1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
|
"""
Module for povray file format support.
See http://www.povray.org/ for details on the format.
"""
from collections.abc import Mapping, Sequence
from subprocess import check_call, DEVNULL
from os import unlink
from pathlib import Path
import numpy as np
from ase.io.utils import PlottingVariables
from ase.constraints import FixAtoms
from ase import Atoms
def pa(array):
"""Povray array syntax"""
return '<' + ', '.join(f"{x:>6.2f}" for x in tuple(array)) + '>'
def pc(array):
"""Povray color syntax"""
if isinstance(array, str):
return 'color ' + array
if isinstance(array, float):
return f'rgb <{array:.2f}>*3'.format(array)
l = len(array)
if l > 2 and l < 6:
return f"rgb{'' if l == 3 else 't' if l == 4 else 'ft'} <" +\
', '.join(f"{x:.2f}" for x in tuple(array)) + '>'
def get_bondpairs(atoms, radius=1.1):
"""Get all pairs of bonding atoms
Return all pairs of atoms which are closer than radius times the
sum of their respective covalent radii. The pairs are returned as
tuples::
(a, b, (i1, i2, i3))
so that atoms a bonds to atom b displaced by the vector::
_ _ _
i c + i c + i c ,
1 1 2 2 3 3
where c1, c2 and c3 are the unit cell vectors and i1, i2, i3 are
integers."""
from ase.data import covalent_radii
from ase.neighborlist import NeighborList
cutoffs = radius * covalent_radii[atoms.numbers]
nl = NeighborList(cutoffs=cutoffs, self_interaction=False)
nl.update(atoms)
bondpairs = []
for a in range(len(atoms)):
indices, offsets = nl.get_neighbors(a)
bondpairs.extend([(a, a2, offset)
for a2, offset in zip(indices, offsets)])
return bondpairs
def set_high_bondorder_pairs(bondpairs, high_bondorder_pairs=None):
"""Set high bondorder pairs
Modify bondpairs list (from get_bondpairs((atoms)) to include high
bondorder pairs.
Parameters:
-----------
bondpairs: List of pairs, generated from get_bondpairs(atoms)
high_bondorder_pairs: Dictionary of pairs with high bond orders
using the following format:
{ ( a1, b1 ): ( offset1, bond_order1, bond_offset1),
( a2, b2 ): ( offset2, bond_order2, bond_offset2),
...
}
offset, bond_order, bond_offset are optional.
However, if they are provided, the 1st value is
offset, 2nd value is bond_order,
3rd value is bond_offset """
if high_bondorder_pairs is None:
high_bondorder_pairs = dict()
bondpairs_ = []
for pair in bondpairs:
(a, b) = (pair[0], pair[1])
if (a, b) in high_bondorder_pairs.keys():
bondpair = [a, b] + [item for item in high_bondorder_pairs[(a, b)]]
bondpairs_.append(bondpair)
elif (b, a) in high_bondorder_pairs.keys():
bondpair = [a, b] + [item for item in high_bondorder_pairs[(b, a)]]
bondpairs_.append(bondpair)
else:
bondpairs_.append(pair)
return bondpairs_
class POVRAY:
material_styles_dict = dict(
simple='finish {phong 0.7}',
pale=('finish {ambient 0.5 diffuse 0.85 roughness 0.001 '
'specular 0.200 }'),
intermediate=('finish {ambient 0.3 diffuse 0.6 specular 0.1 '
'roughness 0.04}'),
vmd=('finish {ambient 0.0 diffuse 0.65 phong 0.1 phong_size 40.0 '
'specular 0.5 }'),
jmol=('finish {ambient 0.2 diffuse 0.6 specular 1 roughness 0.001 '
'metallic}'),
ase2=('finish {ambient 0.05 brilliance 3 diffuse 0.6 metallic '
'specular 0.7 roughness 0.04 reflection 0.15}'),
ase3=('finish {ambient 0.15 brilliance 2 diffuse 0.6 metallic '
'specular 1.0 roughness 0.001 reflection 0.0}'),
glass=('finish {ambient 0.05 diffuse 0.3 specular 1.0 '
'roughness 0.001}'),
glass2=('finish {ambient 0.01 diffuse 0.3 specular 1.0 '
'reflection 0.25 roughness 0.001}'),
)
def __init__(self, cell, cell_vertices, positions, diameters, colors,
image_width, image_height, constraints=tuple(), isosurfaces=[],
display=False, pause=True, transparent=True, canvas_width=None,
canvas_height=None, camera_dist=50., image_plane=None,
camera_type='orthographic', point_lights=[],
area_light=[(2., 3., 40.), 'White', .7, .7, 3, 3],
background='White', textures=None, transmittances=None,
depth_cueing=False, cue_density=5e-3,
celllinewidth=0.05, bondlinewidth=0.10, bondatoms=[],
exportconstraints=False):
"""
# x, y is the image plane, z is *out* of the screen
cell: ase.cell
cell object
cell_vertices: 2-d numpy array
contains the 8 vertices of the cell, each with three coordinates
positions: 2-d numpy array
number of atoms length array with three coordinates for positions
diameters: 1-d numpy array
diameter of atoms (in order with positions)
colors: list of str
colors of atoms (in order with positions)
image_width: float
image width in pixels
image_height: float
image height in pixels
constraints: Atoms.constraints
constraints to be visualized
isosurfaces: list of POVRAYIsosurface
composite object to write/render POVRAY isosurfaces
display: bool
display while rendering
pause: bool
pause when done rendering (only if display)
transparent: bool
make background transparent
canvas_width: int
width of canvas in pixels
canvas_height: int
height of canvas in pixels
camera_dist: float
distance from camera to front atom
image_plane: float
distance from front atom to image plane
camera_type: str
if 'orthographic' perspective, ultra_wide_angle
point_lights: list of 2-element sequences
like [[loc1, color1], [loc2, color2],...]
area_light: 3-element sequence of location (3-tuple), color (str),
width (float), height (float),
Nlamps_x (int), Nlamps_y (int)
example [(2., 3., 40.), 'White', .7, .7, 3, 3]
background: str
color specification, e.g., 'White'
textures: list of str
length of atoms list of texture names
transmittances: list of floats
length of atoms list of transmittances of the atoms
depth_cueing: bool
whether or not to use depth cueing a.k.a. fog
use with care - adjust the camera_distance to be closer
cue_density: float
if there is depth_cueing, how dense is it (how dense is the fog)
celllinewidth: float
radius of the cylinders representing the cell (Ang.)
bondlinewidth: float
radius of the cylinders representing bonds (Ang.)
bondatoms: list of lists (polymorphic)
[[atom1, atom2], ... ] pairs of bonding atoms
For bond order > 1 = [[atom1, atom2, offset,
bond_order, bond_offset],
... ]
bond_order: 1, 2, 3 for single, double,
and triple bond
bond_offset: vector for shifting bonds from
original position. Coordinates are
in Angstrom unit.
exportconstraints: bool
honour FixAtoms and mark?"""
# attributes from initialization
self.area_light = area_light
self.background = background
self.bondatoms = bondatoms
self.bondlinewidth = bondlinewidth
self.camera_dist = camera_dist
self.camera_type = camera_type
self.celllinewidth = celllinewidth
self.cue_density = cue_density
self.depth_cueing = depth_cueing
self.display = display
self.exportconstraints = exportconstraints
self.isosurfaces = isosurfaces
self.pause = pause
self.point_lights = point_lights
self.textures = textures
self.transmittances = transmittances
self.transparent = transparent
self.image_width = image_width
self.image_height = image_height
self.colors = colors
self.cell = cell
self.diameters = diameters
# calculations based on passed inputs
z0 = positions[:, 2].max()
self.offset = (image_width / 2, image_height / 2, z0)
self.positions = positions - self.offset
if cell_vertices is not None:
self.cell_vertices = cell_vertices - self.offset
self.cell_vertices.shape = (2, 2, 2, 3)
else:
self.cell_vertices = None
ratio = float(self.image_width) / self.image_height
if canvas_width is None:
if canvas_height is None:
self.canvas_width = min(self.image_width * 15, 640)
self.canvas_height = min(self.image_height * 15, 640)
else:
self.canvas_width = canvas_height * ratio
self.canvas_height = canvas_height
elif canvas_height is None:
self.canvas_width = canvas_width
self.canvas_height = self.canvas_width / ratio
else:
raise RuntimeError("Can't set *both* width and height!")
# Distance to image plane from camera
if image_plane is None:
if self.camera_type == 'orthographic':
self.image_plane = 1 - self.camera_dist
else:
self.image_plane = 0
self.image_plane += self.camera_dist
self.constrainatoms = []
for c in constraints:
if isinstance(c, FixAtoms):
# self.constrainatoms.extend(c.index) # is this list-like?
for n, i in enumerate(c.index):
self.constrainatoms += [i]
@classmethod
def from_PlottingVariables(cls, pvars, **kwargs):
cell = pvars.cell
cell_vertices = pvars.cell_vertices
if 'colors' in kwargs.keys():
colors = kwargs.pop('colors')
else:
colors = pvars.colors
diameters = pvars.d
image_height = pvars.h
image_width = pvars.w
positions = pvars.positions
constraints = pvars.constraints
return cls(cell=cell, cell_vertices=cell_vertices, colors=colors,
constraints=constraints, diameters=diameters,
image_height=image_height, image_width=image_width,
positions=positions, **kwargs)
@classmethod
def from_atoms(cls, atoms, **kwargs):
return cls.from_plotting_variables(
PlottingVariables(atoms, scale=1.0), **kwargs)
def write_ini(self, path):
"""Write ini file."""
ini_str = f"""\
Input_File_Name={path.with_suffix('.pov').name}
Output_to_File=True
Output_File_Type=N
Output_Alpha={'on' if self.transparent else 'off'}
; if you adjust Height, and width, you must preserve the ratio
; Width / Height = {self.canvas_width/self.canvas_height:f}
Width={self.canvas_width}
Height={self.canvas_height}
Antialias=True
Antialias_Threshold=0.1
Display={self.display}
Pause_When_Done={self.pause}
Verbose=False
"""
with open(path, 'w') as fd:
fd.write(ini_str)
return path
def write_pov(self, path):
"""Write pov file."""
point_lights = '\n'.join(f"light_source {{{pa(loc)} {pc(rgb)}}}"
for loc, rgb in self.point_lights)
area_light = ''
if self.area_light is not None:
loc, color, width, height, nx, ny = self.area_light
area_light += f"""\nlight_source {{{pa(loc)} {pc(color)}
area_light <{width:.2f}, 0, 0>, <0, {height:.2f}, 0>, {nx:n}, {ny:n}
adaptive 1 jitter}}"""
fog = ''
if self.depth_cueing and (self.cue_density >= 1e-4):
# same way vmd does it
if self.cue_density > 1e4:
# larger does not make any sense
dist = 1e-4
else:
dist = 1. / self.cue_density
fog += f'fog {{fog_type 1 distance {dist:.4f} '\
f'color {pc(self.background)}}}'
mat_style_keys = (f'#declare {k} = {v}'
for k, v in self.material_styles_dict.items())
mat_style_keys = '\n'.join(mat_style_keys)
# Draw unit cell
cell_vertices = ''
if self.cell_vertices is not None:
for c in range(3):
for j in ([0, 0], [1, 0], [1, 1], [0, 1]):
p1 = self.cell_vertices[tuple(j[:c]) + (0,) + tuple(j[c:])]
p2 = self.cell_vertices[tuple(j[:c]) + (1,) + tuple(j[c:])]
distance = np.linalg.norm(p2 - p1)
if distance < 1e-12:
continue
cell_vertices += f'cylinder {{{pa(p1)}, {pa(p2)}, '\
f'Rcell pigment {{Black}}}}\n'
# all strings are f-strings for consistency
cell_vertices = cell_vertices.strip('\n')
# Draw atoms
a = 0
atoms = ''
for loc, dia, col in zip(self.positions, self.diameters, self.colors):
tex = 'ase3'
trans = 0.
if self.textures is not None:
tex = self.textures[a]
if self.transmittances is not None:
trans = self.transmittances[a]
atoms += f'atom({pa(loc)}, {dia/2.:.2f}, {pc(col)}, '\
f'{trans}, {tex}) // #{a:n}\n'
a += 1
atoms = atoms.strip('\n')
# Draw atom bonds
bondatoms = ''
for pair in self.bondatoms:
# Make sure that each pair has 4 componets: a, b, offset,
# bond_order, bond_offset
# a, b: atom index to draw bond
# offset: original meaning to make offset for mid-point.
# bond_oder: if not supplied, set it to 1 (single bond).
# It can be 1, 2, 3, corresponding to single,
# double, triple bond
# bond_offset: displacement from original bond position.
# Default is (bondlinewidth, bondlinewidth, 0)
# for bond_order > 1.
if len(pair) == 2:
a, b = pair
offset = (0, 0, 0)
bond_order = 1
bond_offset = (0, 0, 0)
elif len(pair) == 3:
a, b, offset = pair
bond_order = 1
bond_offset = (0, 0, 0)
elif len(pair) == 4:
a, b, offset, bond_order = pair
bond_offset = (self.bondlinewidth, self.bondlinewidth, 0)
elif len(pair) > 4:
a, b, offset, bond_order, bond_offset = pair
else:
raise RuntimeError('Each list in bondatom must have at least '
'2 entries. Error at %s' % pair)
if len(offset) != 3:
raise ValueError('offset must have 3 elements. '
'Error at %s' % pair)
if len(bond_offset) != 3:
raise ValueError('bond_offset must have 3 elements. '
'Error at %s' % pair)
if bond_order not in [0, 1, 2, 3]:
raise ValueError('bond_order must be either 0, 1, 2, or 3. '
'Error at %s' % pair)
# Up to here, we should have all a, b, offset, bond_order,
# bond_offset for all bonds.
# Rotate bond_offset so that its direction is 90 deg. off the bond
# Utilize Atoms object to rotate
if bond_order > 1 and np.linalg.norm(bond_offset) > 1.e-9:
tmp_atoms = Atoms('H3')
tmp_atoms.set_cell(self.cell)
tmp_atoms.set_positions([
self.positions[a],
self.positions[b],
self.positions[b] + np.array(bond_offset),
])
tmp_atoms.center()
tmp_atoms.set_angle(0, 1, 2, 90)
bond_offset = tmp_atoms[2].position - tmp_atoms[1].position
R = np.dot(offset, self.cell)
mida = 0.5 * (self.positions[a] + self.positions[b] + R)
midb = 0.5 * (self.positions[a] + self.positions[b] - R)
if self.textures is not None:
texa = self.textures[a]
texb = self.textures[b]
else:
texa = texb = 'ase3'
if self.transmittances is not None:
transa = self.transmittances[a]
transb = self.transmittances[b]
else:
transa = transb = 0.
# draw bond, according to its bond_order.
# bond_order == 0: No bond is plotted
# bond_order == 1: use original code
# bond_order == 2: draw two bonds, one is shifted by bond_offset/2,
# and another is shifted by -bond_offset/2.
# bond_order == 3: draw two bonds, one is shifted by bond_offset,
# and one is shifted by -bond_offset, and the
# other has no shift.
# To shift the bond, add the shift to the first two coordinate in
# write statement.
posa = self.positions[a]
posb = self.positions[b]
cola = self.colors[a]
colb = self.colors[b]
if bond_order == 1:
draw_tuples = (posa, mida, cola, transa, texa),\
(posb, midb, colb, transb, texb)
elif bond_order == 2:
bs = [x / 2 for x in bond_offset]
draw_tuples = (posa - bs, mida - bs, cola, transa, texa),\
(posb - bs, midb - bs, colb, transb, texb),\
(posa + bs, mida + bs, cola, transa, texa),\
(posb + bs, midb + bs, colb, transb, texb)
elif bond_order == 3:
bs = bond_offset
draw_tuples = (posa, mida, cola, transa, texa),\
(posb, midb, colb, transb, texb),\
(posa + bs, mida + bs, cola, transa, texa),\
(posb + bs, midb + bs, colb, transb, texb),\
(posa - bs, mida - bs, cola, transa, texa),\
(posb - bs, midb - bs, colb, transb, texb)
bondatoms += ''.join(f'cylinder {{{pa(p)}, '
f'{pa(m)}, Rbond texture{{pigment '
f'{{color {pc(c)} '
f'transmit {tr}}} finish{{{tx}}}}}}}\n'
for p, m, c, tr, tx in
draw_tuples)
bondatoms = bondatoms.strip('\n')
# Draw constraints if requested
constraints = ''
if self.exportconstraints:
for a in self.constrainatoms:
dia = self.diameters[a]
loc = self.positions[a]
trans = 0.0
if self.transmittances is not None:
trans = self.transmittances[a]
constraints += f'constrain({pa(loc)}, {dia/2.:.2f}, Black, '\
f'{trans}, {tex}) // #{a:n} \n'
constraints = constraints.strip('\n')
pov = f"""#include "colors.inc"
#include "finish.inc"
global_settings {{assumed_gamma 1 max_trace_level 6}}
background {{{pc(self.background)}{' transmit 1.0' if self.transparent else ''}}}
camera {{{self.camera_type}
right -{self.image_width:.2f}*x up {self.image_height:.2f}*y
direction {self.image_plane:.2f}*z
location <0,0,{self.camera_dist:.2f}> look_at <0,0,0>}}
{point_lights}
{area_light if area_light != '' else '// no area light'}
{fog if fog != '' else '// no fog'}
{mat_style_keys}
#declare Rcell = {self.celllinewidth:.3f};
#declare Rbond = {self.bondlinewidth:.3f};
#macro atom(LOC, R, COL, TRANS, FIN)
sphere{{LOC, R texture{{pigment{{color COL transmit TRANS}} finish{{FIN}}}}}}
#end
#macro constrain(LOC, R, COL, TRANS FIN)
union{{torus{{R, Rcell rotate 45*z texture{{pigment{{color COL transmit TRANS}} finish{{FIN}}}}}}
torus{{R, Rcell rotate -45*z texture{{pigment{{color COL transmit TRANS}} finish{{FIN}}}}}}
translate LOC}}
#end
{cell_vertices if cell_vertices != '' else '// no cell vertices'}
{atoms}
{bondatoms}
{constraints if constraints != '' else '// no constraints'}
""" # noqa: E501
with open(path, 'w') as fd:
fd.write(pov)
return path
def write(self, pov_path):
pov_path = require_pov(pov_path)
ini_path = pov_path.with_suffix('.ini')
self.write_ini(ini_path)
self.write_pov(pov_path)
if self.isosurfaces is not None:
with open(pov_path, 'a') as fd:
for iso in self.isosurfaces:
fd.write(iso.format_mesh())
return POVRAYInputs(ini_path)
def require_pov(path):
path = Path(path)
if path.suffix != '.pov':
raise ValueError(f'Expected .pov path, got {path}')
return path
class POVRAYInputs:
def __init__(self, path):
self.path = path
def render(self, povray_executable='povray', stderr=DEVNULL,
clean_up=False):
cmd = [povray_executable, str(self.path)]
check_call(cmd, stderr=stderr)
png_path = self.path.with_suffix('.png').absolute()
if not png_path.is_file():
raise RuntimeError(f'Povray left no output PNG file "{png_path}"')
if clean_up:
unlink(self.path)
unlink(self.path.with_suffix('.pov'))
return png_path
class POVRAYIsosurface:
def __init__(self, density_grid, cut_off, cell, cell_origin,
closed_edges=False, gradient_ascending=False,
color=(0.85, 0.80, 0.25, 0.2), material='ase3'):
"""
density_grid: 3D float ndarray
A regular grid on that spans the cell. The first dimension
corresponds to the first cell vector and so on.
cut_off: float
The density value of the isosurface.
cell: 2D float ndarray or ASE cell object
The 3 vectors which give the cell's repetition
cell_origin: 4 float tuple
The cell origin as used by POVRAY object
closed_edges: bool
Setting this will fill in isosurface edges at the cell boundaries.
Filling in the edges can help with visualizing
highly porous structures.
gradient_ascending: bool
Lets you pick the area you want to enclose, i.e., should the denser
or less dense area be filled in.
color: povray color string, float, or float tuple
1 float is interpreted as grey scale, a 3 float tuple is rgb,
4 float tuple is rgbt, and 5 float tuple is rgbft, where
t is transmission fraction and f is filter fraction.
Named Povray colors are set in colors.inc
(http://wiki.povray.org/content/Reference:Colors.inc)
material: string
Can be a finish macro defined by POVRAY.material_styles
or a full Povray material {...} specification. Using a
full material specification willoverride the color parameter.
"""
self.gradient_direction = 'ascent' if gradient_ascending else 'descent'
self.color = color
self.material = material
self.closed_edges = closed_edges
self._cut_off = cut_off
if self.gradient_direction == 'ascent':
cv = 2 * cut_off
else:
cv = 0
if closed_edges:
shape_old = density_grid.shape
# since well be padding, we need to keep the data at origin
cell_origin += -(1.0 / np.array(shape_old)) @ cell
density_grid = np.pad(
density_grid, pad_width=(
1,), mode='constant', constant_values=cv)
shape_new = density_grid.shape
s = np.array(shape_new) / np.array(shape_old)
cell = cell @ np.diag(s)
self.cell = cell
self.cell_origin = cell_origin
self.density_grid = density_grid
self.spacing = tuple(1.0 / np.array(self.density_grid.shape))
scaled_verts, faces, normals, values = self.compute_mesh(
self.density_grid,
self.cut_off,
self.spacing,
self.gradient_direction)
# The verts are scaled by default, this is the super easy way of
# distributing them in real space but it's easier to do affine
# transformations/rotations on a unit cube so I leave it like that
# verts = scaled_verts.dot(self.cell)
self.verts = scaled_verts
self.faces = faces
@property
def cut_off(self):
return self._cut_off
@cut_off.setter
def cut_off(self, value):
raise Exception("Use the set_cut_off method")
def set_cut_off(self, value):
self._cut_off = value
if self.gradient_direction == 'ascent':
cv = 2 * self.cut_off
else:
cv = 0
if self.closed_edges:
shape_old = self.density_grid.shape
# since well be padding, we need to keep the data at origin
self.cell_origin += -(1.0 / np.array(shape_old)) @ self.cell
self.density_grid = np.pad(
self.density_grid, pad_width=(
1,), mode='constant', constant_values=cv)
shape_new = self.density_grid.shape
s = np.array(shape_new) / np.array(shape_old)
self.cell = self.cell @ np.diag(s)
self.spacing = tuple(1.0 / np.array(self.density_grid.shape))
scaled_verts, faces, _, _ = self.compute_mesh(
self.density_grid,
self.cut_off,
self.spacing,
self.gradient_direction)
self.verts = scaled_verts
self.faces = faces
@classmethod
def from_POVRAY(cls, povray, density_grid, cut_off, **kwargs):
return cls(cell=povray.cell,
cell_origin=povray.cell_vertices[0, 0, 0],
density_grid=density_grid,
cut_off=cut_off, **kwargs)
@staticmethod
def wrapped_triples_section(triple_list,
triple_format="<{:f}, {:f}, {:f}>".format,
triples_per_line=4):
triples = [triple_format(*x) for x in triple_list]
n = len(triples)
s = ''
tpl = triples_per_line
c = 0
while c < n - tpl:
c += tpl
s += '\n '
s += ', '.join(triples[c - tpl:c])
s += '\n '
s += ', '.join(triples[c:])
return s
@staticmethod
def compute_mesh(density_grid, cut_off, spacing, gradient_direction):
"""
Import statement is in this method and not file header
since few users will use isosurface rendering.
Returns scaled_verts, faces, normals, values. See skimage docs.
"""
from skimage import measure
return measure.marching_cubes_lewiner(
density_grid,
level=cut_off,
spacing=spacing,
gradient_direction=gradient_direction,
allow_degenerate=False)
def format_mesh(self):
"""Returns a formatted data output for POVRAY files
Example:
material = '''
material { // This material looks like pink jelly
texture {
pigment { rgbt <0.8, 0.25, 0.25, 0.5> }
finish{ diffuse 0.85 ambient 0.99 brilliance 3 specular 0.5 roughness 0.001
reflection { 0.05, 0.98 fresnel on exponent 1.5 }
conserve_energy
}
}
interior { ior 1.3 }
}
photons {
target
refraction on
reflection on
collect on
}'''
""" # noqa: E501
if self.material in POVRAY.material_styles_dict:
material = f"""material {{
texture {{
pigment {{ {pc(self.color)} }}
finish {{ {self.material} }}
}}
}}"""
else:
material = self.material
# Start writing the mesh2
vertex_vectors = self.wrapped_triples_section(
triple_list=self.verts,
triple_format="<{:f}, {:f}, {:f}>".format,
triples_per_line=4)
face_indices = self.wrapped_triples_section(
triple_list=self.faces,
triple_format="<{:n}, {:n}, {:n}>".format,
triples_per_line=5)
cell = self.cell
cell_or = self.cell_origin
mesh2 = f"""\n\nmesh2 {{
vertex_vectors {{ {len(self.verts):n},
{vertex_vectors}
}}
face_indices {{ {len(self.faces):n},
{face_indices}
}}
{material if material != '' else '// no material'}
matrix < {cell[0][0]:f}, {cell[0][1]:f}, {cell[0][2]:f},
{cell[1][0]:f}, {cell[1][1]:f}, {cell[1][2]:f},
{cell[2][0]:f}, {cell[2][1]:f}, {cell[2][2]:f},
{cell_or[0]:f}, {cell_or[1]:f}, {cell_or[2]:f}>
}}
"""
return mesh2
def pop_deprecated(dct, name):
import warnings
if name in dct:
del dct[name]
warnings.warn(f'The "{name}" keyword of write_pov() is deprecated '
'and has no effect; this will raise an error in the '
'future.', FutureWarning)
def write_pov(filename, atoms, *,
povray_settings=None, isosurface_data=None,
**generic_projection_settings):
for name in ['run_povray', 'povray_path', 'stderr', 'extras']:
pop_deprecated(generic_projection_settings, name)
if povray_settings is None:
povray_settings = {}
pvars = PlottingVariables(atoms, scale=1.0, **generic_projection_settings)
pov_obj = POVRAY.from_PlottingVariables(pvars, **povray_settings)
if isinstance(isosurface_data, Mapping):
pov_obj.isosurfaces = [POVRAYIsosurface.from_POVRAY(
pov_obj, **isosurface_data)]
elif isinstance(isosurface_data, Sequence):
pov_obj.isosurfaces = [POVRAYIsosurface.from_POVRAY(
pov_obj, **isodata) for isodata in isosurface_data]
return pov_obj.write(filename)
|