1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
import pytest
from ase import Atoms
from ase.units import fs, GPa, bar
from ase.build import bulk
from ase.md.nvtberendsen import NVTBerendsen
from ase.md.nptberendsen import NPTBerendsen
from ase.md.npt import NPT
from ase.utils import seterr
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution, Stationary
import numpy as np
@pytest.fixture(scope='module')
def berendsenparams():
"""Parameters for the two Berendsen algorithms."""
Bgold = 220.0 * GPa # Bulk modulus of gold, in bar (1 GPa = 10000 bar)
nvtparam = dict(temperature_K=300, taut=1000 * fs)
nptparam = dict(temperature_K=300, pressure_au=5000 * bar, taut=1000 * fs,
taup=1000 * fs,
compressibility_au=1 / Bgold)
return dict(nvt=nvtparam, npt=nptparam)
@pytest.fixture(scope='module')
def equilibrated(asap3, berendsenparams):
"""Make an atomic system with equilibrated temperature and pressure."""
rng = np.random.RandomState(42)
with seterr(all='raise'):
print()
# Must be big enough to avoid ridiculous fluctuations
atoms = bulk('Au', cubic=True).repeat((3, 3, 3))
#a[5].symbol = 'Ag'
print(atoms)
atoms.calc = asap3.EMT()
MaxwellBoltzmannDistribution(atoms, temperature_K=100, force_temp=True,
rng=rng)
Stationary(atoms)
assert abs(atoms.get_temperature() - 100) < 0.0001
md = NPTBerendsen(atoms, timestep=20 * fs, logfile='-',
loginterval=200,
**berendsenparams['npt'])
# Equilibrate for 20 ps
md.run(steps=1000)
T = atoms.get_temperature()
pres = -atoms.get_stress(
include_ideal_gas=True)[:3].sum() / 3 / GPa * 10000
print("Temperature: {:.2f} K Pressure: {:.2f} bar".format(T, pres))
return atoms
def propagate(atoms, asap3, algorithm, algoargs):
with seterr(all='raise'):
print()
md = algorithm(
atoms,
timestep=20 * fs,
logfile='-',
loginterval=1000,
**algoargs)
# Gather data for 50 ps
T = []
p = []
for i in range(500):
md.run(5)
T.append(atoms.get_temperature())
pres = - atoms.get_stress(include_ideal_gas=True)[:3].sum() / 3
p.append(pres)
Tmean = np.mean(T)
p = np.array(p)
pmean = np.mean(p)
print('Temperature: {:.2f} K +/- {:.2f} K (N={})'.format(
Tmean, np.std(T), len(T)))
print('Center-of-mass corrected temperature: {:.2f} K'.format(
Tmean * len(atoms) / (len(atoms) - 1)))
print('Pressure: {:.2f} bar +/- {:.2f} bar (N={})'.format(
pmean / bar, np.std(p) / bar, len(p)))
return Tmean, pmean
@pytest.mark.slow
def test_nvtberendsen(asap3, equilibrated, berendsenparams):
t, _ = propagate(Atoms(equilibrated), asap3,
NVTBerendsen, berendsenparams['nvt'])
assert abs(t - berendsenparams['nvt']['temperature_K']) < 0.5
@pytest.mark.slow
def test_nptberendsen(asap3, equilibrated, berendsenparams):
t, p = propagate(Atoms(equilibrated), asap3,
NPTBerendsen, berendsenparams['npt'])
assert abs(t - berendsenparams['npt']['temperature_K']) < 1.0
assert abs(p - berendsenparams['npt']['pressure_au']) < 25.0 * bar
@pytest.mark.slow
def test_npt(asap3, equilibrated, berendsenparams):
params = berendsenparams['npt']
# NPT uses different units. The factor 1.3 is the bulk modulus of gold in
# ev/Å^3
t, p = propagate(Atoms(equilibrated), asap3, NPT,
dict(temperature_K=params['temperature_K'],
externalstress=params['pressure_au'],
ttime=params['taut'],
pfactor=params['taup']**2 * 1.3))
# Unlike NPTBerendsen, NPT assumes that the center of mass is not
# thermalized, so the kinetic energy should be 3/2 ' kB * (N-1) * T
n = len(equilibrated)
assert abs(t - (n - 1) / n * berendsenparams['npt']['temperature_K']) < 1.0
assert abs(p - berendsenparams['npt']['pressure_au']) < 100.0 * bar
|