1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
|
"""Reads Quantum ESPRESSO files.
Read multiple structures and results from pw.x output files. Read
structures from pw.x input files.
Built for PWSCF v.5.3.0 but should work with earlier and later versions.
Can deal with most major functionality, but might fail with ibrav =/= 0
or crystal_sg positions.
Units are converted using CODATA 2006, as used internally by Quantum
ESPRESSO.
"""
import os
import operator as op
import warnings
from collections import OrderedDict
from os import path
import numpy as np
from ase.atoms import Atoms
from ase.calculators.singlepoint import (SinglePointDFTCalculator,
SinglePointKPoint)
from ase.calculators.calculator import kpts2ndarray, kpts2sizeandoffsets
from ase.dft.kpoints import kpoint_convert
from ase.constraints import FixAtoms, FixCartesian
from ase.data import chemical_symbols, atomic_numbers
from ase.units import create_units
from ase.utils import iofunction
# Quantum ESPRESSO uses CODATA 2006 internally
units = create_units('2006')
# Section identifiers
_PW_START = 'Program PWSCF'
_PW_END = 'End of self-consistent calculation'
_PW_CELL = 'CELL_PARAMETERS'
_PW_POS = 'ATOMIC_POSITIONS'
_PW_MAGMOM = 'Magnetic moment per site'
_PW_FORCE = 'Forces acting on atoms'
_PW_TOTEN = '! total energy'
_PW_STRESS = 'total stress'
_PW_FERMI = 'the Fermi energy is'
_PW_HIGHEST_OCCUPIED = 'highest occupied level'
_PW_HIGHEST_OCCUPIED_LOWEST_FREE = 'highest occupied, lowest unoccupied level'
_PW_KPTS = 'number of k points='
_PW_BANDS = _PW_END
_PW_BANDSTRUCTURE = 'End of band structure calculation'
class Namelist(OrderedDict):
"""Case insensitive dict that emulates Fortran Namelists."""
def __contains__(self, key):
return super(Namelist, self).__contains__(key.lower())
def __delitem__(self, key):
return super(Namelist, self).__delitem__(key.lower())
def __getitem__(self, key):
return super(Namelist, self).__getitem__(key.lower())
def __setitem__(self, key, value):
super(Namelist, self).__setitem__(key.lower(), value)
def get(self, key, default=None):
return super(Namelist, self).get(key.lower(), default)
@iofunction('rU')
def read_espresso_out(fileobj, index=-1, results_required=True):
"""Reads Quantum ESPRESSO output files.
The atomistic configurations as well as results (energy, force, stress,
magnetic moments) of the calculation are read for all configurations
within the output file.
Will probably raise errors for broken or incomplete files.
Parameters
----------
fileobj : file|str
A file like object or filename
index : slice
The index of configurations to extract.
results_required : bool
If True, atomistic configurations that do not have any
associated results will not be included. This prevents double
printed configurations and incomplete calculations from being
returned as the final configuration with no results data.
Yields
------
structure : Atoms
The next structure from the index slice. The Atoms has a
SinglePointCalculator attached with any results parsed from
the file.
"""
# work with a copy in memory for faster random access
pwo_lines = fileobj.readlines()
# TODO: index -1 special case?
# Index all the interesting points
indexes = {
_PW_START: [],
_PW_END: [],
_PW_CELL: [],
_PW_POS: [],
_PW_MAGMOM: [],
_PW_FORCE: [],
_PW_TOTEN: [],
_PW_STRESS: [],
_PW_FERMI: [],
_PW_HIGHEST_OCCUPIED: [],
_PW_HIGHEST_OCCUPIED_LOWEST_FREE: [],
_PW_KPTS: [],
_PW_BANDS: [],
_PW_BANDSTRUCTURE: [],
}
for idx, line in enumerate(pwo_lines):
for identifier in indexes:
if identifier in line:
indexes[identifier].append(idx)
# Configurations are either at the start, or defined in ATOMIC_POSITIONS
# in a subsequent step. Can deal with concatenated output files.
all_config_indexes = sorted(indexes[_PW_START] +
indexes[_PW_POS])
# Slice only requested indexes
# setting results_required argument stops configuration-only
# structures from being returned. This ensures the [-1] structure
# is one that has results. Two cases:
# - SCF of last configuration is not converged, job terminated
# abnormally.
# - 'relax' and 'vc-relax' re-prints the final configuration but
# only 'vc-relax' recalculates.
if results_required:
results_indexes = sorted(indexes[_PW_TOTEN] + indexes[_PW_FORCE] +
indexes[_PW_STRESS] + indexes[_PW_MAGMOM] +
indexes[_PW_BANDS] +
indexes[_PW_BANDSTRUCTURE])
# Prune to only configurations with results data before the next
# configuration
results_config_indexes = []
for config_index, config_index_next in zip(
all_config_indexes,
all_config_indexes[1:] + [len(pwo_lines)]):
if any([config_index < results_index < config_index_next
for results_index in results_indexes]):
results_config_indexes.append(config_index)
# slice from the subset
image_indexes = results_config_indexes[index]
else:
image_indexes = all_config_indexes[index]
# Extract initialisation information each time PWSCF starts
# to add to subsequent configurations. Use None so slices know
# when to fill in the blanks.
pwscf_start_info = dict((idx, None) for idx in indexes[_PW_START])
for image_index in image_indexes:
# Find the nearest calculation start to parse info. Needed in,
# for example, relaxation where cell is only printed at the
# start.
if image_index in indexes[_PW_START]:
prev_start_index = image_index
else:
# The greatest start index before this structure
prev_start_index = [idx for idx in indexes[_PW_START]
if idx < image_index][-1]
# add structure to reference if not there
if pwscf_start_info[prev_start_index] is None:
pwscf_start_info[prev_start_index] = parse_pwo_start(
pwo_lines, prev_start_index)
# Get the bounds for information for this structure. Any associated
# values will be between the image_index and the following one,
# EXCEPT for cell, which will be 4 lines before if it exists.
for next_index in all_config_indexes:
if next_index > image_index:
break
else:
# right to the end of the file
next_index = len(pwo_lines)
# Get the structure
# Use this for any missing data
prev_structure = pwscf_start_info[prev_start_index]['atoms']
if image_index in indexes[_PW_START]:
structure = prev_structure.copy() # parsed from start info
else:
if _PW_CELL in pwo_lines[image_index - 5]:
# CELL_PARAMETERS would be just before positions if present
cell, cell_alat = get_cell_parameters(
pwo_lines[image_index - 5:image_index])
else:
cell = prev_structure.cell
cell_alat = pwscf_start_info[prev_start_index]['alat']
# give at least enough lines to parse the positions
# should be same format as input card
n_atoms = len(prev_structure)
positions_card = get_atomic_positions(
pwo_lines[image_index:image_index + n_atoms + 1],
n_atoms=n_atoms, cell=cell, alat=cell_alat)
# convert to Atoms object
symbols = [label_to_symbol(position[0]) for position in
positions_card]
positions = [position[1] for position in positions_card]
structure = Atoms(symbols=symbols, positions=positions, cell=cell,
pbc=True)
# Extract calculation results
# Energy
energy = None
for energy_index in indexes[_PW_TOTEN]:
if image_index < energy_index < next_index:
energy = float(
pwo_lines[energy_index].split()[-2]) * units['Ry']
# Forces
forces = None
for force_index in indexes[_PW_FORCE]:
if image_index < force_index < next_index:
# Before QE 5.3 'negative rho' added 2 lines before forces
# Use exact lines to stop before 'non-local' forces
# in high verbosity
if not pwo_lines[force_index + 2].strip():
force_index += 4
else:
force_index += 2
# assume contiguous
forces = [
[float(x) for x in force_line.split()[-3:]] for force_line
in pwo_lines[force_index:force_index + len(structure)]]
forces = np.array(forces) * units['Ry'] / units['Bohr']
# Stress
stress = None
for stress_index in indexes[_PW_STRESS]:
if image_index < stress_index < next_index:
sxx, sxy, sxz = pwo_lines[stress_index + 1].split()[:3]
_, syy, syz = pwo_lines[stress_index + 2].split()[:3]
_, _, szz = pwo_lines[stress_index + 3].split()[:3]
stress = np.array([sxx, syy, szz, syz, sxz, sxy], dtype=float)
# sign convention is opposite of ase
stress *= -1 * units['Ry'] / (units['Bohr'] ** 3)
# Magmoms
magmoms = None
for magmoms_index in indexes[_PW_MAGMOM]:
if image_index < magmoms_index < next_index:
magmoms = [
float(mag_line.split()[5]) for mag_line
in pwo_lines[magmoms_index + 1:
magmoms_index + 1 + len(structure)]]
# Fermi level / highest occupied level
efermi = None
for fermi_index in indexes[_PW_FERMI]:
if image_index < fermi_index < next_index:
efermi = float(pwo_lines[fermi_index].split()[-2])
if efermi is None:
for ho_index in indexes[_PW_HIGHEST_OCCUPIED]:
if image_index < ho_index < next_index:
efermi = float(pwo_lines[ho_index].split()[-1])
if efermi is None:
for holf_index in indexes[_PW_HIGHEST_OCCUPIED_LOWEST_FREE]:
if image_index < holf_index < next_index:
efermi = float(pwo_lines[holf_index].split()[-2])
# K-points
ibzkpts = None
weights = None
kpoints_warning = "Number of k-points >= 100: " + \
"set verbosity='high' to print them."
for kpts_index in indexes[_PW_KPTS]:
nkpts = int(pwo_lines[kpts_index].split()[4])
kpts_index += 2
if pwo_lines[kpts_index].strip() == kpoints_warning:
continue
# QE prints the k-points in units of 2*pi/alat
# with alat defined as the length of the first
# cell vector
cell = structure.get_cell()
alat = np.linalg.norm(cell[0])
ibzkpts = []
weights = []
for i in range(nkpts):
L = pwo_lines[kpts_index + i].split()
weights.append(float(L[-1]))
coord = np.array([L[-6], L[-5], L[-4].strip('),')],
dtype=float)
coord *= 2 * np.pi / alat
coord = kpoint_convert(cell, ckpts_kv=coord)
ibzkpts.append(coord)
ibzkpts = np.array(ibzkpts)
weights = np.array(weights)
# Bands
kpts = None
kpoints_warning = "Number of k-points >= 100: " + \
"set verbosity='high' to print the bands."
for bands_index in indexes[_PW_BANDS] + indexes[_PW_BANDSTRUCTURE]:
if image_index < bands_index < next_index:
bands_index += 2
if pwo_lines[bands_index].strip() == kpoints_warning:
continue
assert ibzkpts is not None
spin, bands, eigenvalues = 0, [], [[], []]
while True:
L = pwo_lines[bands_index].replace('-', ' -').split()
if len(L) == 0:
if len(bands) > 0:
eigenvalues[spin].append(bands)
bands = []
elif L == ['occupation', 'numbers']:
# Skip the lines with the occupation numbers
bands_index += len(eigenvalues[spin][0]) // 8 + 1
elif L[0] == 'k' and L[1].startswith('='):
pass
elif 'SPIN' in L:
if 'DOWN' in L:
spin += 1
else:
try:
bands.extend(map(float, L))
except ValueError:
break
bands_index += 1
if spin == 1:
assert len(eigenvalues[0]) == len(eigenvalues[1])
assert len(eigenvalues[0]) == len(ibzkpts), \
(np.shape(eigenvalues), len(ibzkpts))
kpts = []
for s in range(spin + 1):
for w, k, e in zip(weights, ibzkpts, eigenvalues[s]):
kpt = SinglePointKPoint(w, s, k, eps_n=e)
kpts.append(kpt)
# Put everything together
#
# I have added free_energy. Can and should we distinguish
# energy and free_energy? --askhl
calc = SinglePointDFTCalculator(structure, energy=energy,
free_energy=energy,
forces=forces, stress=stress,
magmoms=magmoms, efermi=efermi,
ibzkpts=ibzkpts)
calc.kpts = kpts
structure.calc = calc
yield structure
def parse_pwo_start(lines, index=0):
"""Parse Quantum ESPRESSO calculation info from lines,
starting from index. Return a dictionary containing extracted
information.
- `celldm(1)`: lattice parameters (alat)
- `cell`: unit cell in Angstrom
- `symbols`: element symbols for the structure
- `positions`: cartesian coordinates of atoms in Angstrom
- `atoms`: an `ase.Atoms` object constructed from the extracted data
Parameters
----------
lines : list[str]
Contents of PWSCF output file.
index : int
Line number to begin parsing. Only first calculation will
be read.
Returns
-------
info : dict
Dictionary of calculation parameters, including `celldm(1)`, `cell`,
`symbols`, `positions`, `atoms`.
Raises
------
KeyError
If interdependent values cannot be found (especially celldm(1))
an error will be raised as other quantities cannot then be
calculated (e.g. cell and positions).
"""
# TODO: extend with extra DFT info?
info = {}
for idx, line in enumerate(lines[index:], start=index):
if 'celldm(1)' in line:
# celldm(1) has more digits than alat!!
info['celldm(1)'] = float(line.split()[1]) * units['Bohr']
info['alat'] = info['celldm(1)']
elif 'number of atoms/cell' in line:
info['nat'] = int(line.split()[-1])
elif 'number of atomic types' in line:
info['ntyp'] = int(line.split()[-1])
elif 'crystal axes:' in line:
info['cell'] = info['celldm(1)'] * np.array([
[float(x) for x in lines[idx + 1].split()[3:6]],
[float(x) for x in lines[idx + 2].split()[3:6]],
[float(x) for x in lines[idx + 3].split()[3:6]]])
elif 'positions (alat units)' in line:
info['symbols'] = [
label_to_symbol(at_line.split()[1])
for at_line in lines[idx + 1:idx + 1 + info['nat']]]
info['positions'] = [
[float(x) * info['celldm(1)'] for x in at_line.split()[6:9]]
for at_line in lines[idx + 1:idx + 1 + info['nat']]]
# This should be the end of interesting info.
# Break here to avoid dealing with large lists of kpoints.
# Will need to be extended for DFTCalculator info.
break
# Make atoms for convenience
info['atoms'] = Atoms(symbols=info['symbols'],
positions=info['positions'],
cell=info['cell'], pbc=True)
return info
@iofunction('rU')
def read_espresso_in(fileobj):
"""Parse a Quantum ESPRESSO input files, '.in', '.pwi'.
ESPRESSO inputs are generally a fortran-namelist format with custom
blocks of data. The namelist is parsed as a dict and an atoms object
is constructed from the included information.
Parameters
----------
fileobj : file | str
A file-like object that supports line iteration with the contents
of the input file, or a filename.
Returns
-------
atoms : Atoms
Structure defined in the input file.
Raises
------
KeyError
Raised for missing keys that are required to process the file
"""
# parse namelist section and extract remaining lines
data, card_lines = read_fortran_namelist(fileobj)
# get the cell if ibrav=0
if 'system' not in data:
raise KeyError('Required section &SYSTEM not found.')
elif 'ibrav' not in data['system']:
raise KeyError('ibrav is required in &SYSTEM')
elif data['system']['ibrav'] == 0:
# celldm(1) is in Bohr, A is in angstrom. celldm(1) will be
# used even if A is also specified.
if 'celldm(1)' in data['system']:
alat = data['system']['celldm(1)'] * units['Bohr']
elif 'A' in data['system']:
alat = data['system']['A']
else:
alat = None
cell, cell_alat = get_cell_parameters(card_lines, alat=alat)
else:
alat, cell = ibrav_to_cell(data['system'])
# species_info holds some info for each element
species_card = get_atomic_species(card_lines, n_species=data['system']['ntyp'])
species_info = {}
for ispec, (label, weight, pseudo) in enumerate(species_card):
symbol = label_to_symbol(label)
valence = get_valence_electrons(symbol, data, pseudo)
# starting_magnetization is in fractions of valence electrons
magnet_key = "starting_magnetization({0})".format(ispec + 1)
magmom = valence * data["system"].get(magnet_key, 0.0)
species_info[symbol] = {"weight": weight, "pseudo": pseudo,
"valence": valence, "magmom": magmom}
positions_card = get_atomic_positions(
card_lines, n_atoms=data['system']['nat'], cell=cell, alat=alat)
symbols = [label_to_symbol(position[0]) for position in positions_card]
positions = [position[1] for position in positions_card]
magmoms = [species_info[symbol]["magmom"] for symbol in symbols]
# TODO: put more info into the atoms object
# e.g magmom, forces.
atoms = Atoms(symbols=symbols, positions=positions, cell=cell, pbc=True,
magmoms=magmoms)
return atoms
def ibrav_to_cell(system):
"""
Convert a value of ibrav to a cell. Any unspecified lattice dimension
is set to 0.0, but will not necessarily raise an error. Also return the
lattice parameter.
Parameters
----------
system : dict
The &SYSTEM section of the input file, containing the 'ibrav' setting,
and either celldm(1)..(6) or a, b, c, cosAB, cosAC, cosBC.
Returns
-------
alat, cell : float, np.array
Cell parameter in Angstrom, and
The 3x3 array representation of the cell.
Raises
------
KeyError
Raise an error if any required keys are missing.
NotImplementedError
Only a limited number of ibrav settings can be parsed. An error
is raised if the ibrav interpretation is not implemented.
"""
if 'celldm(1)' in system and 'a' in system:
raise KeyError('do not specify both celldm and a,b,c!')
elif 'celldm(1)' in system:
# celldm(x) in bohr
alat = system['celldm(1)'] * units['Bohr']
b_over_a = system.get('celldm(2)', 0.0)
c_over_a = system.get('celldm(3)', 0.0)
cosab = system.get('celldm(4)', 0.0)
cosac = system.get('celldm(5)', 0.0)
cosbc = 0.0
if system['ibrav'] == 14:
cosbc = system.get('celldm(4)', 0.0)
cosac = system.get('celldm(5)', 0.0)
cosab = system.get('celldm(6)', 0.0)
elif 'a' in system:
# a, b, c, cosAB, cosAC, cosBC in Angstrom
alat = system['a']
b_over_a = system.get('b', 0.0) / alat
c_over_a = system.get('c', 0.0) / alat
cosab = system.get('cosab', 0.0)
cosac = system.get('cosac', 0.0)
cosbc = system.get('cosbc', 0.0)
else:
raise KeyError("Missing celldm(1) or a cell parameter.")
if system['ibrav'] == 1:
cell = np.identity(3) * alat
elif system['ibrav'] == 2:
cell = np.array([[-1.0, 0.0, 1.0],
[0.0, 1.0, 1.0],
[-1.0, 1.0, 0.0]]) * (alat / 2)
elif system['ibrav'] == 3:
cell = np.array([[1.0, 1.0, 1.0],
[-1.0, 1.0, 1.0],
[-1.0, -1.0, 1.0]]) * (alat / 2)
elif system['ibrav'] == -3:
cell = np.array([[-1.0, 1.0, 1.0],
[1.0, -1.0, 1.0],
[1.0, 1.0, -1.0]]) * (alat / 2)
elif system['ibrav'] == 4:
cell = np.array([[1.0, 0.0, 0.0],
[-0.5, 0.5 * 3**0.5, 0.0],
[0.0, 0.0, c_over_a]]) * alat
elif system['ibrav'] == 5:
tx = ((1.0 - cosab) / 2.0)**0.5
ty = ((1.0 - cosab) / 6.0)**0.5
tz = ((1 + 2 * cosab) / 3.0)**0.5
cell = np.array([[tx, -ty, tz],
[0, 2 * ty, tz],
[-tx, -ty, tz]]) * alat
elif system['ibrav'] == -5:
ty = ((1.0 - cosab) / 6.0)**0.5
tz = ((1 + 2 * cosab) / 3.0)**0.5
a_prime = alat / 3**0.5
u = tz - 2 * 2**0.5 * ty
v = tz + 2**0.5 * ty
cell = np.array([[u, v, v],
[v, u, v],
[v, v, u]]) * a_prime
elif system['ibrav'] == 6:
cell = np.array([[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, c_over_a]]) * alat
elif system['ibrav'] == 7:
cell = np.array([[1.0, -1.0, c_over_a],
[1.0, 1.0, c_over_a],
[-1.0, -1.0, c_over_a]]) * (alat / 2)
elif system['ibrav'] == 8:
cell = np.array([[1.0, 0.0, 0.0],
[0.0, b_over_a, 0.0],
[0.0, 0.0, c_over_a]]) * alat
elif system['ibrav'] == 9:
cell = np.array([[1.0 / 2.0, b_over_a / 2.0, 0.0],
[-1.0 / 2.0, b_over_a / 2.0, 0.0],
[0.0, 0.0, c_over_a]]) * alat
elif system['ibrav'] == -9:
cell = np.array([[1.0 / 2.0, -b_over_a / 2.0, 0.0],
[1.0 / 2.0, b_over_a / 2.0, 0.0],
[0.0, 0.0, c_over_a]]) * alat
elif system['ibrav'] == 10:
cell = np.array([[1.0 / 2.0, 0.0, c_over_a / 2.0],
[1.0 / 2.0, b_over_a / 2.0, 0.0],
[0.0, b_over_a / 2.0, c_over_a / 2.0]]) * alat
elif system['ibrav'] == 11:
cell = np.array([[1.0 / 2.0, b_over_a / 2.0, c_over_a / 2.0],
[-1.0 / 2.0, b_over_a / 2.0, c_over_a / 2.0],
[-1.0, 2.0, -b_over_a / 2.0, c_over_a / 2.0]]) * alat
elif system['ibrav'] == 12:
sinab = (1.0 - cosab**2)**0.5
cell = np.array([[1.0, 0.0, 0.0],
[b_over_a * cosab, b_over_a * sinab, 0.0],
[0.0, 0.0, c_over_a]]) * alat
elif system['ibrav'] == -12:
sinac = (1.0 - cosac**2)**0.5
cell = np.array([[1.0, 0.0, 0.0],
[0.0, b_over_a, 0.0],
[c_over_a * cosac, 0.0, c_over_a * sinac]]) * alat
elif system['ibrav'] == 13:
sinab = (1.0 - cosab**2)**0.5
cell = np.array([[1.0 / 2.0, 0.0, -c_over_a / 2.0],
[b_over_a * cosab, b_over_a * sinab, 0.0],
[1.0 / 2.0, 0.0, c_over_a / 2.0]]) * alat
elif system['ibrav'] == 14:
sinab = (1.0 - cosab**2)**0.5
v3 = [c_over_a * cosac,
c_over_a * (cosbc - cosac * cosab) / sinab,
c_over_a * ((1 + 2 * cosbc * cosac * cosab
- cosbc**2 - cosac**2 - cosab**2)**0.5) / sinab]
cell = np.array([[1.0, 0.0, 0.0],
[b_over_a * cosab, b_over_a * sinab, 0.0],
v3]) * alat
else:
raise NotImplementedError('ibrav = {0} is not implemented'
''.format(system['ibrav']))
return alat, cell
def get_pseudo_dirs(data):
"""Guess a list of possible locations for pseudopotential files.
Parameters
----------
data : Namelist
Namelist representing the quantum espresso input parameters
Returns
-------
pseudo_dirs : list[str]
A list of directories where pseudopotential files could be located.
"""
pseudo_dirs = []
if 'pseudo_dir' in data['control']:
pseudo_dirs.append(data['control']['pseudo_dir'])
if 'ESPRESSO_PSEUDO' in os.environ:
pseudo_dirs.append(os.environ['ESPRESSO_PSEUDO'])
pseudo_dirs.append(path.expanduser('~/espresso/pseudo/'))
return pseudo_dirs
def get_valence_electrons(symbol, data, pseudo=None):
"""The number of valence electrons for a atomic symbol.
Parameters
----------
symbol : str
Chemical symbol
data : Namelist
Namelist representing the quantum espresso input parameters
pseudo : str, optional
File defining the pseudopotential to be used. If missing a fallback
to the number of valence electrons recommended at
http://materialscloud.org/sssp/ is employed.
"""
if pseudo is None:
pseudo = '{}_dummy.UPF'.format(symbol)
for pseudo_dir in get_pseudo_dirs(data):
if path.exists(path.join(pseudo_dir, pseudo)):
valence = grep_valence(path.join(pseudo_dir, pseudo))
break
else: # not found in a file
valence = SSSP_VALENCE[atomic_numbers[symbol]]
return valence
def get_atomic_positions(lines, n_atoms, cell=None, alat=None):
"""Parse atom positions from ATOMIC_POSITIONS card.
Parameters
----------
lines : list[str]
A list of lines containing the ATOMIC_POSITIONS card.
n_atoms : int
Expected number of atoms. Only this many lines will be parsed.
cell : np.array
Unit cell of the crystal. Only used with crystal coordinates.
alat : float
Lattice parameter for atomic coordinates. Only used for alat case.
Returns
-------
positions : list[(str, (float, float, float), (float, float, float))]
A list of the ordered atomic positions in the format:
label, (x, y, z), (if_x, if_y, if_z)
Force multipliers are set to None if not present.
Raises
------
ValueError
Any problems parsing the data result in ValueError
"""
positions = None
# no blanks or comment lines, can the consume n_atoms lines for positions
trimmed_lines = (line for line in lines
if line.strip() and not line[0] == '#')
for line in trimmed_lines:
if line.strip().startswith('ATOMIC_POSITIONS'):
if positions is not None:
raise ValueError('Multiple ATOMIC_POSITIONS specified')
# Priority and behaviour tested with QE 5.3
if 'crystal_sg' in line.lower():
raise NotImplementedError('CRYSTAL_SG not implemented')
elif 'crystal' in line.lower():
cell = cell
elif 'bohr' in line.lower():
cell = np.identity(3) * units['Bohr']
elif 'angstrom' in line.lower():
cell = np.identity(3)
# elif 'alat' in line.lower():
# cell = np.identity(3) * alat
else:
if alat is None:
raise ValueError('Set lattice parameter in &SYSTEM for '
'alat coordinates')
# Always the default, will be DEPRECATED as mandatory
# in future
cell = np.identity(3) * alat
positions = []
for _dummy in range(n_atoms):
split_line = next(trimmed_lines).split()
# These can be fractions and other expressions
position = np.dot((infix_float(split_line[1]),
infix_float(split_line[2]),
infix_float(split_line[3])), cell)
if len(split_line) > 4:
force_mult = (float(split_line[4]),
float(split_line[5]),
float(split_line[6]))
else:
force_mult = None
positions.append((split_line[0], position, force_mult))
return positions
def get_atomic_species(lines, n_species):
"""Parse atomic species from ATOMIC_SPECIES card.
Parameters
----------
lines : list[str]
A list of lines containing the ATOMIC_POSITIONS card.
n_species : int
Expected number of atom types. Only this many lines will be parsed.
Returns
-------
species : list[(str, float, str)]
Raises
------
ValueError
Any problems parsing the data result in ValueError
"""
species = None
# no blanks or comment lines, can the consume n_atoms lines for positions
trimmed_lines = (line.strip() for line in lines
if line.strip() and not line.startswith('#'))
for line in trimmed_lines:
if line.startswith('ATOMIC_SPECIES'):
if species is not None:
raise ValueError('Multiple ATOMIC_SPECIES specified')
species = []
for _dummy in range(n_species):
label_weight_pseudo = next(trimmed_lines).split()
species.append((label_weight_pseudo[0],
float(label_weight_pseudo[1]),
label_weight_pseudo[2]))
return species
def get_cell_parameters(lines, alat=None):
"""Parse unit cell from CELL_PARAMETERS card.
Parameters
----------
lines : list[str]
A list with lines containing the CELL_PARAMETERS card.
alat : float | None
Unit of lattice vectors in Angstrom. Only used if the card is
given in units of alat. alat must be None if CELL_PARAMETERS card
is in Bohr or Angstrom. For output files, alat will be parsed from
the card header and used in preference to this value.
Returns
-------
cell : np.array | None
Cell parameters as a 3x3 array in Angstrom. If no cell is found
None will be returned instead.
cell_alat : float | None
If a value for alat is given in the card header, this is also
returned, otherwise this will be None.
Raises
------
ValueError
If CELL_PARAMETERS are given in units of bohr or angstrom
and alat is not
"""
cell = None
cell_alat = None
# no blanks or comment lines, can take three lines for cell
trimmed_lines = (line for line in lines
if line.strip() and not line[0] == '#')
for line in trimmed_lines:
if line.strip().startswith('CELL_PARAMETERS'):
if cell is not None:
# multiple definitions
raise ValueError('CELL_PARAMETERS specified multiple times')
# Priority and behaviour tested with QE 5.3
if 'bohr' in line.lower():
if alat is not None:
raise ValueError('Lattice parameters given in '
'&SYSTEM celldm/A and CELL_PARAMETERS '
'bohr')
cell_units = units['Bohr']
elif 'angstrom' in line.lower():
if alat is not None:
raise ValueError('Lattice parameters given in '
'&SYSTEM celldm/A and CELL_PARAMETERS '
'angstrom')
cell_units = 1.0
elif 'alat' in line.lower():
# Output file has (alat = value) (in Bohrs)
if '=' in line:
alat = float(line.strip(') \n').split()[-1]) * units['Bohr']
cell_alat = alat
elif alat is None:
raise ValueError('Lattice parameters must be set in '
'&SYSTEM for alat units')
cell_units = alat
elif alat is None:
# may be DEPRECATED in future
cell_units = units['Bohr']
else:
# may be DEPRECATED in future
cell_units = alat
# Grab the parameters; blank lines have been removed
cell = [[ffloat(x) for x in next(trimmed_lines).split()[:3]],
[ffloat(x) for x in next(trimmed_lines).split()[:3]],
[ffloat(x) for x in next(trimmed_lines).split()[:3]]]
cell = np.array(cell) * cell_units
return cell, cell_alat
def str_to_value(string):
"""Attempt to convert string into int, float (including fortran double),
or bool, in that order, otherwise return the string.
Valid (case-insensitive) bool values are: '.true.', '.t.', 'true'
and 't' (or false equivalents).
Parameters
----------
string : str
Test to parse for a datatype
Returns
-------
value : any
Parsed string as the most appropriate datatype of int, float,
bool or string.
"""
# Just an integer
try:
return int(string)
except ValueError:
pass
# Standard float
try:
return float(string)
except ValueError:
pass
# Fortran double
try:
return ffloat(string)
except ValueError:
pass
# possible bool, else just the raw string
if string.lower() in ('.true.', '.t.', 'true', 't'):
return True
elif string.lower() in ('.false.', '.f.', 'false', 'f'):
return False
else:
return string.strip("'")
def read_fortran_namelist(fileobj):
"""Takes a fortran-namelist formatted file and returns nested
dictionaries of sections and key-value data, followed by a list
of lines of text that do not fit the specifications.
Behaviour is taken from Quantum ESPRESSO 5.3. Parses fairly
convoluted files the same way that QE should, but may not get
all the MANDATORY rules and edge cases for very non-standard files:
Ignores anything after '!' in a namelist, split pairs on ','
to include multiple key=values on a line, read values on section
start and end lines, section terminating character, '/', can appear
anywhere on a line.
All of these are ignored if the value is in 'quotes'.
Parameters
----------
fileobj : file
An open file-like object.
Returns
-------
data : dict of dict
Dictionary for each section in the namelist with key = value
pairs of data.
card_lines : list of str
Any lines not used to create the data, assumed to belong to 'cards'
in the input file.
"""
# Espresso requires the correct order
data = Namelist()
card_lines = []
in_namelist = False
section = 'none' # can't be in a section without changing this
for line in fileobj:
# leading and trailing whitespace never needed
line = line.strip()
if line.startswith('&'):
# inside a namelist
section = line.split()[0][1:].lower() # case insensitive
if section in data:
# Repeated sections are completely ignored.
# (Note that repeated keys overwrite within a section)
section = "_ignored"
data[section] = Namelist()
in_namelist = True
if not in_namelist and line:
# Stripped line is Truthy, so safe to index first character
if line[0] not in ('!', '#'):
card_lines.append(line)
if in_namelist:
# parse k, v from line:
key = []
value = None
in_quotes = False
for character in line:
if character == ',' and value is not None and not in_quotes:
# finished value:
data[section][''.join(key).strip()] = str_to_value(
''.join(value).strip())
key = []
value = None
elif character == '=' and value is None and not in_quotes:
# start writing value
value = []
elif character == "'":
# only found in value anyway
in_quotes = not in_quotes
value.append("'")
elif character == '!' and not in_quotes:
break
elif character == '/' and not in_quotes:
in_namelist = False
break
elif value is not None:
value.append(character)
else:
key.append(character)
if value is not None:
data[section][''.join(key).strip()] = str_to_value(
''.join(value).strip())
return data, card_lines
def ffloat(string):
"""Parse float from fortran compatible float definitions.
In fortran exponents can be defined with 'd' or 'q' to symbolise
double or quad precision numbers. Double precision numbers are
converted to python floats and quad precision values are interpreted
as numpy longdouble values (platform specific precision).
Parameters
----------
string : str
A string containing a number in fortran real format
Returns
-------
value : float | np.longdouble
Parsed value of the string.
Raises
------
ValueError
Unable to parse a float value.
"""
if 'q' in string.lower():
return np.longdouble(string.lower().replace('q', 'e'))
else:
return float(string.lower().replace('d', 'e'))
def label_to_symbol(label):
"""Convert a valid espresso ATOMIC_SPECIES label to a
chemical symbol.
Parameters
----------
label : str
chemical symbol X (1 or 2 characters, case-insensitive)
or chemical symbol plus a number or a letter, as in
"Xn" (e.g. Fe1) or "X_*" or "X-*" (e.g. C1, C_h;
max total length cannot exceed 3 characters).
Returns
-------
symbol : str
The best matching species from ase.utils.chemical_symbols
Raises
------
KeyError
Couldn't find an appropriate species.
Notes
-----
It's impossible to tell whether e.g. He is helium
or hydrogen labelled 'e'.
"""
# possibly a two character species
# ase Atoms need proper case of chemical symbols.
if len(label) >= 2:
test_symbol = label[0].upper() + label[1].lower()
if test_symbol in chemical_symbols:
return test_symbol
# finally try with one character
test_symbol = label[0].upper()
if test_symbol in chemical_symbols:
return test_symbol
else:
raise KeyError('Could not parse species from label {0}.'
''.format(label))
def infix_float(text):
"""Parse simple infix maths into a float for compatibility with
Quantum ESPRESSO ATOMIC_POSITIONS cards. Note: this works with the
example, and most simple expressions, but the capabilities of
the two parsers are not identical. Will also parse a normal float
value properly, but slowly.
>>> infix_float('1/2*3^(-1/2)')
0.28867513459481287
Parameters
----------
text : str
An arithmetic expression using +, -, *, / and ^, including brackets.
Returns
-------
value : float
Result of the mathematical expression.
"""
def middle_brackets(full_text):
"""Extract text from innermost brackets."""
start, end = 0, len(full_text)
for (idx, char) in enumerate(full_text):
if char == '(':
start = idx
if char == ')':
end = idx + 1
break
return full_text[start:end]
def eval_no_bracket_expr(full_text):
"""Calculate value of a mathematical expression, no brackets."""
exprs = [('+', op.add), ('*', op.mul),
('/', op.truediv), ('^', op.pow)]
full_text = full_text.lstrip('(').rstrip(')')
try:
return float(full_text)
except ValueError:
for symbol, func in exprs:
if symbol in full_text:
left, right = full_text.split(symbol, 1) # single split
return func(eval_no_bracket_expr(left),
eval_no_bracket_expr(right))
while '(' in text:
middle = middle_brackets(text)
text = text.replace(middle, '{}'.format(eval_no_bracket_expr(middle)))
return float(eval_no_bracket_expr(text))
###
# Input file writing
###
# Ordered and case insensitive
KEYS = Namelist((
('CONTROL', [
'calculation', 'title', 'verbosity', 'restart_mode', 'wf_collect',
'nstep', 'iprint', 'tstress', 'tprnfor', 'dt', 'outdir', 'wfcdir',
'prefix', 'lkpoint_dir', 'max_seconds', 'etot_conv_thr',
'forc_conv_thr', 'disk_io', 'pseudo_dir', 'tefield', 'dipfield',
'lelfield', 'nberrycyc', 'lorbm', 'lberry', 'gdir', 'nppstr',
'lfcpopt', 'monopole']),
('SYSTEM', [
'ibrav', 'celldm', 'A', 'B', 'C', 'cosAB', 'cosAC', 'cosBC', 'nat',
'ntyp', 'nbnd', 'tot_charge', 'tot_magnetization',
'starting_magnetization', 'ecutwfc', 'ecutrho', 'ecutfock', 'nr1',
'nr2', 'nr3', 'nr1s', 'nr2s', 'nr3s', 'nosym', 'nosym_evc', 'noinv',
'no_t_rev', 'force_symmorphic', 'use_all_frac', 'occupations',
'one_atom_occupations', 'starting_spin_angle', 'degauss', 'smearing',
'nspin', 'noncolin', 'ecfixed', 'qcutz', 'q2sigma', 'input_dft',
'exx_fraction', 'screening_parameter', 'exxdiv_treatment',
'x_gamma_extrapolation', 'ecutvcut', 'nqx1', 'nqx2', 'nqx3',
'lda_plus_u', 'lda_plus_u_kind', 'Hubbard_U', 'Hubbard_J0',
'Hubbard_alpha', 'Hubbard_beta', 'Hubbard_J',
'starting_ns_eigenvalue', 'U_projection_type', 'edir',
'emaxpos', 'eopreg', 'eamp', 'angle1', 'angle2',
'constrained_magnetization', 'fixed_magnetization', 'lambda',
'report', 'lspinorb', 'assume_isolated', 'esm_bc', 'esm_w',
'esm_efield', 'esm_nfit', 'fcp_mu', 'vdw_corr', 'london',
'london_s6', 'london_c6', 'london_rvdw', 'london_rcut',
'ts_vdw_econv_thr', 'ts_vdw_isolated', 'xdm', 'xdm_a1', 'xdm_a2',
'space_group', 'uniqueb', 'origin_choice', 'rhombohedral', 'zmon',
'realxz', 'block', 'block_1', 'block_2', 'block_height']),
('ELECTRONS', [
'electron_maxstep', 'scf_must_converge', 'conv_thr', 'adaptive_thr',
'conv_thr_init', 'conv_thr_multi', 'mixing_mode', 'mixing_beta',
'mixing_ndim', 'mixing_fixed_ns', 'diagonalization', 'ortho_para',
'diago_thr_init', 'diago_cg_maxiter', 'diago_david_ndim',
'diago_full_acc', 'efield', 'efield_cart', 'efield_phase',
'startingpot', 'startingwfc', 'tqr']),
('IONS', [
'ion_dynamics', 'ion_positions', 'pot_extrapolation',
'wfc_extrapolation', 'remove_rigid_rot', 'ion_temperature', 'tempw',
'tolp', 'delta_t', 'nraise', 'refold_pos', 'upscale', 'bfgs_ndim',
'trust_radius_max', 'trust_radius_min', 'trust_radius_ini', 'w_1',
'w_2']),
('CELL', [
'cell_dynamics', 'press', 'wmass', 'cell_factor', 'press_conv_thr',
'cell_dofree'])))
# Number of valence electrons in the pseudopotentials recommended by
# http://materialscloud.org/sssp/. These are just used as a fallback for
# calculating initial magetization values which are given as a fraction
# of valence electrons.
SSSP_VALENCE = [
0, 1.0, 2.0, 3.0, 4.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0,
18.0, 19.0, 20.0, 13.0, 14.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 12.0, 13.0, 14.0, 15.0, 6.0,
7.0, 18.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0,
19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 36.0, 27.0, 14.0, 15.0, 30.0,
15.0, 32.0, 19.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0]
def construct_namelist(parameters=None, warn=False, **kwargs):
"""
Construct an ordered Namelist containing all the parameters given (as
a dictionary or kwargs). Keys will be inserted into their appropriate
section in the namelist and the dictionary may contain flat and nested
structures. Any kwargs that match input keys will be incorporated into
their correct section. All matches are case-insensitive, and returned
Namelist object is a case-insensitive dict.
If a key is not known to ase, but in a section within `parameters`,
it will be assumed that it was put there on purpose and included
in the output namelist. Anything not in a section will be ignored (set
`warn` to True to see ignored keys).
Keys with a dimension (e.g. Hubbard_U(1)) will be incorporated as-is
so the `i` should be made to match the output.
The priority of the keys is:
kwargs[key] > parameters[key] > parameters[section][key]
Only the highest priority item will be included.
Parameters
----------
parameters: dict
Flat or nested set of input parameters.
warn: bool
Enable warnings for unused keys.
Returns
-------
input_namelist: Namelist
pw.x compatible namelist of input parameters.
"""
# Convert everything to Namelist early to make case-insensitive
if parameters is None:
parameters = Namelist()
else:
# Maximum one level of nested dict
# Don't modify in place
parameters_namelist = Namelist()
for key, value in parameters.items():
if isinstance(value, dict):
parameters_namelist[key] = Namelist(value)
else:
parameters_namelist[key] = value
parameters = parameters_namelist
# Just a dict
kwargs = Namelist(kwargs)
# Final parameter set
input_namelist = Namelist()
# Collect
for section in KEYS:
sec_list = Namelist()
for key in KEYS[section]:
# Check all three separately and pop them all so that
# we can check for missing values later
if key in parameters.get(section, {}):
sec_list[key] = parameters[section].pop(key)
if key in parameters:
sec_list[key] = parameters.pop(key)
if key in kwargs:
sec_list[key] = kwargs.pop(key)
# Check if there is a key(i) version (no extra parsing)
for arg_key in parameters.get(section, {}):
if arg_key.split('(')[0].strip().lower() == key.lower():
sec_list[arg_key] = parameters[section].pop(arg_key)
cp_parameters = parameters.copy()
for arg_key in cp_parameters:
if arg_key.split('(')[0].strip().lower() == key.lower():
sec_list[arg_key] = parameters.pop(arg_key)
cp_kwargs = kwargs.copy()
for arg_key in cp_kwargs:
if arg_key.split('(')[0].strip().lower() == key.lower():
sec_list[arg_key] = kwargs.pop(arg_key)
# Add to output
input_namelist[section] = sec_list
unused_keys = list(kwargs)
# pass anything else already in a section
for key, value in parameters.items():
if key in KEYS and isinstance(value, dict):
input_namelist[key].update(value)
elif isinstance(value, dict):
unused_keys.extend(list(value))
else:
unused_keys.append(key)
if warn and unused_keys:
warnings.warn('Unused keys: {}'.format(', '.join(unused_keys)))
return input_namelist
def grep_valence(pseudopotential):
"""
Given a UPF pseudopotential file, find the number of valence atoms.
Parameters
----------
pseudopotential: str
Filename of the pseudopotential.
Returns
-------
valence: float
Valence as reported in the pseudopotential.
Raises
------
ValueError
If valence cannot be found in the pseudopotential.
"""
# Example lines
# Sr.pbe-spn-rrkjus_psl.1.0.0.UPF: z_valence="1.000000000000000E+001"
# C.pbe-n-kjpaw_psl.1.0.0.UPF (new ld1.x):
# ...PBC" z_valence="4.000000000000e0" total_p...
# C_ONCV_PBE-1.0.upf: z_valence=" 4.00"
# Ta_pbe_v1.uspp.F.UPF: 13.00000000000 Z valence
with open(pseudopotential) as psfile:
for line in psfile:
if 'z valence' in line.lower():
return float(line.split()[0])
elif 'z_valence' in line.lower():
if line.split()[0] == '<PP_HEADER':
line = list(filter(lambda x: 'z_valence' in x,
line.split(' ')))[0]
return float(line.split('=')[-1].strip().strip('"'))
else:
raise ValueError('Valence missing in {}'.format(pseudopotential))
def cell_to_ibrav(cell, ibrav):
"""
Calculate the appropriate `celldm(..)` parameters for the given ibrav
using the given cell. The units for `celldm(..)` are Bohr.
Does minimal checking of the cell shape, so it is possible to create
a nonsense structure if the ibrav is inapproprite for the cell. These
are derived to be symmetric with the routine for constructing the cell
from ibrav parameters so directions of some vectors may be unexpected.
Parameters
----------
cell : np.array
A 3x3 representation of a unit cell
ibrav : int
Bravais-lattice index according to the pw.x designations.
Returns
-------
parameters : dict
A dictionary with all the necessary `celldm(..)` keys assigned
necessary values (in units of Bohr). Also includes `ibrav` so it
can be passed back to `ibrav_to_cell`.
Raises
------
NotImplementedError
Only a limited number of ibrav settings can be parsed. An error
is raised if the ibrav interpretation is not implemented.
"""
parameters = {'ibrav': ibrav}
if ibrav == 1:
parameters['celldm(1)'] = cell[0][0] / units['Bohr']
elif ibrav in [2, 3, -3]:
parameters['celldm(1)'] = cell[0][2] * 2 / units['Bohr']
elif ibrav in [4, 6]:
parameters['celldm(1)'] = cell[0][0] / units['Bohr']
parameters['celldm(3)'] = cell[2][2] / cell[0][0]
elif ibrav in [5, -5]:
# Manually derive
a = np.linalg.norm(cell[0])
cosab = np.dot(cell[0], cell[1]) / (a ** 2)
parameters['celldm(1)'] = a / units['Bohr']
parameters['celldm(4)'] = cosab
elif ibrav == 7:
parameters['celldm(1)'] = cell[0][0] * 2 / units['Bohr']
parameters['celldm(3)'] = cell[2][2] / cell[0][0]
elif ibrav == 8:
parameters['celldm(1)'] = cell[0][0] / units['Bohr']
parameters['celldm(2)'] = cell[1][1] / cell[0][0]
parameters['celldm(3)'] = cell[2][2] / cell[0][0]
elif ibrav in [9, -9]:
parameters['celldm(1)'] = cell[0][0] * 2 / units['Bohr']
parameters['celldm(2)'] = cell[1][1] / cell[0][0]
parameters['celldm(3)'] = cell[2][2] * 2 / cell[0][0]
elif ibrav in [10, 11]:
parameters['celldm(1)'] = cell[0][0] * 2 / units['Bohr']
parameters['celldm(2)'] = cell[1][1] / cell[0][0]
parameters['celldm(3)'] = cell[2][2] / cell[0][0]
elif ibrav == 12:
# cos^2 + sin^2
b = (cell[1][0]**2 + cell[1][1]**2)**0.5
parameters['celldm(1)'] = cell[0][0] / units['Bohr']
parameters['celldm(2)'] = b / cell[0][0]
parameters['celldm(3)'] = cell[2][2] / cell[0][0]
parameters['celldm(4)'] = cell[1][0] / b
elif ibrav == -12:
# cos^2 + sin^2
c = (cell[2][0]**2 + cell[2][2]**2)**0.5
parameters['celldm(1)'] = cell[0][0] / units['Bohr']
parameters['celldm(2)'] = cell[1][1] / cell[0][0]
parameters['celldm(3)'] = c / cell[0][0]
parameters['celldm(4)'] = cell[2][0] / c
elif ibrav == 13:
b = (cell[1][0]**2 + cell[1][1]**2)**0.5
parameters['celldm(1)'] = cell[0][0] * 2 / units['Bohr']
parameters['celldm(2)'] = b / (cell[0][0] * 2)
parameters['celldm(3)'] = cell[2][2] / cell[0][0]
parameters['celldm(4)'] = cell[1][0] / b
elif ibrav == 14:
# Manually derive
a, b, c = np.linalg.norm(cell, axis=1)
cosbc = np.dot(cell[1], cell[2]) / (b * c)
cosac = np.dot(cell[0], cell[2]) / (a * c)
cosab = np.dot(cell[0], cell[1]) / (a * b)
parameters['celldm(1)'] = a / units['Bohr']
parameters['celldm(2)'] = b / a
parameters['celldm(3)'] = c / a
parameters['celldm(4)'] = cosbc
parameters['celldm(5)'] = cosac
parameters['celldm(6)'] = cosab
else:
raise NotImplementedError('ibrav = {0} is not implemented'
''.format(ibrav))
return parameters
def kspacing_to_grid(atoms, spacing, calculated_spacing=None):
"""
Calculate the kpoint mesh that is equivalent to the given spacing
in reciprocal space (units Angstrom^-1). The number of kpoints is each
dimension is rounded up (compatible with CASTEP).
Parameters
----------
atoms: ase.Atoms
A structure that can have get_reciprocal_cell called on it.
spacing: float
Minimum K-Point spacing in $A^{-1}$.
calculated_spacing : list
If a three item list (or similar mutable sequence) is given the
members will be replaced with the actual calculated spacing in
$A^{-1}$.
Returns
-------
kpoint_grid : [int, int, int]
MP grid specification to give the required spacing.
"""
# No factor of 2pi in ase, everything in A^-1
# reciprocal dimensions
r_x, r_y, r_z = np.linalg.norm(atoms.cell.reciprocal(), axis=1)
kpoint_grid = [int(r_x / spacing) + 1,
int(r_y / spacing) + 1,
int(r_z / spacing) + 1]
if calculated_spacing is not None:
calculated_spacing[:] = [r_x / kpoint_grid[0],
r_y / kpoint_grid[1],
r_z / kpoint_grid[2]]
return kpoint_grid
def write_espresso_in(fd, atoms, input_data=None, pseudopotentials=None,
kspacing=None, kpts=None, koffset=(0, 0, 0),
crystal_coordinates=False, **kwargs):
"""
Create an input file for pw.x.
Use set_initial_magnetic_moments to turn on spin, if ispin is set to 2
with no magnetic moments, they will all be set to 0.0. Magnetic moments
will be converted to the QE units (fraction of valence electrons) using
any pseudopotential files found, or a best guess for the number of
valence electrons.
Units are not converted for any other input data, so use Quantum ESPRESSO
units (Usually Ry or atomic units).
Keys with a dimension (e.g. Hubbard_U(1)) will be incorporated as-is
so the `i` should be made to match the output.
Implemented features:
- Conversion of :class:`ase.constraints.FixAtoms` and
:class:`ase.constraints.FixCartesian`.
- `starting_magnetization` derived from the `mgmoms` and pseudopotentials
(searches default paths for pseudo files.)
- Automatic assignment of options to their correct sections.
- Interpretation of ibrav (cell must exactly match the vectors defined
in the QE docs).
Not implemented:
- Lists of k-points
- Other constraints
- Hubbard parameters
- Validation of the argument types for input
- Validation of required options
- Reorientation for ibrav settings
- Noncollinear magnetism
Parameters
----------
fd: file
A file like object to write the input file to.
atoms: Atoms
A single atomistic configuration to write to `fd`.
input_data: dict
A flat or nested dictionary with input parameters for pw.x
pseudopotentials: dict
A filename for each atomic species, e.g.
{'O': 'O.pbe-rrkjus.UPF', 'H': 'H.pbe-rrkjus.UPF'}.
A dummy name will be used if none are given.
kspacing: float
Generate a grid of k-points with this as the minimum distance,
in A^-1 between them in reciprocal space. If set to None, kpts
will be used instead.
kpts: (int, int, int) or dict
If kpts is a tuple (or list) of 3 integers, it is interpreted
as the dimensions of a Monkhorst-Pack grid.
If ``kpts`` is set to ``None``, only the Γ-point will be included
and QE will use routines optimized for Γ-point-only calculations.
Compared to Γ-point-only calculations without this optimization
(i.e. with ``kpts=(1, 1, 1)``), the memory and CPU requirements
are typically reduced by half.
If kpts is a dict, it will either be interpreted as a path
in the Brillouin zone (*) if it contains the 'path' keyword,
otherwise it is converted to a Monkhorst-Pack grid (**).
(*) see ase.dft.kpoints.bandpath
(**) see ase.calculators.calculator.kpts2sizeandoffsets
koffset: (int, int, int)
Offset of kpoints in each direction. Must be 0 (no offset) or
1 (half grid offset). Setting to True is equivalent to (1, 1, 1).
crystal_coordinates: bool
Whether the atomic positions should be written to the QE input file in
absolute (False, default) or relative (crystal) coordinates (True).
"""
# Convert to a namelist to make working with parameters much easier
# Note that the name ``input_data`` is chosen to prevent clash with
# ``parameters`` in Calculator objects
input_parameters = construct_namelist(input_data, **kwargs)
# Convert ase constraints to QE constraints
# Nx3 array of force multipliers matches what QE uses
# Do this early so it is available when constructing the atoms card
constraint_mask = np.ones((len(atoms), 3), dtype='int')
for constraint in atoms.constraints:
if isinstance(constraint, FixAtoms):
constraint_mask[constraint.index] = 0
elif isinstance(constraint, FixCartesian):
constraint_mask[constraint.a] = constraint.mask
else:
warnings.warn('Ignored unknown constraint {}'.format(constraint))
# Species info holds the information on the pseudopotential and
# associated for each element
if pseudopotentials is None:
pseudopotentials = {}
species_info = {}
for species in set(atoms.get_chemical_symbols()):
# Look in all possible locations for the pseudos and try to figure
# out the number of valence electrons
pseudo = pseudopotentials.get(species, None)
valence = get_valence_electrons(species, input_parameters, pseudo)
species_info[species] = {'pseudo': pseudo, 'valence': valence}
# Convert atoms into species.
# Each different magnetic moment needs to be a separate type even with
# the same pseudopotential (e.g. an up and a down for AFM).
# if any magmom are > 0 or nspin == 2 then use species labels.
# Rememeber: magnetisation uses 1 based indexes
atomic_species = OrderedDict()
atomic_species_str = []
atomic_positions_str = []
nspin = input_parameters['system'].get('nspin', 1) # 1 is the default
if any(atoms.get_initial_magnetic_moments()):
if nspin == 1:
# Force spin on
input_parameters['system']['nspin'] = 2
nspin = 2
if nspin == 2:
# Spin on
for atom, magmom in zip(atoms, atoms.get_initial_magnetic_moments()):
if (atom.symbol, magmom) not in atomic_species:
# spin as fraction of valence
fspin = float(magmom) / species_info[atom.symbol]['valence']
# Index in the atomic species list
sidx = len(atomic_species) + 1
# Index for that atom type; no index for first one
tidx = sum(atom.symbol == x[0] for x in atomic_species) or ' '
atomic_species[(atom.symbol, magmom)] = (sidx, tidx)
# Add magnetization to the input file
mag_str = 'starting_magnetization({0})'.format(sidx)
input_parameters['system'][mag_str] = fspin
atomic_species_str.append(
'{species}{tidx} {mass} {pseudo}\n'.format(
species=atom.symbol, tidx=tidx, mass=atom.mass,
pseudo=species_info[atom.symbol]['pseudo']))
# lookup tidx to append to name
sidx, tidx = atomic_species[(atom.symbol, magmom)]
# only inclued mask if something is fixed
if not all(constraint_mask[atom.index]):
mask = ' {mask[0]} {mask[1]} {mask[2]}'.format(
mask=constraint_mask[atom.index])
else:
mask = ''
# construct line for atomic positions
atomic_positions_str.append(
'{atom.symbol}{tidx} '
'{atom.x:.10f} {atom.y:.10f} {atom.z:.10f}'
'{mask}\n'.format(atom=atom, tidx=tidx, mask=mask))
else:
# Do nothing about magnetisation
for atom in atoms:
if atom.symbol not in atomic_species:
atomic_species[atom.symbol] = True # just a placeholder
atomic_species_str.append(
'{species} {mass} {pseudo}\n'.format(
species=atom.symbol, mass=atom.mass,
pseudo=species_info[atom.symbol]['pseudo']))
# only inclued mask if something is fixed
if not all(constraint_mask[atom.index]):
mask = ' {mask[0]} {mask[1]} {mask[2]}'.format(
mask=constraint_mask[atom.index])
else:
mask = ''
if crystal_coordinates:
coords = [atom.a, atom.b, atom.c]
else:
coords = atom.position
atomic_positions_str.append(
'{atom.symbol} '
'{coords[0]:.10f} {coords[1]:.10f} {coords[2]:.10f} '
'{mask}\n'.format(atom=atom, coords=coords, mask=mask))
# Add computed parameters
# different magnetisms means different types
input_parameters['system']['ntyp'] = len(atomic_species)
input_parameters['system']['nat'] = len(atoms)
# Use cell as given or fit to a specific ibrav
if 'ibrav' in input_parameters['system']:
ibrav = input_parameters['system']['ibrav']
if ibrav != 0:
celldm = cell_to_ibrav(atoms.cell, ibrav)
regen_cell = ibrav_to_cell(celldm)[1]
if not np.allclose(atoms.cell, regen_cell):
warnings.warn('Input cell does not match requested ibrav'
'{} != {}'.format(regen_cell, atoms.cell))
input_parameters['system'].update(celldm)
else:
# Just use standard cell block
input_parameters['system']['ibrav'] = 0
# Construct input file into this
pwi = []
# Assume sections are ordered (taken care of in namelist construction)
# and that repr converts to a QE readable representation (except bools)
for section in input_parameters:
pwi.append('&{0}\n'.format(section.upper()))
for key, value in input_parameters[section].items():
if value is True:
pwi.append(' {0:16} = .true.\n'.format(key))
elif value is False:
pwi.append(' {0:16} = .false.\n'.format(key))
else:
# repr format to get quotes around strings
pwi.append(' {0:16} = {1!r:}\n'.format(key, value))
pwi.append('/\n') # terminate section
pwi.append('\n')
# Pseudopotentials
pwi.append('ATOMIC_SPECIES\n')
pwi.extend(atomic_species_str)
pwi.append('\n')
# KPOINTS - add a MP grid as required
if kspacing is not None:
kgrid = kspacing_to_grid(atoms, kspacing)
elif kpts is not None:
if isinstance(kpts, dict) and 'path' not in kpts:
kgrid, shift = kpts2sizeandoffsets(atoms=atoms, **kpts)
koffset = []
for i, x in enumerate(shift):
assert x == 0 or abs(x * kgrid[i] - 0.5) < 1e-14
koffset.append(0 if x == 0 else 1)
else:
kgrid = kpts
else:
kgrid = "gamma"
# True and False work here and will get converted by ':d' format
if isinstance(koffset, int):
koffset = (koffset, ) * 3
# BandPath object or bandpath-as-dictionary:
if isinstance(kgrid, dict) or hasattr(kgrid, 'kpts'):
pwi.append('K_POINTS crystal_b\n')
assert hasattr(kgrid, 'path') or 'path' in kgrid
kgrid = kpts2ndarray(kgrid, atoms=atoms)
pwi.append('%s\n' % len(kgrid))
for k in kgrid:
pwi.append('{k[0]:.14f} {k[1]:.14f} {k[2]:.14f} 0\n'.format(k=k))
pwi.append('\n')
elif isinstance(kgrid, str) and (kgrid == "gamma"):
pwi.append('K_POINTS gamma\n')
pwi.append('\n')
else:
pwi.append('K_POINTS automatic\n')
pwi.append('{0[0]} {0[1]} {0[2]} {1[0]:d} {1[1]:d} {1[2]:d}\n'
''.format(kgrid, koffset))
pwi.append('\n')
# CELL block, if required
if input_parameters['SYSTEM']['ibrav'] == 0:
pwi.append('CELL_PARAMETERS angstrom\n')
pwi.append('{cell[0][0]:.14f} {cell[0][1]:.14f} {cell[0][2]:.14f}\n'
'{cell[1][0]:.14f} {cell[1][1]:.14f} {cell[1][2]:.14f}\n'
'{cell[2][0]:.14f} {cell[2][1]:.14f} {cell[2][2]:.14f}\n'
''.format(cell=atoms.cell))
pwi.append('\n')
# Positions - already constructed, but must appear after namelist
if crystal_coordinates:
pwi.append('ATOMIC_POSITIONS crystal\n')
else:
pwi.append('ATOMIC_POSITIONS angstrom\n')
pwi.extend(atomic_positions_str)
pwi.append('\n')
# DONE!
fd.write(''.join(pwi))
|