1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
import pytest
import numpy as np
from ase.quaternions import Quaternion
TEST_N = 200
def axang_rotm(u, theta):
u = np.array(u, float)
u /= np.linalg.norm(u)
# Cross product matrix for u
ucpm = np.array([[0, -u[2], u[1]], [u[2], 0, -u[0]], [-u[1], u[0], 0]])
# Rotation matrix
rotm = (np.cos(theta) * np.identity(3) + np.sin(theta) * ucpm +
(1 - np.cos(theta)) * np.kron(u[:, None], u[None, :]))
return rotm
def rand_rotm(rng=np.random.RandomState(0)):
"""Axis & angle rotations."""
u = rng.rand(3)
theta = rng.rand() * np.pi * 2
return axang_rotm(u, theta)
def eulang_rotm(a, b, c, mode='zyz'):
rota = axang_rotm([0, 0, 1], a)
rotc = axang_rotm([0, 0, 1], c)
if mode == 'zyz':
rotb = axang_rotm([0, 1, 0], b)
elif mode == 'zxz':
rotb = axang_rotm([1, 0, 0], b)
return np.dot(rotc, np.dot(rotb, rota))
@pytest.fixture
def rng():
return np.random.RandomState(0)
def test_quaternions_rotations(rng):
# First: test that rotations DO work
for i in range(TEST_N):
# n random tests
rotm = rand_rotm(rng)
q = Quaternion.from_matrix(rotm)
assert np.allclose(rotm, q.rotation_matrix())
# Now test this with a vector
v = rng.rand(3)
vrotM = np.dot(rotm, v)
vrotQ = q.rotate(v)
assert np.allclose(vrotM, vrotQ)
def test_quaternions_gimbal(rng):
# Second: test the special case of a PI rotation
rotm = np.identity(3)
rotm[:2, :2] *= -1 # Rotate PI around z axis
q = Quaternion.from_matrix(rotm)
assert not np.isnan(q.q).any()
def test_quaternions_overload(rng):
# Third: test compound rotations and operator overload
for i in range(TEST_N):
rotm1 = rand_rotm(rng)
rotm2 = rand_rotm(rng)
q1 = Quaternion.from_matrix(rotm1)
q2 = Quaternion.from_matrix(rotm2)
assert np.allclose(np.dot(rotm2, rotm1),
(q2 * q1).rotation_matrix())
# Now test this with a vector
v = rng.rand(3)
vrotM = np.dot(rotm2, np.dot(rotm1, v))
vrotQ = (q2 * q1).rotate(v)
assert np.allclose(vrotM, vrotQ)
def test_quaternions_euler(rng):
# Fourth: test Euler angles
for mode in ['zyz', 'zxz']:
for i in range(TEST_N):
abc = rng.rand(3) * 2 * np.pi
q_eul = Quaternion.from_euler_angles(*abc, mode=mode)
rot_eul = eulang_rotm(*abc, mode=mode)
assert(np.allclose(rot_eul, q_eul.rotation_matrix()))
# Test conversion back and forth
abc_2 = q_eul.euler_angles(mode=mode)
q_eul_2 = Quaternion.from_euler_angles(*abc_2, mode=mode)
assert(np.allclose(q_eul_2.q, q_eul.q))
def test_quaternions_rotm(rng):
# Fifth: test that conversion back to rotation matrices works properly
for i in range(TEST_N):
rotm1 = rand_rotm(rng)
rotm2 = rand_rotm(rng)
q1 = Quaternion.from_matrix(rotm1)
q2 = Quaternion.from_matrix(rotm2)
assert(np.allclose(q1.rotation_matrix(), rotm1))
assert(np.allclose(q2.rotation_matrix(), rotm2))
assert(np.allclose((q1 * q2).rotation_matrix(), np.dot(rotm1, rotm2)))
assert(np.allclose((q1 * q2).rotation_matrix(), np.dot(rotm1, rotm2)))
def test_quaternions_axang(rng):
# Sixth: test conversion to axis + angle
q = Quaternion()
n, theta = q.axis_angle()
assert(theta == 0)
u = np.array([1, 0.5, 1])
u /= np.linalg.norm(u)
alpha = 1.25
q = Quaternion.from_matrix(axang_rotm(u, alpha))
n, theta = q.axis_angle()
assert(np.isclose(theta, alpha))
assert(np.allclose(u, n))
|