N-1,k],
        where i, j, and k are the first, second and third component of the atomic position/lattice
        vector. Currently only linear operations are allowed to be included in the expressions so
        only terms like:
            - const * param_0
            - sqrt[const] * param_1
            - const * param_0 +/- const * param_1 +/- ... +/- const * param_M
        where const is any real number and param_0, param_1, ..., param_M are the parameters passed in
        params, are allowed.

        For example, the fractional atomic position constraints for wurtzite are:
        params = ["z1", "z2"]
        expressions = [
            "1.0/3.0", "2.0/3.0", "z1",
            "2.0/3.0", "1.0/3.0", "0.5 + z1",
            "1.0/3.0", "2.0/3.0", "z2",
            "2.0/3.0", "1.0/3.0", "0.5 + z2",
        ]

        For diamond are:
        params = []
        expressions = [
            "0.0", "0.0", "0.0",
            "0.25", "0.25", "0.25",
        ],

        and for stannite are
        params=["x4", "z4"]
        expressions = [
            "0.0", "0.0", "0.0",
            "0.0", "0.5", "0.5",
            "0.75", "0.25", "0.5",
            "0.25", "0.75", "0.5",
            "x4 + z4", "x4 + z4", "2*x4",
            "x4 - z4", "x4 - z4", "-2*x4",
             "0.0", "-1.0 * (x4 + z4)", "x4 - z4",
             "0.0", "x4 - z4", "-1.0 * (x4 + z4)",
        ]

        Args:
            indices (list of int): indices of the constrained atoms
                (if not None or empty then cell_indices must be None or Empty)
            params (list of str): parameters used in the parametric representation
            expressions (list of str): expressions used to convert from the parametric to the real space
                representation
            eps (float): a small number to compare the similarity of numbers and set the precision used
                to generate the constraint expressions
            use_cell (bool): if True then act on the cell object

        Returns:
            cls(
                indices,
                Jacobian generated from expressions,
                const_shift generated from expressions,
                params,
                eps-12,
                use_cell,
            )
        """
        Jacobian = np.zeros((3*len(indices), len(params)))
        const_shift = np.zeros(3*len(indices))

        for expr_ind, expression in enumerate(expressions):
            expression = expression.strip()

            # Convert subtraction to addition
            expression = expression.replace("-", "+(-1.0)*")
            if "+" == expression[0]:
                expression = expression[1:]
            elif "(+" == expression[:2]:
                expression = "(" + expression[2:]

            # Explicitly add leading zeros so when replacing param_1 with 0.0 param_11 does not become 0.01
            int_fmt_str = "{:0" + str(int(np.ceil(np.log10(len(params)+1)))) + "d}"

            param_dct = dict()
            param_map = dict()

            # Construct a standardized param template for A/B filling
            for param_ind, param in enumerate(params):
                param_str = "param_" + int_fmt_str.format(param_ind)
                param_map[param] = param_str
                param_dct[param_str] = 0.0

            # Replace the parameters according to the map
            # Sort by string length (long to short) to prevent cases like x11 becoming f"{param_map["x1"]}1"
            for param in sorted(params, key=lambda s: -1.0*len(s)):
                expression = expression.replace(param, param_map[param])

            # Partial linearity check
            for express_sec in expression.split("+"):
                in_sec = [param in express_sec for param in param_dct]
                n_params_in_sec = len(np.where(np.array(in_sec))[0])
                if n_params_in_sec > 1:
                    raise ValueError("The FixParametricRelations expressions must be linear.")

            const_shift[expr_ind] = float(eval_expression(expression, param_dct))

            for param_ind in range(len(params)):
                param_str = "param_" + int_fmt_str.format(param_ind)
                if param_str not in expression:
                    Jacobian[expr_ind, param_ind] = 0.0
                    continue
                param_dct[param_str] = 1.0
                test_1 = float(eval_expression(expression, param_dct))
                test_1 -= const_shift[expr_ind]
                Jacobian[expr_ind, param_ind] = test_1

                param_dct[param_str] = 2.0
                test_2 = float(eval_expression(expression, param_dct))
                test_2 -= const_shift[expr_ind]
                if abs(test_2 / test_1 - 2.0) > eps:
                    raise ValueError("The FixParametricRelations expressions must be linear.")
                param_dct[param_str] = 0.0

        args = [
            indices,
            Jacobian,
            const_shift,
            params,
            eps,
            use_cell,
        ]
        if cls is FixScaledParametricRelations:
            args = args[:-1]
        return cls(*args)


    @property
    def expressions(self):
        """Generate the expressions represented by the current self.Jacobian and self.const_shift objects"""
        expressions = []
        per = int(round(-1 * np.log10(self.eps)))
        fmt_str = "{:." + str(per + 1) + "g}"
        for index, shift_val in enumerate(self.const_shift):
            exp = ""
            if np.all(np.abs(self.Jacobian[index]) < self.eps) or np.abs(shift_val) > self.eps:
                exp += fmt_str.format(shift_val)

            param_exp = ""
            for param_index, jacob_val in enumerate(self.Jacobian[index]):
                abs_jacob_val = np.round(np.abs(jacob_val), per + 1)
                if abs_jacob_val < self.eps:
                    continue

                param = self.params[param_index]
                if param_exp or exp:
                    if jacob_val > -1.0*self.eps:
                        param_exp += " + "
                    else:
                        param_exp += " - "
                elif (not exp) and (not param_exp) and (jacob_val < -1.0*self.eps):
                    param_exp += "-"

                if np.abs(abs_jacob_val-1.0) <= self.eps:
                    param_exp += "{:s}".format(param)
                else:
                    param_exp += (fmt_str + "*{:s}").format(abs_jacob_val, param)

            exp += param_exp

            expressions.append(exp)
        return np.array(expressions).reshape((-1, 3))

    def todict(self):
        """Create a dictionary representation of the constraint"""
        return {
            "name": type(self).__name__,
            "kwargs": {
                "indices": self.indices,
                "params": self.params,
                "Jacobian": self.Jacobian,
                "const_shift": self.const_shift,
                "eps": self.eps,
                "use_cell": self.use_cell,
            }
        }


    def __repr__(self):
        """The str representation of the constraint"""
        if len(self.indices) > 1:
            indices_str = "[{:d}, ..., {:d}]".format(self.indices[0], self.indices[-1])
        else:
            indices_str = "[{:d}]".format(self.indices[0])

        if len(self.params) > 1:
            params_str = "[{:s}, ..., {:s}]".format(self.params[0], self.params[-1])
        elif len(self.params) == 1:
            params_str = "[{:s}]".format(self.params[0])
        else:
            params_str = "[]"

        return '{:s}({:s}, {:s}, ..., {:e})'.format(
            type(self).__name__,
            indices_str,
            params_str,
            self.eps
        )


class FixScaledParametricRelations(FixParametricRelations):

    def __init__(
        self,
        indices,
        Jacobian,
        const_shift,
        params=None,
        eps=1e-12,
    ):
        """The fractional coordinate version of FixParametricRelations

        All arguments are the same, but since this is for fractional coordinates use_cell is false
        """
        super(FixScaledParametricRelations, self).__init__(
            indices,
            Jacobian,
            const_shift,
            params,
            eps,
            False,
        )

    def adjust_contravariant(self, cell, vecs, B):
        """Adjust the values of a set of vectors that are contravariant with the unit transformation"""
        scaled = cell.scaled_positions(vecs).flatten()
        scaled = self.Jacobian_inv @ (scaled - B)
        scaled = ((self.Jacobian @ scaled) + B).reshape((-1, 3))

        return cell.cartesian_positions(scaled)

    def adjust_positions(self, atoms, positions):
        """Adjust positions of the atoms to match the constraints"""
        positions[self.indices] = self.adjust_contravariant(
            atoms.cell,
            positions[self.indices],
            self.const_shift,
        )
        positions[self.indices] = self.adjust_B(atoms.cell, positions[self.indices])


    def adjust_B(self, cell, positions):
        """Wraps the positions back to the unit cell and adjust B to keep track of this change"""
        fractional = cell.scaled_positions(positions)
        wrapped_fractional = (fractional % 1.0) % 1.0
        self.const_shift += np.round(wrapped_fractional - fractional).flatten()
        return cell.cartesian_positions(wrapped_fractional)

    def adjust_momenta(self, atoms, momenta):
        """Adjust momenta of the atoms to match the constraints"""
        momenta[self.indices] = self.adjust_contravariant(
            atoms.cell,
            momenta[self.indices],
            np.zeros(self.const_shift.shape),
        )

    def adjust_forces(self, atoms, forces):
        """Adjust forces of the atoms to match the constraints"""
        # Forces are coavarient to the coordinate transformation, use the inverse transformations
        cart2frac_jacob = np.zeros(2*(3*len(atoms),))
        for i_atom in range(len(atoms)):
            cart2frac_jacob[3*i_atom:3*(i_atom+1), 3*i_atom:3*(i_atom+1)] = atoms.cell.T

        jacobian = cart2frac_jacob @ self.Jacobian
        jacobian_inv = np.linalg.inv(jacobian.T @ jacobian) @ jacobian.T

        reduced_forces = jacobian.T @ forces.flatten()
        forces[self.indices] = (jacobian_inv.T @ reduced_forces).reshape(-1, 3)

    def todict(self):
        """Create a dictionary representation of the constraint"""
        dct = super(FixScaledParametricRelations, self).todict()
        del(dct["kwargs"]["use_cell"])
        return dct


class FixCartesianParametricRelations(FixParametricRelations):

    def __init__(
        self,
        indices,
        Jacobian,
        const_shift,
        params=None,
        eps=1e-12,
        use_cell=False,
    ):
        """The Cartesian coordinate version of FixParametricRelations"""
        super(FixCartesianParametricRelations, self).__init__(
            indices,
            Jacobian,
            const_shift,
            params,
            eps,
            use_cell,
        )

    def adjust_contravariant(self, vecs, B):
        """Adjust the values of a set of vectors that are contravariant with the unit transformation"""
        vecs = self.Jacobian_inv @ (vecs.flatten() - B)
        vecs = ((self.Jacobian @ vecs) + B).reshape((-1, 3))
        return vecs

    def adjust_positions(self, atoms, positions):
        """Adjust positions of the atoms to match the constraints"""
        if self.use_cell:
            return
        positions[self.indices] = self.adjust_contravariant(
            positions[self.indices],
            self.const_shift,
        )

    def adjust_momenta(self, atoms, momenta):
        """Adjust momenta of the atoms to match the constraints"""
        if self.use_cell:
            return
        momenta[self.indices] = self.adjust_contravariant(
            momenta[self.indices],
            np.zeros(self.const_shift.shape),
        )

    def adjust_forces(self, atoms, forces):
        """Adjust forces of the atoms to match the constraints"""
        if self.use_cell:
            return

        forces_reduced = self.Jacobian.T @ forces[self.indices].flatten()
        forces[self.indices] = (self.Jacobian_inv.T @ forces_reduced).reshape(-1, 3)

    def adjust_cell(self, atoms, cell):
        """Adjust the cell of the atoms to match the constraints"""
        if not self.use_cell:
            return
        cell[self.indices] = self.adjust_contravariant(
            cell[self.indices],
            np.zeros(self.const_shift.shape),
        )

    def adjust_stress(self, atoms, stress):
        """Adjust the stress of the atoms to match the constraints"""
        if not self.use_cell:
            return

        stress_3x3 = voigt_6_to_full_3x3_stress(stress)
        stress_reduced = self.Jacobian.T @ stress_3x3[self.indices].flatten()
        stress_3x3[self.indices] = (self.Jacobian_inv.T @ stress_reduced).reshape(-1, 3)

        stress[:] = full_3x3_to_voigt_6_stress(stress_3x3)


class Hookean(FixConstraint):
    """Applies a Hookean restorative force between a pair of atoms, an atom
    and a point, or an atom and a plane."""

    def __init__(self, a1, a2, k, rt=None):
        """Forces two atoms to stay close together by applying no force if
        they are below a threshold length, rt, and applying a Hookean
        restorative force when the distance between them exceeds rt. Can
        also be used to tether an atom to a fixed point in space or to a
        distance above a plane.

        a1 : int
           Index of atom 1
        a2 : one of three options
           1) index of atom 2
           2) a fixed point in cartesian space to which to tether a1
           3) a plane given as (A, B, C, D) in A x + B y + C z + D = 0.
        k : float
           Hooke's law (spring) constant to apply when distance
           exceeds threshold_length. Units of eV A^-2.
        rt : float
           The threshold length below which there is no force. The
           length is 1) between two atoms, 2) between atom and point.
           This argument is not supplied in case 3. Units of A.

        If a plane is specified, the Hooke's law force is applied if the atom
        is on the normal side of the plane. For instance, the plane with
        (A, B, C, D) = (0, 0, 1, -7) defines a plane in the xy plane with a z
        intercept of +7 and a normal vector pointing in the +z direction.
        If the atom has z > 7, then a downward force would be applied of
        k * (atom.z - 7). The same plane with the normal vector pointing in
        the -z direction would be given by (A, B, C, D) = (0, 0, -1, 7).
        """

        if isinstance(a2, int):
            self._type = 'two atoms'
            self.indices = [a1, a2]
        elif len(a2) == 3:
            self._type = 'point'
            self.index = a1
            self.origin = np.array(a2)
        elif len(a2) == 4:
            self._type = 'plane'
            self.index = a1
            self.plane = a2
        else:
            raise RuntimeError('Unknown type for a2')
        self.threshold = rt
        self.spring = k

    def todict(self):
        dct = {'name': 'Hookean'}
        dct['kwargs'] = {'rt': self.threshold,
                         'k': self.spring}
        if self._type == 'two atoms':
            dct['kwargs']['a1'] = self.indices[0]
            dct['kwargs']['a2'] = self.indices[1]
        elif self._type == 'point':
            dct['kwargs']['a1'] = self.index
            dct['kwargs']['a2'] = self.origin
        elif self._type == 'plane':
            dct['kwargs']['a1'] = self.index
            dct['kwargs']['a2'] = self.plane
        else:
            raise NotImplementedError('Bad type: %s' % self._type)
        return dct

    def adjust_positions(self, atoms, newpositions):
        pass

    def adjust_momenta(self, atoms, momenta):
        pass

    def adjust_forces(self, atoms, forces):
        positions = atoms.positions
        if self._type == 'plane':
            A, B, C, D = self.plane
            x, y, z = positions[self.index]
            d = ((A * x + B * y + C * z + D) /
                 np.sqrt(A**2 + B**2 + C**2))
            if d < 0:
                return
            magnitude = self.spring * d
            direction = - np.array((A, B, C)) / np.linalg.norm((A, B, C))
            forces[self.index] += direction * magnitude
            return
        if self._type == 'two atoms':
            p1, p2 = positions[self.indices]
        elif self._type == 'point':
            p1 = positions[self.index]
            p2 = self.origin
        displace, _ = find_mic(p2 - p1, atoms.cell, atoms.pbc)
        bondlength = np.linalg.norm(displace)
        if bondlength > self.threshold:
            magnitude = self.spring * (bondlength - self.threshold)
            direction = displace / np.linalg.norm(displace)
            if self._type == 'two atoms':
                forces[self.indices[0]] += direction * magnitude
                forces[self.indices[1]] -= direction * magnitude
            else:
                forces[self.index] += direction * magnitude

    def adjust_potential_energy(self, atoms):
        """Returns the difference to the potential energy due to an active
        constraint. (That is, the quantity returned is to be added to the
        potential energy.)"""
        positions = atoms.positions
        if self._type == 'plane':
            A, B, C, D = self.plane
            x, y, z = positions[self.index]
            d = ((A * x + B * y + C * z + D) /
                 np.sqrt(A**2 + B**2 + C**2))
            if d > 0:
                return 0.5 * self.spring * d**2
            else:
                return 0.
        if self._type == 'two atoms':
            p1, p2 = positions[self.indices]
        elif self._type == 'point':
            p1 = positions[self.index]
            p2 = self.origin
        displace, _ = find_mic(p2 - p1, atoms.cell, atoms.pbc)
        bondlength = np.linalg.norm(displace)
        if bondlength > self.threshold:
            return 0.5 * self.spring * (bondlength - self.threshold)**2
        else:
            return 0.

    def get_indices(self):
        if self._type == 'two atoms':
            return self.indices
        elif self._type == 'point':
            return self.index
        elif self._type == 'plane':
            return self.index

    def index_shuffle(self, atoms, ind):
        # See docstring of superclass
        if self._type == 'two atoms':
            newa = [-1, -1]  # Signal error
            for new, old in slice2enlist(ind, len(atoms)):
                for i, a in enumerate(self.indices):
                    if old == a:
                        newa[i] = new
            if newa[0] == -1 or newa[1] == -1:
                raise IndexError('Constraint not part of slice')
            self.indices = newa
        elif (self._type == 'point') or (self._type == 'plane'):
            newa = -1   # Signal error
            for new, old in slice2enlist(ind, len(atoms)):
                if old == self.index:
                    newa = new
                    break
            if newa == -1:
                raise IndexError('Constraint not part of slice')
            self.index = newa

    def __repr__(self):
        if self._type == 'two atoms':
            return 'Hookean(%d, %d)' % tuple(self.indices)
        elif self._type == 'point':
            return 'Hookean(%d) to cartesian' % self.index
        else:
            return 'Hookean(%d) to plane' % self.index


class ExternalForce(FixConstraint):
    """Constraint object for pulling two atoms apart by an external force.

    You can combine this constraint for example with FixBondLength but make
    sure that *ExternalForce* comes first in the list if there are overlaps
    between atom1-2 and atom3-4:

    >>> con1 = ExternalForce(atom1, atom2, f_ext)
    >>> con2 = FixBondLength(atom3, atom4)
    >>> atoms.set_constraint([con1, con2])

    see ase/test/external_force.py"""

    def __init__(self, a1, a2, f_ext):
        self.indices = [a1, a2]
        self.external_force = f_ext

    def adjust_positions(self, atoms, new):
        pass

    def adjust_forces(self, atoms, forces):
        dist = np.subtract.reduce(atoms.positions[self.indices])
        force = self.external_force * dist / np.linalg.norm(dist)
        forces[self.indices] += (force, -force)

    def adjust_potential_energy(self, atoms):
        dist = np.subtract.reduce(atoms.positions[self.indices])
        return -np.linalg.norm(dist) * self.external_force

    def index_shuffle(self, atoms, ind):
        """Shuffle the indices of the two atoms in this constraint"""
        newa = [-1, -1]  # Signal error
        for new, old in slice2enlist(ind, len(atoms)):
            for i, a in enumerate(self.indices):
                if old == a:
                    newa[i] = new
        if newa[0] == -1 or newa[1] == -1:
            raise IndexError('Constraint not part of slice')
        self.indices = newa

    def __repr__(self):
        return 'ExternalForce(%d, %d, %f)' % (self.indices[0],
                                              self.indices[1],
                                              self.external_force)

    def todict(self):
        return {'name': 'ExternalForce',
                'kwargs': {'a1': self.indices[0], 'a2': self.indices[1],
                           'f_ext': self.external_force}}


class MirrorForce(FixConstraint):
    """Constraint object for mirroring the force between two atoms.

    This class is designed to find a transition state with the help of a
    single optimization. It can be used if the transition state belongs to a
    bond breaking reaction. First the given bond length will be fixed until
    all other degrees of freedom are optimized, then the forces of the two
    atoms will be mirrored to find the transition state. The mirror plane is
    perpendicular to the connecting line of the atoms. Transition states in
    dependence of the force can be obtained by stretching the molecule and
    fixing its total length with *FixBondLength* or by using *ExternalForce*
    during the optimization with *MirrorForce*.

    Parameters
    ----------
    a1: int
        First atom index.
    a2: int
        Second atom index.
    max_dist: float
        Upper limit of the bond length interval where the transition state
        can be found.
    min_dist: float
        Lower limit of the bond length interval where the transition state
        can be found.
    fmax: float
        Maximum force used for the optimization.

    Notes
    -----
    You can combine this constraint for example with FixBondLength but make
    sure that *MirrorForce* comes first in the list if there are overlaps
    between atom1-2 and atom3-4:

    >>> con1 = MirrorForce(atom1, atom2)
    >>> con2 = FixBondLength(atom3, atom4)
    >>> atoms.set_constraint([con1, con2])

    """

    def __init__(self, a1, a2, max_dist=2.5, min_dist=1., fmax=0.1):
        self.indices = [a1, a2]
        self.min_dist = min_dist
        self.max_dist = max_dist
        self.fmax = fmax

    def adjust_positions(self, atoms, new):
        pass

    def adjust_forces(self, atoms, forces):
        dist = np.subtract.reduce(atoms.positions[self.indices])
        d = np.linalg.norm(dist)
        if (d < self.min_dist) or (d > self.max_dist):
            # Stop structure optimization
            forces[:] *= 0
            return
        dist /= d
        df = np.subtract.reduce(forces[self.indices])
        f = df.dot(dist)
        con_saved = atoms.constraints
        try:
            con = [con for con in con_saved
                   if not isinstance(con, MirrorForce)]
            atoms.set_constraint(con)
            forces_copy = atoms.get_forces()
        finally:
            atoms.set_constraint(con_saved)
        df1 = -1 / 2. * f * dist
        forces_copy[self.indices] += (df1, -df1)
        # Check if forces would be converged if the bond with mirrored forces
        # would also be fixed
        if (forces_copy**2).sum(axis=1).max() < self.fmax**2:
            factor = 1.
        else:
            factor = 0.
        df1 = -(1 + factor) / 2. * f * dist
        forces[self.indices] += (df1, -df1)

    def index_shuffle(self, atoms, ind):
        """Shuffle the indices of the two atoms in this constraint

        """
        newa = [-1, -1]  # Signal error
        for new, old in slice2enlist(ind, len(atoms)):
            for i, a in enumerate(self.indices):
                if old == a:
                    newa[i] = new
        if newa[0] == -1 or newa[1] == -1:
            raise IndexError('Constraint not part of slice')
        self.indices = newa

    def __repr__(self):
        return 'MirrorForce(%d, %d, %f, %f, %f)' % (
            self.indices[0], self.indices[1], self.max_dist, self.min_dist,
            self.fmax)

    def todict(self):
        return {'name': 'MirrorForce',
                'kwargs': {'a1': self.indices[0], 'a2': self.indices[1],
                           'max_dist': self.max_dist,
                           'min_dist': self.min_dist, 'fmax': self.fmax}}


class MirrorTorque(FixConstraint):
    """Constraint object for mirroring the torque acting on a dihedral
    angle defined by four atoms.

    This class is designed to find a transition state with the help of a
    single optimization. It can be used if the transition state belongs to a
    cis-trans-isomerization with a change of dihedral angle. First the given
    dihedral angle will be fixed until all other degrees of freedom are
    optimized, then the torque acting on the dihedral angle will be mirrored
    to find the transition state. Transition states in
    dependence of the force can be obtained by stretching the molecule and
    fixing its total length with *FixBondLength* or by using *ExternalForce*
    during the optimization with *MirrorTorque*.

    This constraint can be used to find
    transition states of cis-trans-isomerization.

    a1    a4
    |      |
    a2 __ a3

    Parameters
    ----------
    a1: int
        First atom index.
    a2: int
        Second atom index.
    a3: int
        Third atom index.
    a4: int
        Fourth atom index.
    max_angle: float
        Upper limit of the dihedral angle interval where the transition state
        can be found.
    min_angle: float
        Lower limit of the dihedral angle interval where the transition state
        can be found.
    fmax: float
        Maximum force used for the optimization.

    Notes
    -----
    You can combine this constraint for example with FixBondLength but make
    sure that *MirrorTorque* comes first in the list if there are overlaps
    between atom1-4 and atom5-6:

    >>> con1 = MirrorTorque(atom1, atom2, atom3, atom4)
    >>> con2 = FixBondLength(atom5, atom6)
    >>> atoms.set_constraint([con1, con2])

    """

    def __init__(self, a1, a2, a3, a4, max_angle=2 * np.pi, min_angle=0.,
                 fmax=0.1):
        self.indices = [a1, a2, a3, a4]
        self.min_angle = min_angle
        self.max_angle = max_angle
        self.fmax = fmax

    def adjust_positions(self, atoms, new):
        pass

    def adjust_forces(self, atoms, forces):
        angle = atoms.get_dihedral(self.indices[0], self.indices[1],
                                   self.indices[2], self.indices[3])
        angle *= np.pi / 180.
        if (angle < self.min_angle) or (angle > self.max_angle):
            # Stop structure optimization
            forces[:] *= 0
            return
        p = atoms.positions[self.indices]
        f = forces[self.indices]

        f0 = (f[1] + f[2]) / 2.
        ff = f - f0
        p0 = (p[2] + p[1]) / 2.
        m0 = np.cross(p[1] - p0, ff[1]) / (p[1] - p0).dot(p[1] - p0)
        fff = ff - np.cross(m0, p - p0)
        d1 = np.cross(np.cross(p[1] - p0, p[0] - p[1]), p[1] - p0) / \
            (p[1] - p0).dot(p[1] - p0)
        d2 = np.cross(np.cross(p[2] - p0, p[3] - p[2]), p[2] - p0) / \
            (p[2] - p0).dot(p[2] - p0)
        omegap1 = (np.cross(d1, fff[0]) / d1.dot(d1)).dot(p[1] - p0) / \
            np.linalg.norm(p[1] - p0)
        omegap2 = (np.cross(d2, fff[3]) / d2.dot(d2)).dot(p[2] - p0) / \
            np.linalg.norm(p[2] - p0)
        omegap = omegap1 + omegap2
        con_saved = atoms.constraints
        try:
            con = [con for con in con_saved
                   if not isinstance(con, MirrorTorque)]
            atoms.set_constraint(con)
            forces_copy = atoms.get_forces()
        finally:
            atoms.set_constraint(con_saved)
        df1 = -1 / 2. * omegap * np.cross(p[1] - p0, d1) / \
            np.linalg.norm(p[1] - p0)
        df2 = -1 / 2. * omegap * np.cross(p[2] - p0, d2) / \
            np.linalg.norm(p[2] - p0)
        forces_copy[self.indices] += (df1, [0., 0., 0.], [0., 0., 0.], df2)
        # Check if forces would be converged if the dihedral angle with
        # mirrored torque would also be fixed
        if (forces_copy**2).sum(axis=1).max() < self.fmax**2:
            factor = 1.
        else:
            factor = 0.
        df1 = -(1 + factor) / 2. * omegap * np.cross(p[1] - p0, d1) / \
            np.linalg.norm(p[1] - p0)
        df2 = -(1 + factor) / 2. * omegap * np.cross(p[2] - p0, d2) / \
            np.linalg.norm(p[2] - p0)
        forces[self.indices] += (df1, [0., 0., 0.], [0., 0., 0.], df2)

    def index_shuffle(self, atoms, ind):
        # See docstring of superclass
        indices = []
        for new, old in slice2enlist(ind, len(atoms)):
            if old in self.indices:
                indices.append(new)
        if len(indices) == 0:
            raise IndexError('All indices in MirrorTorque not part of slice')
        self.indices = np.asarray(indices, int)

    def __repr__(self):
        return 'MirrorTorque(%d, %d, %d, %d, %f, %f, %f)' % (
            self.indices[0], self.indices[1], self.indices[2],
            self.indices[3], self.max_angle, self.min_angle, self.fmax)

    def todict(self):
        return {'name': 'MirrorTorque',
                'kwargs': {'a1': self.indices[0], 'a2': self.indices[1],
                           'a3': self.indices[2], 'a4': self.indices[3],
                           'max_angle': self.max_angle,
                           'min_angle': self.min_angle, 'fmax': self.fmax}}


class Filter:
    """Subset filter class."""

    def __init__(self, atoms, indices=None, mask=None):
        """Filter atoms.

        This filter can be used to hide degrees of freedom in an Atoms
        object.

        Parameters
        ----------
        indices : list of int
           Indices for those atoms that should remain visible.
        mask : list of bool
           One boolean per atom indicating if the atom should remain
           visible or not.

        If a Trajectory tries to save this object, it will instead
        save the underlying Atoms object.  To prevent this, override
        the iterimages method.
        """

        self.atoms = atoms
        self.constraints = []
        # Make self.info a reference to the underlying atoms' info dictionary.
        self.info = self.atoms.info

        if indices is None and mask is None:
            raise ValueError('Use "indices" or "mask".')
        if indices is not None and mask is not None:
            raise ValueError('Use only one of "indices" and "mask".')

        if mask is not None:
            self.index = np.asarray(mask, bool)
            self.n = self.index.sum()
        else:
            self.index = np.asarray(indices, int)
            self.n = len(self.index)

    def iterimages(self):
        # Present the real atoms object to Trajectory and friends
        return self.atoms.iterimages()

    def get_cell(self):
        """Returns the computational cell.

        The computational cell is the same as for the original system.
        """
        return self.atoms.get_cell()

    def get_pbc(self):
        """Returns the periodic boundary conditions.

        The boundary conditions are the same as for the original system.
        """
        return self.atoms.get_pbc()

    def get_positions(self):
        'Return the positions of the visible atoms.'
        return self.atoms.get_positions()[self.index]

    def set_positions(self, positions, **kwargs):
        'Set the positions of the visible atoms.'
        pos = self.atoms.get_positions()
        pos[self.index] = positions
        self.atoms.set_positions(pos, **kwargs)

    positions = property(get_positions, set_positions,
                         doc='Positions of the atoms')

    def get_momenta(self):
        'Return the momenta of the visible atoms.'
        return self.atoms.get_momenta()[self.index]

    def set_momenta(self, momenta, **kwargs):
        'Set the momenta of the visible atoms.'
        mom = self.atoms.get_momenta()
        mom[self.index] = momenta
        self.atoms.set_momenta(mom, **kwargs)

    def get_atomic_numbers(self):
        'Return the atomic numbers of the visible atoms.'
        return self.atoms.get_atomic_numbers()[self.index]

    def set_atomic_numbers(self, atomic_numbers):
        'Set the atomic numbers of the visible atoms.'
        z = self.atoms.get_atomic_numbers()
        z[self.index] = atomic_numbers
        self.atoms.set_atomic_numbers(z)

    def get_tags(self):
        'Return the tags of the visible atoms.'
        return self.atoms.get_tags()[self.index]

    def set_tags(self, tags):
        'Set the tags of the visible atoms.'
        tg = self.atoms.get_tags()
        tg[self.index] = tags
        self.atoms.set_tags(tg)

    def get_forces(self, *args, **kwargs):
        return self.atoms.get_forces(*args, **kwargs)[self.index]

    def get_stress(self, *args, **kwargs):
        return self.atoms.get_stress(*args, **kwargs)

    def get_stresses(self, *args, **kwargs):
        return self.atoms.get_stresses(*args, **kwargs)[self.index]

    def get_masses(self):
        return self.atoms.get_masses()[self.index]

    def get_potential_energy(self, **kwargs):
        """Calculate potential energy.

        Returns the potential energy of the full system.
        """
        return self.atoms.get_potential_energy(**kwargs)

    def get_chemical_symbols(self):
        return self.atoms.get_chemical_symbols()

    def get_initial_magnetic_moments(self):
        return self.atoms.get_initial_magnetic_moments()

    def get_calculator(self):
        """Returns the calculator.

        WARNING: The calculator is unaware of this filter, and sees a
        different number of atoms.
        """
        return self.atoms.calc

    @property
    def calc(self):
        return self.atoms.calc

    def get_celldisp(self):
        return self.atoms.get_celldisp()

    def has(self, name):
        'Check for existence of array.'
        return self.atoms.has(name)

    def __len__(self):
        'Return the number of movable atoms.'
        return self.n

    def __getitem__(self, i):
        'Return an atom.'
        return self.atoms[self.index[i]]


class StrainFilter(Filter):
    """Modify the supercell while keeping the scaled positions fixed.

    Presents the strain of the supercell as the generalized positions,
    and the global stress tensor (times the volume) as the generalized
    force.

    This filter can be used to relax the unit cell until the stress is
    zero.  If MDMin is used for this, the timestep (dt) to be used
    depends on the system size. 0.01/x where x is a typical dimension
    seems like a good choice.

    The stress and strain are presented as 6-vectors, the order of the
    components follow the standard engingeering practice: xx, yy, zz,
    yz, xz, xy.

    """

    def __init__(self, atoms, mask=None, include_ideal_gas=False):
        """Create a filter applying a homogeneous strain to a list of atoms.

        The first argument, atoms, is the atoms object.

        The optional second argument, mask, is a list of six booleans,
        indicating which of the six independent components of the
        strain that are allowed to become non-zero.  It defaults to
        [1,1,1,1,1,1].

        """

        self.strain = np.zeros(6)
        self.include_ideal_gas = include_ideal_gas

        if mask is None:
            mask = np.ones(6)
        else:
            mask = np.array(mask)

        Filter.__init__(self, atoms, mask=mask)
        self.mask = mask
        self.origcell = atoms.get_cell()

    def get_positions(self):
        return self.strain.reshape((2, 3)).copy()

    def set_positions(self, new):
        new = new.ravel() * self.mask
        eps = np.array([[1.0 + new[0], 0.5 * new[5], 0.5 * new[4]],
                        [0.5 * new[5], 1.0 + new[1], 0.5 * new[3]],
                        [0.5 * new[4], 0.5 * new[3], 1.0 + new[2]]])

        self.atoms.set_cell(np.dot(self.origcell, eps), scale_atoms=True)
        self.strain[:] = new

    def get_forces(self, **kwargs):
        stress = self.atoms.get_stress(include_ideal_gas=self.include_ideal_gas)
        return -self.atoms.get_volume() * (stress * self.mask).reshape((2, 3))

    def has(self, x):
        return self.atoms.has(x)

    def __len__(self):
        return 2


# The indices of the full stiffness matrix of (orthorhombic) interest
voigt_notation = [(0, 0), (1, 1), (2, 2), (1, 2), (0, 2), (0, 1)]


def full_3x3_to_voigt_6_index(i, j):
    if i == j:
        return i
    return 6 - i - j


def voigt_6_to_full_3x3_strain(strain_vector):
    """
    Form a 3x3 strain matrix from a 6 component vector in Voigt notation
    """
    e1, e2, e3, e4, e5, e6 = np.transpose(strain_vector)
    return np.transpose([[1.0 + e1, 0.5 * e6, 0.5 * e5],
                         [0.5 * e6, 1.0 + e2, 0.5 * e4],
                         [0.5 * e5, 0.5 * e4, 1.0 + e3]])


def voigt_6_to_full_3x3_stress(stress_vector):
    """
    Form a 3x3 stress matrix from a 6 component vector in Voigt notation
    """
    s1, s2, s3, s4, s5, s6 = np.transpose(stress_vector)
    return np.transpose([[s1, s6, s5],
                         [s6, s2, s4],
                         [s5, s4, s3]])


def full_3x3_to_voigt_6_strain(strain_matrix):
    """
    Form a 6 component strain vector in Voigt notation from a 3x3 matrix
    """
    strain_matrix = np.asarray(strain_matrix)
    return np.transpose([strain_matrix[..., 0, 0] - 1.0,
                         strain_matrix[..., 1, 1] - 1.0,
                         strain_matrix[..., 2, 2] - 1.0,
                         strain_matrix[..., 1, 2] + strain_matrix[..., 2, 1],
                         strain_matrix[..., 0, 2] + strain_matrix[..., 2, 0],
                         strain_matrix[..., 0, 1] + strain_matrix[..., 1, 0]])


def full_3x3_to_voigt_6_stress(stress_matrix):
    """
    Form a 6 component stress vector in Voigt notation from a 3x3 matrix
    """
    stress_matrix = np.asarray(stress_matrix)
    return np.transpose([stress_matrix[..., 0, 0],
                         stress_matrix[..., 1, 1],
                         stress_matrix[..., 2, 2],
                         (stress_matrix[..., 1, 2] +
                          stress_matrix[..., 1, 2]) / 2,
                         (stress_matrix[..., 0, 2] +
                          stress_matrix[..., 0, 2]) / 2,
                         (stress_matrix[..., 0, 1] +
                          stress_matrix[..., 0, 1]) / 2])


class UnitCellFilter(Filter):
    """Modify the supercell and the atom positions. """
    def __init__(self, atoms, mask=None,
                 cell_factor=None,
                 hydrostatic_strain=False,
                 constant_volume=False,
                 scalar_pressure=0.0):
        """Create a filter that returns the atomic forces and unit cell
        stresses together, so they can simultaneously be minimized.

        The first argument, atoms, is the atoms object. The optional second
        argument, mask, is a list of booleans, indicating which of the six
        independent components of the strain are relaxed.

        - True = relax to zero
        - False = fixed, ignore this component

        Degrees of freedom are the positions in the original undeformed cell,
        plus the deformation tensor (extra 3 "atoms"). This gives forces
        consistent with numerical derivatives of the potential energy
        with respect to the cell degreees of freedom.

        For full details see:
            E. B. Tadmor, G. S. Smith, N. Bernstein, and E. Kaxiras,
            Phys. Rev. B 59, 235 (1999)

        You can still use constraints on the atoms, e.g. FixAtoms, to control
        the relaxation of the atoms.

        >>> # this should be equivalent to the StrainFilter
        >>> atoms = Atoms(...)
        >>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
        >>> ucf = UnitCellFilter(atoms)

        You should not attach this UnitCellFilter object to a
        trajectory. Instead, create a trajectory for the atoms, and
        attach it to an optimizer like this:

        >>> atoms = Atoms(...)
        >>> ucf = UnitCellFilter(atoms)
        >>> qn = QuasiNewton(ucf)
        >>> traj = Trajectory('TiO2.traj', 'w', atoms)
        >>> qn.attach(traj)
        >>> qn.run(fmax=0.05)

        Helpful conversion table:

        - 0.05 eV/A^3   = 8 GPA
        - 0.003 eV/A^3  = 0.48 GPa
        - 0.0006 eV/A^3 = 0.096 GPa
        - 0.0003 eV/A^3 = 0.048 GPa
        - 0.0001 eV/A^3 = 0.02 GPa

        Additional optional arguments:

        cell_factor: float (default float(len(atoms)))
            Factor by which deformation gradient is multiplied to put
            it on the same scale as the positions when assembling
            the combined position/cell vector. The stress contribution to
            the forces is scaled down by the same factor. This can be thought
            of as a very simple preconditioners. Default is number of atoms
            which gives approximately the correct scaling.

        hydrostatic_strain: bool (default False)
            Constrain the cell by only allowing hydrostatic deformation.
            The virial tensor is replaced by np.diag([np.trace(virial)]*3).

        constant_volume: bool (default False)
            Project out the diagonal elements of the virial tensor to allow
            relaxations at constant volume, e.g. for mapping out an
            energy-volume curve. Note: this only approximately conserves
            the volume and breaks energy/force consistency so can only be
            used with optimizers that do require do a line minimisation
            (e.g. FIRE).

        scalar_pressure: float (default 0.0)
            Applied pressure to use for enthalpy pV term. As above, this
            breaks energy/force consistency.
        """

        Filter.__init__(self, atoms, indices=range(len(atoms)))
        self.atoms = atoms
        self.orig_cell = atoms.get_cell()
        self.stress = None

        if mask is None:
            mask = np.ones(6)
        mask = np.asarray(mask)
        if mask.shape == (6,):
            self.mask = voigt_6_to_full_3x3_stress(mask)
        elif mask.shape == (3, 3):
            self.mask = mask
        else:
            raise ValueError('shape of mask should be (3,3) or (6,)')

        if cell_factor is None:
            cell_factor = float(len(atoms))
        self.hydrostatic_strain = hydrostatic_strain
        self.constant_volume = constant_volume
        self.scalar_pressure = scalar_pressure
        self.cell_factor = cell_factor
        self.copy = self.atoms.copy
        self.arrays = self.atoms.arrays

    def deform_grad(self):
        return np.linalg.solve(self.orig_cell, self.atoms.cell).T

    def get_positions(self):
        """
        this returns an array with shape (natoms + 3,3).

        the first natoms rows are the positions of the atoms, the last
        three rows are the deformation tensor associated with the unit cell,
        scaled by self.cell_factor.
        """

        cur_deform_grad = self.deform_grad()
        natoms = len(self.atoms)
        pos = np.zeros((natoms + 3, 3))
        # UnitCellFilter's positions are the self.atoms.positions but without
        # the applied deformation gradient
        pos[:natoms] = np.linalg.solve(cur_deform_grad,
                                       self.atoms.positions.T).T
        # UnitCellFilter's cell DOFs are the deformation gradient times a
        # scaling factor
        pos[natoms:] = self.cell_factor * cur_deform_grad
        return pos

    def set_positions(self, new, **kwargs):
        """
        new is an array with shape (natoms+3,3).

        the first natoms rows are the positions of the atoms, the last
        three rows are the deformation tensor used to change the cell shape.

        the new cell is first set from original cell transformed by the new
        deformation gradient, then the positions are set with respect to the
        current cell by transforming them with the same deformation gradient
        """

        natoms = len(self.atoms)
        new_atom_positions = new[:natoms]
        new_deform_grad = new[natoms:] / self.cell_factor
        # Set the new cell from the original cell and the new
        # deformation gradient.  Both current and final structures should
        # preserve symmetry, so if set_cell() calls FixSymmetry.adjust_cell(),
        # it should be OK
        self.atoms.set_cell(self.orig_cell @ new_deform_grad.T,
                            scale_atoms=True)
        # Set the positions from the ones passed in (which are without the
        # deformation gradient applied) and the new deformation gradient.
        # This should also preserve symmetry, so if set_positions() calls
        # FixSymmetyr.adjust_positions(), it should be OK
        self.atoms.set_positions(new_atom_positions @ new_deform_grad.T,
                                 **kwargs)

    def get_potential_energy(self, force_consistent=True):
        """
        returns potential energy including enthalpy PV term.
        """
        atoms_energy = self.atoms.get_potential_energy(
            force_consistent=force_consistent)
        return atoms_energy + self.scalar_pressure * self.atoms.get_volume()

    def get_forces(self, **kwargs):
        """
        returns an array with shape (natoms+3,3) of the atomic forces
        and unit cell stresses.

        the first natoms rows are the forces on the atoms, the last
        three rows are the forces on the unit cell, which are
        computed from the stress tensor.
        """

        stress = self.atoms.get_stress(**kwargs)
        atoms_forces = self.atoms.get_forces(**kwargs)

        volume = self.atoms.get_volume()
        virial = -volume * (voigt_6_to_full_3x3_stress(stress) +
                            np.diag([self.scalar_pressure] * 3))
        cur_deform_grad = self.deform_grad()
        atoms_forces = atoms_forces @ cur_deform_grad
        virial = np.linalg.solve(cur_deform_grad, virial.T).T

        if self.hydrostatic_strain:
            vtr = virial.trace()
            virial = np.diag([vtr / 3.0, vtr / 3.0, vtr / 3.0])

        # Zero out components corresponding to fixed lattice elements
        if (self.mask != 1.0).any():
            virial *= self.mask

        if self.constant_volume:
            vtr = virial.trace()
            np.fill_diagonal(virial, np.diag(virial) - vtr / 3.0)

        natoms = len(self.atoms)
        forces = np.zeros((natoms + 3, 3))
        forces[:natoms] = atoms_forces
        forces[natoms:] = virial / self.cell_factor

        self.stress = -full_3x3_to_voigt_6_stress(virial) / volume
        return forces

    def get_stress(self):
        raise PropertyNotImplementedError

    def has(self, x):
        return self.atoms.has(x)

    def __len__(self):
        return (len(self.atoms) + 3)


class ExpCellFilter(UnitCellFilter):
    """Modify the supercell and the atom positions."""
    def __init__(self, atoms, mask=None,
                 cell_factor=None,
                 hydrostatic_strain=False,
                 constant_volume=False,
                 scalar_pressure=0.0):
        r"""Create a filter that returns the atomic forces and unit cell
        stresses together, so they can simultaneously be minimized.

        The first argument, atoms, is the atoms object. The optional second
        argument, mask, is a list of booleans, indicating which of the six
        independent components of the strain are relaxed.

        - True = relax to zero
        - False = fixed, ignore this component

        Degrees of freedom are the positions in the original undeformed cell,
        plus the log of the deformation tensor (extra 3 "atoms"). This gives
        forces consistent with numerical derivatives of the potential energy
        with respect to the cell degrees of freedom.

        For full details see:
            E. B. Tadmor, G. S. Smith, N. Bernstein, and E. Kaxiras,
            Phys. Rev. B 59, 235 (1999)

        You can still use constraints on the atoms, e.g. FixAtoms, to control
        the relaxation of the atoms.

        >>> # this should be equivalent to the StrainFilter
        >>> atoms = Atoms(...)
        >>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
        >>> ecf = ExpCellFilter(atoms)

        You should not attach this ExpCellFilter object to a
        trajectory. Instead, create a trajectory for the atoms, and
        attach it to an optimizer like this:

        >>> atoms = Atoms(...)
        >>> ecf = ExpCellFilter(atoms)
        >>> qn = QuasiNewton(ecf)
        >>> traj = Trajectory('TiO2.traj', 'w', atoms)
        >>> qn.attach(traj)
        >>> qn.run(fmax=0.05)

        Helpful conversion table:

        - 0.05 eV/A^3   = 8 GPA
        - 0.003 eV/A^3  = 0.48 GPa
        - 0.0006 eV/A^3 = 0.096 GPa
        - 0.0003 eV/A^3 = 0.048 GPa
        - 0.0001 eV/A^3 = 0.02 GPa

        Additional optional arguments:

        cell_factor: (DEPRECATED)
            Retained for backwards compatibility, but no longer used.

        hydrostatic_strain: bool (default False)
            Constrain the cell by only allowing hydrostatic deformation.
            The virial tensor is replaced by np.diag([np.trace(virial)]*3).

        constant_volume: bool (default False)
            Project out the diagonal elements of the virial tensor to allow
            relaxations at constant volume, e.g. for mapping out an
            energy-volume curve.

        scalar_pressure: float (default 0.0)
            Applied pressure to use for enthalpy pV term. As above, this
            breaks energy/force consistency.

        Implementation details:

        The implementation is based on that of Christoph Ortner in JuLIP.jl:
        https://github.com/libAtoms/JuLIP.jl/blob/expcell/src/Constraints.jl#L244

        We decompose the deformation gradient as

            F = exp(U) F0
            x =  F * F0^{-1} z  = exp(U) z

        If we write the energy as a function of U we can transform the
        stress associated with a perturbation V into a derivative using a
        linear map V -> L(U, V).

        \phi( exp(U+tV) (z+tv) ) ~ \phi'(x) . (exp(U) v) + \phi'(x) .
                                                    ( L(U, V) exp(-U) exp(U) z )

        where

               \nabla E(U) : V  =  [S exp(-U)'] : L(U,V)
                                =  L'(U, S exp(-U)') : V
                                =  L(U', S exp(-U)') : V
                                =  L(U, S exp(-U)) : V     (provided U = U')

        where the : operator represents double contraction,
        i.e. A:B = trace(A'B), and

          F = deformation tensor - 3x3 matrix
          F0 = reference deformation tensor - 3x3 matrix, np.eye(3) here
          U = cell degrees of freedom used here - 3x3 matrix
          V = perturbation to cell DoFs - 3x3 matrix
          v = perturbation to position DoFs
          x = atomic positions in deformed cell
          z = atomic positions in original cell
          \phi = potential energy
          S = stress tensor [3x3 matrix]
          L(U, V) = directional derivative of exp at U in direction V, i.e
          d/dt exp(U + t V)|_{t=0} = L(U, V)

        This means we can write

          d/dt E(U + t V)|_{t=0} = L(U, S exp (-U)) : V

        and therefore the contribution to the gradient of the energy is

          \nabla E(U) / \nabla U_ij =  [L(U, S exp(-U))]_ij
        """

        Filter.__init__(self, atoms, indices=range(len(atoms)))
        UnitCellFilter.__init__(self, atoms, mask, cell_factor,
                                hydrostatic_strain,
                                constant_volume, scalar_pressure)
        if cell_factor is not None:
            warn("cell_factor is deprecated")
        self.cell_factor = 1.0

    def get_positions(self):
        pos = UnitCellFilter.get_positions(self)
        natoms = len(self.atoms)
        pos[natoms:] = logm(self.deform_grad())
        return pos

    def set_positions(self, new, **kwargs):
        natoms = len(self.atoms)
        new2 = new.copy()
        new2[natoms:] = expm(new[natoms:])
        UnitCellFilter.set_positions(self, new2, **kwargs)

    def get_forces(self, **kwargs):
        forces = UnitCellFilter.get_forces(self, **kwargs)

        # forces on atoms are same as UnitCellFilter, we just
        # need to modify the stress contribution
        stress = self.atoms.get_stress(**kwargs)
        volume = self.atoms.get_volume()
        virial = -volume * (voigt_6_to_full_3x3_stress(stress) +
                            np.diag([self.scalar_pressure] * 3))

        cur_deform_grad = self.deform_grad()
        cur_deform_grad_log = logm(cur_deform_grad)

        if self.hydrostatic_strain:
            vtr = virial.trace()
            virial = np.diag([vtr / 3.0, vtr / 3.0, vtr / 3.0])

        # Zero out components corresponding to fixed lattice elements
        if (self.mask != 1.0).any():
            virial *= self.mask

        deform_grad_log_force_naive = virial.copy()
        Y = np.zeros((6, 6))
        Y[0:3, 0:3] = cur_deform_grad_log
        Y[3:6, 3:6] = cur_deform_grad_log
        Y[0:3, 3:6] = - virial @ expm(-cur_deform_grad_log)
        deform_grad_log_force = -expm(Y)[0:3, 3:6]
        for (i1, i2) in [(0, 1), (0, 2), (1, 2)]:
            ff = 0.5 * (deform_grad_log_force[i1, i2] +
                        deform_grad_log_force[i2, i1])
            deform_grad_log_force[i1, i2] = ff
            deform_grad_log_force[i2, i1] = ff

        # check for reasonable alignment between naive and
        # exact search directions
        all_are_equal = np.all(np.isclose(deform_grad_log_force,
                                          deform_grad_log_force_naive))
        if all_are_equal or \
            (np.sum(deform_grad_log_force * deform_grad_log_force_naive) /
             np.sqrt(np.sum(deform_grad_log_force**2) *
                     np.sum(deform_grad_log_force_naive**2)) > 0.8):
            deform_grad_log_force = deform_grad_log_force_naive

        # Cauchy stress used for convergence testing
        convergence_crit_stress = -(virial / volume)
        if self.constant_volume:
            # apply constraint to force
            dglf_trace = deform_grad_log_force.trace()
            np.fill_diagonal(deform_grad_log_force,
                             np.diag(deform_grad_log_force) - dglf_trace / 3.0)
            # apply constraint to Cauchy stress used for convergence testing
            ccs_trace = convergence_crit_stress.trace()
            np.fill_diagonal(convergence_crit_stress,
                             np.diag(convergence_crit_stress) - ccs_trace / 3.0)

        # pack gradients into vector
        natoms = len(self.atoms)
        forces[natoms:] = deform_grad_log_force
        self.stress = full_3x3_to_voigt_6_stress(convergence_crit_stress)
        return forces