1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
import numpy as np
from ase.neighborlist import NeighborList
from ase.data import atomic_masses, chemical_symbols
from ase import Atoms
def find_nearest_index(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
def find_nearest_value(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
def write_gpumd(fd, atoms, maximum_neighbors=None, cutoff=None,
groupings=None, use_triclinic=False):
"""
Writes atoms into GPUMD input format.
Parameters
----------
fd : file
File like object to which the atoms object should be written
atoms : Atoms
Input structure
maximum_neighbors: int
Maximum number of neighbors any atom can ever have (not relevant when
using force constant potentials)
cutoff: float
Initial cutoff distance used for building the neighbor list (not
relevant when using force constant potentials)
groupings : list[list[list[int]]]
Groups into which the individual atoms should be divided in the form of
a list of list of lists. Specifically, the outer list corresponds to
the grouping methods, of which there can be three at the most, which
contains a list of groups in the form of lists of site indices. The
sum of the lengths of the latter must be the same as the total number
of atoms.
use_triclinic: bool
Use format for triclinic cells
Raises
------
ValueError
Raised if parameters are incompatible
"""
# Check velocties parameter
if atoms.get_velocities() is None:
has_velocity = 0
else:
has_velocity = 1
velocities = atoms.get_velocities()
# Check groupings parameter
if groupings is None:
number_of_grouping_methods = 0
else:
number_of_grouping_methods = len(groupings)
if number_of_grouping_methods > 3:
raise ValueError('There can be no more than 3 grouping methods!')
for g, grouping in enumerate(groupings):
all_indices = [i for group in grouping for i in group]
if len(all_indices) != len(atoms) or\
set(all_indices) != set(range(len(atoms))):
raise ValueError('The indices listed in grouping method {} are'
' not compatible with the input'
' structure!'.format(g))
# If not specified, estimate the maximum_neighbors
if maximum_neighbors is None:
if cutoff is None:
cutoff = 0.1
maximum_neighbors = 1
else:
nl = NeighborList([cutoff / 2] * len(atoms), skin=2, bothways=True)
nl.update(atoms)
maximum_neighbors = 0
for atom in atoms:
maximum_neighbors = max(maximum_neighbors,
len(nl.get_neighbors(atom.index)[0]))
maximum_neighbors *= 2
# Add header and cell parameters
lines = []
if atoms.cell.orthorhombic and not use_triclinic:
triclinic = 0
else:
triclinic = 1
lines.append('{} {} {} {} {} {}'.format(len(atoms), maximum_neighbors,
cutoff, triclinic, has_velocity,
number_of_grouping_methods))
if triclinic:
lines.append((' {}' * 12)[1:].format(*atoms.pbc.astype(int),
*atoms.cell[:].flatten()))
else:
lines.append((' {}' * 6)[1:].format(*atoms.pbc.astype(int),
*atoms.cell.lengths()))
# Create symbols-to-type map, i.e. integers starting at 0
symbol_type_map = {}
for symbol in atoms.get_chemical_symbols():
if symbol not in symbol_type_map:
symbol_type_map[symbol] = len(symbol_type_map)
# Add lines for all atoms
for a, atm in enumerate(atoms):
t = symbol_type_map[atm.symbol]
line = (' {}' * 5)[1:].format(t, *atm.position, atm.mass)
if has_velocity:
line += (' {}' * 3).format(*velocities[a])
if groupings is not None:
for grouping in groupings:
for i, group in enumerate(grouping):
if a in group:
line += ' {}'.format(i)
break
lines.append(line)
# Write file
fd.write('\n'.join(lines))
def load_xyz_input_gpumd(fd, species=None, isotope_masses=None):
"""
Read the structure input file for GPUMD and return an ase Atoms object
togehter with a dictionary with parameters and a types-to-symbols map
Parameters
----------
fd : file | str
File object or name of file from which to read the Atoms object
species : List[str]
List with the chemical symbols that correspond to each type, will take
precedence over isotope_masses
isotope_masses: Dict[str, List[float]]
Dictionary with chemical symbols and lists of the associated atomic
masses, which is used to identify the chemical symbols that correspond
to the types not found in species_types. The default is to find the
closest match :data:`ase.data.atomic_masses`.
Returns
-------
atoms : Atoms
Atoms object
input_parameters : Dict[str, int]
Dictionary with parameters from the first row of the input file, namely
'N', 'M', 'cutoff', 'triclinic', 'has_velocity' and 'num_of_groups'
species : List[str]
List with the chemical symbols that correspond to each type
Raises
------
ValueError
Raised if the list of species is incompatible with the input file
"""
# Parse first line
first_line = next(fd)
print(first_line)
input_parameters = {}
keys = ['N', 'M', 'cutoff', 'triclinic', 'has_velocity',
'num_of_groups']
types = [float if key == 'cutoff' else int for key in keys]
for k, (key, typ) in enumerate(zip(keys, types)):
input_parameters[key] = typ(first_line.split()[k])
# Parse second line
second_line = next(fd)
second_arr = np.array(second_line.split())
pbc = second_arr[:3].astype(bool)
if input_parameters['triclinic']:
cell = second_arr[3:].astype(float).reshape((3, 3))
else:
cell = np.diag(second_arr[3:].astype(float))
# Parse all remaining rows
n_rows = input_parameters['N']
n_columns = 5 + input_parameters['has_velocity'] * 3 +\
input_parameters['num_of_groups']
rest_lines = [next(fd) for _ in range(n_rows)]
rest_arr = np.array([line.split() for line in rest_lines])
assert rest_arr.shape == (n_rows, n_columns)
# Extract atom types, positions and masses
atom_types = rest_arr[:, 0].astype(int)
positions = rest_arr[:, 1:4].astype(float)
masses = rest_arr[:, 4].astype(float)
# Determine the atomic species
if species is None:
type_symbol_map = {}
if isotope_masses is not None:
mass_symbols = {mass: symbol for symbol, masses in
isotope_masses.items() for mass in masses}
symbols = []
for atom_type, mass in zip(atom_types, masses):
if species is None:
if atom_type not in type_symbol_map:
if isotope_masses is not None:
nearest_value = find_nearest_value(
list(mass_symbols.keys()), mass)
symbol = mass_symbols[nearest_value]
else:
symbol = chemical_symbols[
find_nearest_index(atomic_masses, mass)]
type_symbol_map[atom_type] = symbol
else:
symbol = type_symbol_map[atom_type]
else:
if atom_type > len(species):
raise Exception('There is no entry for atom type {} in the '
'species list!'.format(atom_type))
symbol = species[atom_type]
symbols.append(symbol)
if species is None:
species = [type_symbol_map[i] for i in sorted(type_symbol_map.keys())]
# Create the Atoms object
atoms = Atoms(symbols=symbols, positions=positions, masses=masses, pbc=pbc,
cell=cell)
if input_parameters['has_velocity']:
velocities = rest_arr[:, 5:8].astype(float)
atoms.set_velocities(velocities)
if input_parameters['num_of_groups']:
start_col = 5 + 3 * input_parameters['has_velocity']
groups = rest_arr[:, start_col:].astype(int)
atoms.info = {i: {'groups': groups[i, :]} for i in range(n_rows)}
return atoms, input_parameters, species
def read_gpumd(fd, species=None, isotope_masses=None):
"""
Read Atoms object from a GPUMD structure input file
Parameters
----------
fd : file | str
File object or name of file from which to read the Atoms object
species : List[str]
List with the chemical symbols that correspond to each type, will take
precedence over isotope_masses
isotope_masses: Dict[str, List[float]]
Dictionary with chemical symbols and lists of the associated atomic
masses, which is used to identify the chemical symbols that correspond
to the types not found in species_types. The default is to find the
closest match :data:`ase.data.atomic_masses`.
Returns
-------
atoms : Atoms
Atoms object
Raises
------
ValueError
Raised if the list of species is incompatible with the input file
"""
return load_xyz_input_gpumd(fd, species, isotope_masses)[0]
|