File: test_emt_h3o2m.py

package info (click to toggle)
python-ase 3.21.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,936 kB
  • sloc: python: 122,428; xml: 946; makefile: 111; javascript: 47
file content (70 lines) | stat: -rw-r--r-- 2,006 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from math import radians, sin, cos
import pytest
from ase import Atoms
from ase.neb import NEB
from ase.constraints import FixAtoms
from ase.calculators.emt import EMT
from ase.optimize import QuasiNewton, BFGS


# http://jcp.aip.org/resource/1/jcpsa6/v97/i10/p7507_s1
doo = 2.74
doht = 0.957
doh = 0.977
angle = radians(104.5)


@pytest.fixture
def initial():
    return Atoms('HOHOH',
                 positions=[(-sin(angle) * doht, 0., cos(angle) * doht),
                            (0., 0., 0.),
                            (0., 0., doh),
                            (0., 0., doo),
                            (sin(angle) * doht, 0., doo - cos(angle) * doht)])


@pytest.fixture
def final(initial):
    atoms = initial.copy()
    atoms.positions[2, 2] = doo - doh
    return atoms


def test_emt_h3o2m(initial, final):
    # Make band:
    images = [initial.copy()]
    for i in range(3):
        images.append(initial.copy())
    images.append(final.copy())
    neb = NEB(images, climb=True)

    # Set constraints and calculator:
    constraint = FixAtoms(indices=[1, 3])  # fix OO
    for image in images:
        image.calc = EMT()
        image.set_constraint(constraint)

    for image in images:  # O-H(shared) distance
        print(image.get_distance(1, 2), image.get_potential_energy())

    # Relax initial and final states:
    # One would have to optimize more tightly in order to get
    # symmetric anion from both images[0] and [1], but
    # if one optimizes tightly one gets rotated(H2O) ... OH- instead
    dyn1 = QuasiNewton(images[0])
    dyn1.run(fmax=0.01)
    dyn2 = QuasiNewton(images[-1])
    dyn2.run(fmax=0.01)

    # Interpolate positions between initial and final states:
    neb.interpolate()

    for image in images:
        print(image.get_distance(1, 2), image.get_potential_energy())

    with BFGS(neb, trajectory='emt_h3o2m.traj') as dyn:
        dyn.run(fmax=0.05)

    for image in images:
        print(image.get_distance(1, 2), image.get_potential_energy())