File: gamess_us.py

package info (click to toggle)
python-ase 3.21.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,936 kB
  • sloc: python: 122,428; xml: 946; makefile: 111; javascript: 47
file content (251 lines) | stat: -rw-r--r-- 8,678 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import re
from subprocess import call, TimeoutExpired
from copy import deepcopy

import numpy as np

from ase import Atoms
from ase.utils import workdir
from ase.units import Hartree, Bohr, Debye
from ase.calculators.singlepoint import SinglePointCalculator


def _format_value(val):
    if isinstance(val, bool):
        return '.t.' if val else '.f.'
    return str(val).upper()


def _write_block(name, args):
    out = [' ${}'.format(name.upper())]
    for key, val in args.items():
        out.append('  {}={}'.format(key.upper(), _format_value(val)))
    out.append(' $END')
    return '\n'.join(out)


def _write_geom(atoms, basis_spec):
    out = [' $DATA', atoms.get_chemical_formula(), 'C1']
    for i, atom in enumerate(atoms):
        out.append('{:<3} {:>3} {:20.13e} {:20.13e} {:20.13e}'
                   .format(atom.symbol, atom.number, *atom.position))
        if basis_spec is not None:
            basis = basis_spec.get(i)
            if basis is None:
                basis = basis_spec.get(atom.symbol)
            if basis is None:
                raise ValueError('Could not find an appropriate basis set '
                                 'for atom number {}!'.format(i))
            out += [basis, '']
    out.append(' $END')
    return '\n'.join(out)


def _write_ecp(atoms, ecp):
    out = [' $ECP']
    for i, symbol in enumerate(atoms.symbols):
        if i in ecp:
            out.append(ecp[i])
        elif symbol in ecp:
            out.append(ecp[symbol])
        else:
            raise ValueError('Could not find an appropriate ECP for '
                             'atom number {}!'.format(i))
    out.append(' $END')
    return '\n'.join(out)


_xc = dict(LDA='SVWN')


def write_gamess_us_in(fd, atoms, properties=None, **params):
    params = deepcopy(params)

    if properties is None:
        properties = ['energy']

    # set RUNTYP from properties iff value not provided by the user
    contrl = params.pop('contrl', dict())
    if 'runtyp' not in contrl:
        if 'forces' in properties:
            contrl['runtyp'] = 'gradient'
        else:
            contrl['runtyp'] = 'energy'

    # Support xc keyword for functional specification
    xc = params.pop('xc', None)
    if xc is not None and 'dfttyp' not in contrl:
        contrl['dfttyp'] = _xc.get(xc.upper(), xc.upper())

    # Automatically determine multiplicity from magnetic moment
    magmom_tot = int(round(atoms.get_initial_magnetic_moments().sum()))
    if 'mult' not in contrl:
        contrl['mult'] = abs(magmom_tot) + 1

    # Since we're automatically determining multiplicity, we also
    # need to automatically switch to UHF when the multiplicity
    # is not 1
    if 'scftyp' not in contrl:
        contrl['scftyp'] = 'rhf' if contrl['mult'] == 1 else 'uhf'

    # effective core potentials
    ecp = params.pop('ecp', None)
    if ecp is not None and 'pp' not in contrl:
        contrl['pp'] = 'READ'

    # If no basis set is provided, use 3-21G by default.
    basis_spec = None
    if 'basis' not in params:
        params['basis'] = dict(gbasis='N21', ngauss=3)
    else:
        keys = set(params['basis'])
        # Check if the user is specifying a literal per-atom basis.
        # We assume they are passing a per-atom basis if the keys of the
        # basis dict are atom symbols, or if they are atom indices, or
        # a mixture of both.
        if (keys.intersection(set(atoms.symbols))
                or any(map(lambda x: isinstance(x, int), keys))):
            basis_spec = params.pop('basis')

    out = [_write_block('contrl', contrl)]
    out += [_write_block(*item) for item in params.items()]
    out.append(_write_geom(atoms, basis_spec))
    if ecp is not None:
        out.append(_write_ecp(atoms, ecp))
    fd.write('\n\n'.join(out))


_geom_re = re.compile(r'^\s*ATOM\s+ATOMIC\s+COORDINATES')
_atom_re = re.compile(r'^\s*(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s*\n')
_energy_re = re.compile(r'^\s*FINAL [\S\s]+ ENERGY IS\s+(\S+) AFTER')
_grad_re = re.compile(r'^\s*GRADIENT OF THE ENERGY\s*')
_dipole_re = re.compile(r'^\s+DX\s+DY\s+DZ\s+\/D\/\s+\(DEBYE\)')


def read_gamess_us_out(fd):
    atoms = None
    energy = None
    forces = None
    dipole = None
    for line in fd:
        # Geometry
        if _geom_re.match(line):
            fd.readline()
            symbols = []
            pos = []
            while True:
                atom = _atom_re.match(fd.readline())
                if atom is None:
                    break
                symbol, _, x, y, z = atom.groups()
                symbols.append(symbol.capitalize())
                pos.append(list(map(float, [x, y, z])))
            atoms = Atoms(symbols, np.array(pos) * Bohr)
            continue

        # Energy
        ematch = _energy_re.match(line)
        if ematch is not None:
            energy = float(ematch.group(1)) * Hartree

        # MPn energy. Supplants energy parsed above.
        elif line.strip().startswith('TOTAL ENERGY'):
            energy = float(line.strip().split()[-1]) * Hartree

        # Higher-level energy (e.g. coupled cluster)
        # Supplants energies parsed above.
        elif line.strip().startswith('THE FOLLOWING METHOD AND ENERGY'):
            energy = float(fd.readline().strip().split()[-1]) * Hartree

        # Gradients
        elif _grad_re.match(line):
            for _ in range(3):
                fd.readline()
            grad = []
            while True:
                atom = _atom_re.match(fd.readline())
                if atom is None:
                    break
                grad.append(list(map(float, atom.groups()[2:])))
            forces = -np.array(grad) * Hartree / Bohr
        elif _dipole_re.match(line):
            dipole = np.array(list(map(float, fd.readline().split()[:3])))
            dipole *= Debye

    atoms.calc = SinglePointCalculator(atoms, energy=energy,
                                       forces=forces, dipole=dipole)
    return atoms


def read_gamess_us_punch(fd):
    atoms = None
    energy = None
    forces = None
    dipole = None
    for line in fd:
        if line.strip() == '$DATA':
            symbols = []
            pos = []
            while line.strip() != '$END':
                line = fd.readline()
                atom = _atom_re.match(line)
                if atom is None:
                    # The basis set specification is interlaced with the
                    # molecular geometry. We don't care about the basis
                    # set, so ignore lines that don't match the pattern.
                    continue
                symbols.append(atom.group(1).capitalize())
                pos.append(list(map(float, atom.group(3, 4, 5))))
            atoms = Atoms(symbols, np.array(pos))
        elif line.startswith('E('):
            energy = float(line.split()[1][:-1]) * Hartree
        elif line.strip().startswith('DIPOLE'):
            dipole = np.array(list(map(float, line.split()[1:]))) * Debye
        elif line.strip() == '$GRAD':
            # The gradient block also contains the energy, which we prefer
            # over the energy obtained above because it is more likely to
            # be consistent with the gradients. It probably doesn't actually
            # make a difference though.
            energy = float(fd.readline().split()[1]) * Hartree
            grad = []
            while line.strip() != '$END':
                line = fd.readline()
                atom = _atom_re.match(line)
                if atom is None:
                    continue
                grad.append(list(map(float, atom.group(3, 4, 5))))
            forces = -np.array(grad) * Hartree / Bohr

    atoms.calc = SinglePointCalculator(atoms, energy=energy, forces=forces,
                                       dipole=dipole)

    return atoms


def clean_userscr(userscr, prefix):
    for fname in os.listdir(userscr):
        tokens = fname.split('.')
        if tokens[0] == prefix and tokens[-1] != 'bak':
            fold = os.path.join(userscr, fname)
            os.rename(fold, fold + '.bak')


def get_userscr(prefix, command):
    prefix_test = prefix + '_test'
    command = command.replace('PREFIX', prefix_test)
    with workdir(prefix_test, mkdir=True):
        try:
            call(command, shell=True, timeout=2)
        except TimeoutExpired:
            pass

        try:
            with open(prefix_test + '.log') as f:
                for line in f:
                    if line.startswith('GAMESS supplementary output files'):
                        return ' '.join(line.split(' ')[8:]).strip()
        except FileNotFoundError:
            return None

    return None