1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
# Copyright (C) 2010, Jesper Friis
# (see accompanying license files for details).
# XXX bravais objects need to hold tolerance eps, *or* temember variant
# from the beginning.
#
# Should they hold a 'cycle' argument or other data to reconstruct a particular
# cell? (E.g. rotation, niggli transform)
#
# Implement total ordering of Bravais classes 1-14
import numpy as np
from numpy import pi, sin, cos, arccos, sqrt, dot
from numpy.linalg import norm
def unit_vector(x):
"""Return a unit vector in the same direction as x."""
y = np.array(x, dtype='float')
return y / norm(y)
def angle(x, y):
"""Return the angle between vectors a and b in degrees."""
return arccos(dot(x, y) / (norm(x) * norm(y))) * 180. / pi
def cell_to_cellpar(cell, radians=False):
"""Returns the cell parameters [a, b, c, alpha, beta, gamma].
Angles are in degrees unless radian=True is used.
"""
lengths = [np.linalg.norm(v) for v in cell]
angles = []
for i in range(3):
j = i - 1
k = i - 2
ll = lengths[j] * lengths[k]
if ll > 1e-16:
x = np.dot(cell[j], cell[k]) / ll
angle = 180.0 / pi * arccos(x)
else:
angle = 90.0
angles.append(angle)
if radians:
angles = [angle * pi / 180 for angle in angles]
return np.array(lengths + angles)
def cellpar_to_cell(cellpar, ab_normal=(0, 0, 1), a_direction=None):
"""Return a 3x3 cell matrix from cellpar=[a,b,c,alpha,beta,gamma].
Angles must be in degrees.
The returned cell is orientated such that a and b
are normal to `ab_normal` and a is parallel to the projection of
`a_direction` in the a-b plane.
Default `a_direction` is (1,0,0), unless this is parallel to
`ab_normal`, in which case default `a_direction` is (0,0,1).
The returned cell has the vectors va, vb and vc along the rows. The
cell will be oriented such that va and vb are normal to `ab_normal`
and va will be along the projection of `a_direction` onto the a-b
plane.
Example:
>>> cell = cellpar_to_cell([1, 2, 4, 10, 20, 30], (0, 1, 1), (1, 2, 3))
>>> np.round(cell, 3)
array([[ 0.816, -0.408, 0.408],
[ 1.992, -0.13 , 0.13 ],
[ 3.859, -0.745, 0.745]])
"""
if a_direction is None:
if np.linalg.norm(np.cross(ab_normal, (1, 0, 0))) < 1e-5:
a_direction = (0, 0, 1)
else:
a_direction = (1, 0, 0)
# Define rotated X,Y,Z-system, with Z along ab_normal and X along
# the projection of a_direction onto the normal plane of Z.
ad = np.array(a_direction)
Z = unit_vector(ab_normal)
X = unit_vector(ad - dot(ad, Z) * Z)
Y = np.cross(Z, X)
# Express va, vb and vc in the X,Y,Z-system
alpha, beta, gamma = 90., 90., 90.
if isinstance(cellpar, (int, float)):
a = b = c = cellpar
elif len(cellpar) == 1:
a = b = c = cellpar[0]
elif len(cellpar) == 3:
a, b, c = cellpar
else:
a, b, c, alpha, beta, gamma = cellpar
# Handle orthorhombic cells separately to avoid rounding errors
eps = 2 * np.spacing(90.0, dtype=np.float64) # around 1.4e-14
# alpha
if abs(abs(alpha) - 90) < eps:
cos_alpha = 0.0
else:
cos_alpha = cos(alpha * pi / 180.0)
# beta
if abs(abs(beta) - 90) < eps:
cos_beta = 0.0
else:
cos_beta = cos(beta * pi / 180.0)
# gamma
if abs(gamma - 90) < eps:
cos_gamma = 0.0
sin_gamma = 1.0
elif abs(gamma + 90) < eps:
cos_gamma = 0.0
sin_gamma = -1.0
else:
cos_gamma = cos(gamma * pi / 180.0)
sin_gamma = sin(gamma * pi / 180.0)
# Build the cell vectors
va = a * np.array([1, 0, 0])
vb = b * np.array([cos_gamma, sin_gamma, 0])
cx = cos_beta
cy = (cos_alpha - cos_beta * cos_gamma) / sin_gamma
cz_sqr = 1. - cx * cx - cy * cy
assert cz_sqr >= 0
cz = sqrt(cz_sqr)
vc = c * np.array([cx, cy, cz])
# Convert to the Cartesian x,y,z-system
abc = np.vstack((va, vb, vc))
T = np.vstack((X, Y, Z))
cell = dot(abc, T)
return cell
def metric_from_cell(cell):
"""Calculates the metric matrix from cell, which is given in the
Cartesian system."""
cell = np.asarray(cell, dtype=float)
return np.dot(cell, cell.T)
def crystal_structure_from_cell(cell, eps=2e-4, niggli_reduce=True):
"""Return the crystal structure as a string calculated from the cell.
Supply a cell (from atoms.get_cell()) and get a string representing
the crystal structure returned. Works exactly the opposite
way as ase.dft.kpoints.get_special_points().
Parameters:
cell : numpy.array or list
An array like atoms.get_cell()
Returns:
crystal structure : str
'cubic', 'fcc', 'bcc', 'tetragonal', 'orthorhombic',
'hexagonal' or 'monoclinic'
"""
cellpar = cell_to_cellpar(cell)
abc = cellpar[:3]
angles = cellpar[3:] / 180 * pi
a, b, c = abc
alpha, beta, gamma = angles
if abc.ptp() < eps and abs(angles - pi / 2).max() < eps:
return 'cubic'
elif abc.ptp() < eps and abs(angles - pi / 3).max() < eps:
return 'fcc'
elif abc.ptp() < eps and abs(angles - np.arccos(-1 / 3)).max() < eps:
return 'bcc'
elif abs(a - b) < eps and abs(angles - pi / 2).max() < eps:
return 'tetragonal'
elif abs(angles - pi / 2).max() < eps:
return 'orthorhombic'
elif (abs(a - b) < eps and
(abs(gamma - pi / 3 * 2) < eps or abs(gamma - pi / 3) < eps) and
abs(angles[:2] - pi / 2).max() < eps):
return 'hexagonal'
elif (abs(angles - pi / 2) > eps).sum() == 1:
return 'monoclinic'
elif (abc.ptp() < eps and angles.ptp() < eps and
np.abs(angles).max() < pi / 2):
return 'rhombohedral type 1'
elif (abc.ptp() < eps and angles.ptp() < eps and
np.abs(angles).max() > pi / 2):
return 'rhombohedral type 2'
else:
if niggli_reduce:
from ase.build.tools import niggli_reduce_cell
cell, _ = niggli_reduce_cell(cell)
return crystal_structure_from_cell(cell, niggli_reduce=False)
raise ValueError('Cannot find crystal structure')
def complete_cell(cell):
"""Calculate complete cell with missing lattice vectors.
Returns a new 3x3 ndarray.
"""
cell = np.array(cell, dtype=float)
missing = np.nonzero(~cell.any(axis=1))[0]
if len(missing) == 3:
cell.flat[::4] = 1.0
if len(missing) == 2:
# Must decide two vectors:
V, s, WT = np.linalg.svd(cell.T)
sf = [s[0], 1, 1]
cell = (V @ np.diag(sf) @ WT).T
if np.sign(np.linalg.det(cell)) < 0:
cell[missing[0]] = -cell[missing[0]]
elif len(missing) == 1:
i = missing[0]
cell[i] = np.cross(cell[i - 2], cell[i - 1])
cell[i] /= np.linalg.norm(cell[i])
return cell
def is_orthorhombic(cell):
"""Check that cell only has stuff in the diagonal."""
return not (np.flatnonzero(cell) % 4).any()
def orthorhombic(cell):
"""Return cell as three box dimensions or raise ValueError."""
if not is_orthorhombic(cell):
raise ValueError('Not orthorhombic')
return cell.diagonal().copy()
# We make the Cell object available for import from here for compatibility
from ase.cell import Cell # noqa
|