1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
import itertools
import numpy as np
from ase.utils import pbc2pbc
from ase.cell import Cell
TOL = 1E-12
MAX_IT = 100000 # in practice this is not exceeded
class CycleChecker:
def __init__(self, d):
assert d in [2, 3]
# worst case is the hexagonal cell in 2D and the fcc cell in 3D
n = {2: 6, 3: 12}[d]
# max cycle length is total number of primtive cell descriptions
max_cycle_length = np.prod([n - i for i in range(d)]) * np.prod(d)
self.visited = np.zeros((max_cycle_length, 3 * d), dtype=int)
def add_site(self, H):
# flatten array for simplicity
H = H.ravel()
# check if site exists
found = (self.visited == H).all(axis=1).any()
# shift all visited sites down and place current site at the top
self.visited = np.roll(self.visited, 1, axis=0)
self.visited[0] = H
return found
def reduction_gauss(B, hu, hv):
"""Calculate a Gauss-reduced lattice basis (2D reduction)."""
cycle_checker = CycleChecker(d=2)
u = hu @ B
v = hv @ B
for it in range(MAX_IT):
x = int(round(np.dot(u, v) / np.dot(u, u)))
hu, hv = hv - x * hu, hu
u = hu @ B
v = hv @ B
site = np.array([hu, hv])
if np.dot(u, u) >= np.dot(v, v) or cycle_checker.add_site(site):
return hv, hu
raise RuntimeError(f"Gaussian basis not found after {MAX_IT} iterations")
def relevant_vectors_2D(u, v):
cs = np.array([e for e in itertools.product([-1, 0, 1], repeat=2)])
vs = cs @ [u, v]
indices = np.argsort(np.linalg.norm(vs, axis=1))[:7]
return vs[indices], cs[indices]
def closest_vector(t0, u, v):
t = t0
a = np.zeros(2, dtype=int)
rs, cs = relevant_vectors_2D(u, v)
dprev = float("inf")
for it in range(MAX_IT):
ds = np.linalg.norm(rs + t, axis=1)
index = np.argmin(ds)
if index == 0 or ds[index] >= dprev:
return a
dprev = ds[index]
r = rs[index]
kopt = int(round(-np.dot(t, r) / np.dot(r, r)))
a += kopt * cs[index]
t = t0 + a[0] * u + a[1] * v
raise RuntimeError(f"Closest vector not found after {MAX_IT} iterations")
def reduction_full(B):
"""Calculate a Minkowski-reduced lattice basis (3D reduction)."""
cycle_checker = CycleChecker(d=3)
H = np.eye(3, dtype=int)
norms = np.linalg.norm(B, axis=1)
for it in range(MAX_IT):
# Sort vectors by norm
H = H[np.argsort(norms, kind='merge')]
# Gauss-reduce smallest two vectors
hw = H[2]
hu, hv = reduction_gauss(B, H[0], H[1])
H = np.array([hu, hv, hw])
R = H @ B
# Orthogonalize vectors using Gram-Schmidt
u, v, _ = R
X = u / np.linalg.norm(u)
Y = v - X * np.dot(v, X)
Y /= np.linalg.norm(Y)
# Find closest vector to last element of R
pu, pv, pw = R @ np.array([X, Y]).T
nb = closest_vector(pw, pu, pv)
# Update basis
H[2] = [nb[0], nb[1], 1] @ H
R = H @ B
norms = np.linalg.norm(R, axis=1)
if norms[2] >= norms[1] or cycle_checker.add_site(H):
return R, H
raise RuntimeError(f"Reduced basis not found after {MAX_IT} iterations")
def is_minkowski_reduced(cell, pbc=True):
"""Tests if a cell is Minkowski-reduced.
Parameters:
cell: array
The lattice basis to test (in row-vector format).
pbc: array, optional
The periodic boundary conditions of the cell (Default `True`).
If `pbc` is provided, only periodic cell vectors are tested.
Returns:
is_reduced: bool
True if cell is Minkowski-reduced, False otherwise.
"""
"""These conditions are due to Minkowski, but a nice description in English
can be found in the thesis of Carine Jaber: "Algorithmic approaches to
Siegel's fundamental domain", https://www.theses.fr/2017UBFCK006.pdf
This is also good background reading for Minkowski reduction.
0D and 1D cells are trivially reduced. For 2D cells, the conditions which
an already-reduced basis fulfil are:
|b1| ≤ |b2|
|b2| ≤ |b1 - b2|
|b2| ≤ |b1 + b2|
For 3D cells, the conditions which an already-reduced basis fulfil are:
|b1| ≤ |b2| ≤ |b3|
|b1 + b2| ≥ |b2|
|b1 + b3| ≥ |b3|
|b2 + b3| ≥ |b3|
|b1 - b2| ≥ |b2|
|b1 - b3| ≥ |b3|
|b2 - b3| ≥ |b3|
|b1 + b2 + b3| ≥ |b3|
|b1 - b2 + b3| ≥ |b3|
|b1 + b2 - b3| ≥ |b3|
|b1 - b2 - b3| ≥ |b3|
"""
pbc = pbc2pbc(pbc)
dim = pbc.sum()
if dim <= 1:
return True
if dim == 2:
# reorder cell vectors to [shortest, longest, aperiodic]
cell = cell.copy()
cell[np.argmin(pbc)] = 0
norms = np.linalg.norm(cell, axis=1)
cell = cell[np.argsort(norms)[[1, 2, 0]]]
A = [[0, 1, 0],
[1, -1, 0],
[1, 1, 0]]
lhs = np.linalg.norm(A @ cell, axis=1)
norms = np.linalg.norm(cell, axis=1)
rhs = norms[[0, 1, 1]]
else:
A = [[0, 1, 0],
[0, 0, 1],
[1, 1, 0],
[1, 0, 1],
[0, 1, 1],
[1, -1, 0],
[1, 0, -1],
[0, 1, -1],
[1, 1, 1],
[1, -1, 1],
[1, 1, -1],
[1, -1, -1]]
lhs = np.linalg.norm(A @ cell, axis=1)
norms = np.linalg.norm(cell, axis=1)
rhs = norms[[0, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2]]
return (lhs >= rhs - TOL).all()
def minkowski_reduce(cell, pbc=True):
"""Calculate a Minkowski-reduced lattice basis. The reduced basis
has the shortest possible vector lengths and has
norm(a) <= norm(b) <= norm(c).
Implements the method described in:
Low-dimensional Lattice Basis Reduction Revisited
Nguyen, Phong Q. and Stehlé, Damien,
ACM Trans. Algorithms 5(4) 46:1--46:48, 2009
https://doi.org/10.1145/1597036.1597050
Parameters:
cell: array
The lattice basis to reduce (in row-vector format).
pbc: array, optional
The periodic boundary conditions of the cell (Default `True`).
If `pbc` is provided, only periodic cell vectors are reduced.
Returns:
rcell: array
The reduced lattice basis.
op: array
The unimodular matrix transformation (rcell = op @ cell).
"""
cell = Cell(cell)
pbc = pbc2pbc(pbc)
dim = pbc.sum()
op = np.eye(3, dtype=int)
if is_minkowski_reduced(cell, pbc):
return cell, op
if dim == 2:
# permute cell so that first two vectors are the periodic ones
perm = np.argsort(pbc, kind='merge')[::-1] # stable sort
pcell = cell[perm][:, perm]
# perform gauss reduction
norms = np.linalg.norm(pcell, axis=1)
norms[2] = float("inf")
indices = np.argsort(norms)
op = op[indices]
hu, hv = reduction_gauss(pcell, op[0], op[1])
op[0] = hu
op[1] = hv
# undo above permutation
invperm = np.argsort(perm)
op = op[invperm][:, invperm]
# maintain cell handedness
index = np.argmin(pbc)
normal = np.cross(cell[index - 2], cell[index - 1])
normal /= np.linalg.norm(normal)
_cell = cell.copy()
_cell[index] = normal
_rcell = op @ cell
_rcell[index] = normal
if _cell.handedness != Cell(_rcell).handedness:
op[index - 1] *= -1
elif dim == 3:
_, op = reduction_full(cell)
# maintain cell handedness
if cell.handedness != Cell(op @ cell).handedness:
op = -op
norms1 = np.sort(np.linalg.norm(cell, axis=1))
norms2 = np.sort(np.linalg.norm(op @ cell, axis=1))
if (norms2 > norms1 + TOL).any():
raise RuntimeError("Minkowski reduction failed")
return op @ cell, op
|