File: franck_condon.py

package info (click to toggle)
python-ase 3.21.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,936 kB
  • sloc: python: 122,428; xml: 946; makefile: 111; javascript: 47
file content (401 lines) | stat: -rw-r--r-- 13,182 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from functools import reduce
from itertools import combinations, chain
from math import factorial
from operator import mul

import numpy as np

from ase.units import kg, C, _hbar, kB
from ase.vibrations import Vibrations


class Factorial:
    def __init__(self):
        self._fac = [1]
        self._inv = [1.]

    def __call__(self, n):
        try:
            return self._fac[n]
        except IndexError:
            for i in range(len(self._fac), n + 1):
                self._fac.append(i * self._fac[i - 1])
                try:
                    self._inv.append(float(1. / self._fac[-1]))
                except OverflowError:
                    self._inv.append(0.)
            return self._fac[n]

    def inv(self, n):
        self(n)
        return self._inv[n]


class FranckCondonOverlap:
    """Evaluate squared overlaps depending on the Huang-Rhys parameter."""
    def __init__(self):
        self.factorial = Factorial()

    def directT0(self, n, S):
        """|<0|n>|^2

        Direct squared Franck-Condon overlap corresponding to T=0.
        """
        return np.exp(-S) * S**n * self.factorial.inv(n)

    def direct(self, n, m, S_in):
        """|<n|m>|^2

        Direct squared Franck-Condon overlap.
        """
        if n > m:
            # use symmetry
            return self.direct(m, n, S_in)

        S = np.array([S_in])
        mask = np.where(S == 0)
        S[mask] = 1  # hide zeros
        s = 0
        for k in range(n + 1):
            s += (-1)**(n - k) * S**float(-k) / (
                self.factorial(k) *
                self.factorial(n - k) * self.factorial(m - k))
        res = np.exp(-S) * S**(n + m) * s**2 * (
            self.factorial(n) * self.factorial(m))
        # use othogonality
        res[mask] = int(n == m)
        return res[0]

    def direct0mm1(self, m, S):
        """<0|m><m|1>"""
        sum = S**m
        if m:
            sum -= m * S**(m - 1)
        return np.exp(-S) * np.sqrt(S) * sum * self.factorial.inv(m)

    def direct0mm2(self, m, S):
        """<0|m><m|2>"""
        sum = S**(m + 1)
        if m >= 1:
            sum -= 2 * m * S**m
        if m >= 2:
            sum += m * (m - 1) * S**(m - 1)
        return np.exp(-S) / np.sqrt(2) * sum * self.factorial.inv(m)


class FranckCondonRecursive:
    """Recursive implementation of Franck-Condon overlaps

    Notes
    -----
    The ovelaps are signed according to the sign of the displacements.

    Reference
    ---------
    Julien Guthmuller
    The Journal of Chemical Physics 144, 064106 (2016); doi: 10.1063/1.4941449
    """
    def __init__(self):
        self.factorial = Factorial()

    def ov0m(self, m, delta):
        if m == 0:
            return np.exp(-0.25 * delta**2)
        else:
            assert(m > 0)
            return - delta / np.sqrt(2 * m) * self.ov0m(m - 1, delta)
            
    def ov1m(self, m, delta):
        sum = delta * self.ov0m(m, delta) / np.sqrt(2.)
        if m == 0:
            return sum
        else:
            assert(m > 0)
            return sum + np.sqrt(m) * self.ov0m(m - 1, delta)
            
    def ov2m(self, m, delta):
        sum = delta * self.ov1m(m, delta) / 2
        if m == 0:
            return sum
        else:
            assert(m > 0)
            return sum + np.sqrt(m / 2.) * self.ov1m(m - 1, delta)
            
    def ov3m(self, m, delta):
        sum = delta * self.ov2m(m, delta) / np.sqrt(6.)
        if m == 0:
            return sum
        else:
            assert(m > 0)
            return sum + np.sqrt(m / 3.) * self.ov2m(m - 1, delta)
            
    def ov0mm1(self, m, delta):
        if m == 0:
            return delta / np.sqrt(2) * self.ov0m(m, delta)**2
        else:
            return delta / np.sqrt(2) * (
                self.ov0m(m, delta)**2 - self.ov0m(m - 1, delta)**2)
            
    def direct0mm1(self, m, delta):
        """direct and fast <0|m><m|1>"""
        S = delta**2 / 2.
        sum = S**m
        if m:
            sum -= m * S**(m - 1)
        return np.where(S == 0, 0,
                        (np.exp(-S) * delta / np.sqrt(2) * sum *
                         self.factorial.inv(m)))

    def ov0mm2(self, m, delta):
        if m == 0:
            return delta**2 / np.sqrt(8) * self.ov0m(m, delta)**2
        elif m == 1:
            return delta**2 / np.sqrt(8) * (
                self.ov0m(m, delta)**2 - 2 * self.ov0m(m - 1, delta)**2)
        else:
            return delta**2 / np.sqrt(8) * (
                self.ov0m(m, delta)**2 - 2 * self.ov0m(m - 1, delta)**2 +
                self.ov0m(m - 2, delta)**2)

    def direct0mm2(self, m, delta):
        """direct and fast <0|m><m|2>"""
        S = delta**2 / 2.
        sum = S**(m + 1)
        if m >= 1:
            sum -= 2 * m * S**m
        if m >= 2:
            sum += m * (m - 1) * S**(m - 1)
        return np.exp(-S) / np.sqrt(2) * sum * self.factorial.inv(m)

    def ov1mm2(self, m, delta):
        p1 = delta**3 / 4.
        sum = p1 * self.ov0m(m, delta)**2
        if m == 0:
            return sum
        p2 = delta - 3. * delta**3 / 4
        sum += p2 * self.ov0m(m - 1, delta)**2
        if m == 1:
            return sum
        sum -= p2 * self.ov0m(m - 2, delta)**2
        if m == 2:
            return sum
        return sum - p1 * self.ov0m(m - 3, delta)**2

    def direct1mm2(self, m, delta):
        S = delta**2 / 2.
        sum = S**2
        if m > 0:
            sum -= 2 * m * S
        if m > 1:
            sum += m * (m - 1)
        with np.errstate(divide='ignore', invalid='ignore'):
            return np.where(S == 0, 0,
                            (np.exp(-S) * S**(m - 1) / delta
                             * (S - m) * sum * self.factorial.inv(m)))

    def direct0mm3(self, m, delta):
        S = delta**2 / 2.
        with np.errstate(divide='ignore', invalid='ignore'):
            return np.where(
                S == 0, 0,
                (np.exp(-S) * S**(m - 1) / delta * np.sqrt(12.) *
                 (S**3 / 6. - m * S**2 / 2
                  + m * (m - 1) * S / 2. - m * (m - 1) * (m - 2) / 6)
                 * self.factorial.inv(m)))


class FranckCondon:
    def __init__(self, atoms, vibname, minfreq=-np.inf, maxfreq=np.inf):
        """Input is a atoms object and the corresponding vibrations.
        With minfreq and maxfreq frequencies can
        be excluded from the calculation"""

        self.atoms = atoms
        # V = a * v is the combined atom and xyz-index
        self.mm05_V = np.repeat(1. / np.sqrt(atoms.get_masses()), 3)
        self.minfreq = minfreq
        self.maxfreq = maxfreq
        self.shape = (len(self.atoms), 3)

        vib = Vibrations(atoms, name=vibname)
        self.energies = np.real(vib.get_energies(method='frederiksen'))  # [eV]
        self.frequencies = np.real(
            vib.get_frequencies(method='frederiksen'))  # [cm^-1]
        self.modes = vib.modes
        self.H = vib.H

    def get_Huang_Rhys_factors(self, forces):
        """Evaluate Huang-Rhys factors and corresponding frequencies
        from forces on atoms in the exited electronic state.
        The double harmonic approximation is used. HR factors are
        the first approximation of FC factors,
        no combinations or higher quanta (>1) exitations are considered"""

        assert(forces.shape == self.shape)

        # Hesse matrix
        H_VV = self.H
        # sqrt of inverse mass matrix
        mm05_V = self.mm05_V
        # mass weighted Hesse matrix
        Hm_VV = mm05_V[:, None] * H_VV * mm05_V
        # mass weighted displacements
        Fm_V = forces.flat * mm05_V
        X_V = np.linalg.solve(Hm_VV, Fm_V)
        # projection onto the modes
        modes_VV = self.modes
        d_V = np.dot(modes_VV, X_V)
        # Huang-Rhys factors S
        s = 1.e-20 / kg / C / _hbar**2  # SI units
        S_V = s * d_V**2 * self.energies / 2

        # reshape for minfreq
        indices = np.where(self.frequencies <= self.minfreq)
        np.append(indices, np.where(self.frequencies >= self.maxfreq))
        S_V = np.delete(S_V, indices)
        frequencies = np.delete(self.frequencies, indices)

        return S_V, frequencies

    def get_Franck_Condon_factors(self, temperature, forces, order=1):
        """Return FC factors and corresponding frequencies up to given order.

        Parameters
        ----------
        temperature: float
          Temperature in K. Vibronic levels are occupied by a
          Boltzman distribution.
        forces: array
          Forces on atoms in the exited electronic state
        order: int
          number of quanta taken into account, default

        Returns
        --------
        FC: 3 entry list
          FC[0] = FC factors for 0-0 and +-1 vibrational quantum
          FC[1] = FC factors for +-2 vibrational quanta
          FC[2] = FC factors for combinations
        frequencies: 3 entry list
          frequencies[0] correspond to FC[0]
          frequencies[1] correspond to FC[1]
          frequencies[2] correspond to FC[2]
        """
        S, f = self.get_Huang_Rhys_factors(forces)
        assert order > 0
        n = order + 1
        T = temperature
        freq = np.array(f)

        # frequencies and their multiples
        freq_n = [[] * i for i in range(n - 1)]
        freq_neg = [[] * i for i in range(n - 1)]

        for i in range(1, n):
            freq_n[i - 1] = freq * i
            freq_neg[i - 1] = freq * (-i)

        # combinations
        freq_nn = [x for x in combinations(chain(*freq_n), 2)]
        for i in range(len(freq_nn)):
            freq_nn[i] = freq_nn[i][0] + freq_nn[i][1]

        indices2 = []
        for i, y in enumerate(freq):
            ind = [j for j, x in enumerate(freq_nn) if y == 0 or x % y == 0]
            indices2.append(ind)
        indices2 = [x for x in chain(*indices2)]
        freq_nn = np.delete(freq_nn, indices2)

        frequencies = [[] * x for x in range(3)]
        frequencies[0].append(freq_neg[0])
        frequencies[0].append([0])
        frequencies[0].append(freq_n[0])
        frequencies[0] = [x for x in chain(*frequencies[0])]

        for i in range(1, n - 1):
            frequencies[1].append(freq_neg[i])
            frequencies[1].append(freq_n[i])
        frequencies[1] = [x for x in chain(*frequencies[1])]

        frequencies[2] = freq_nn

        # Franck-Condon factors
        E = freq / 8065.5
        f_n = [[] * i for i in range(n)]

        for j in range(0, n):
            f_n[j] = np.exp(-E * j / (kB * T))

        # partition function
        Z = np.empty(len(S))
        Z = np.sum(f_n, 0)

        # occupation probability
        w_n = [[] * k for k in range(n)]
        for l in range(n):
            w_n[l] = f_n[l] / Z

        # overlap wavefunctions
        O_n = [[] * m for m in range(n)]
        O_neg = [[] * m for m in range(n)]
        for o in range(n):
            O_n[o] = [[] * p for p in range(n)]
            O_neg[o] = [[] * p for p in range(n - 1)]
            for q in range(o, n + o):
                a = np.minimum(o, q)
                summe = []
                for k in range(a + 1):
                    s = ((-1)**(q - k) * np.sqrt(S)**(o + q - 2 * k) *
                         factorial(o) * factorial(q) /
                         (factorial(k) * factorial(o - k) * factorial(q - k)))
                    summe.append(s)
                summe = np.sum(summe, 0)
                O_n[o][q - o] = (np.exp(-S / 2) /
                                 (factorial(o) * factorial(q))**(0.5) *
                                 summe)**2 * w_n[o]
            for q in range(n - 1):
                O_neg[o][q] = [0 * b for b in range(len(S))]
            for q in range(o - 1, -1, -1):
                a = np.minimum(o, q)
                summe = []
                for k in range(a + 1):
                    s = ((-1)**(q - k) * np.sqrt(S)**(o + q - 2 * k) *
                         factorial(o) * factorial(q) /
                         (factorial(k) * factorial(o - k) * factorial(q - k)))
                    summe.append(s)
                summe = np.sum(summe, 0)
                O_neg[o][q] = (np.exp(-S / 2) /
                               (factorial(o) * factorial(q))**(0.5) *
                               summe)**2 * w_n[o]
        O_neg = np.delete(O_neg, 0, 0)

        # Franck-Condon factors
        FC_n = [[] * i for i in range(n)]
        FC_n = np.sum(O_n, 0)
        zero = reduce(mul, FC_n[0])
        FC_neg = [[] * i for i in range(n - 2)]
        FC_neg = np.sum(O_neg, 0)
        FC_n = np.delete(FC_n, 0, 0)

        # combination FC factors
        FC_nn = [x for x in combinations(chain(*FC_n), 2)]
        for i in range(len(FC_nn)):
            FC_nn[i] = FC_nn[i][0] * FC_nn[i][1]

        FC_nn = np.delete(FC_nn, indices2)

        FC = [[] * x for x in range(3)]
        FC[0].append(FC_neg[0])
        FC[0].append([zero])
        FC[0].append(FC_n[0])
        FC[0] = [x for x in chain(*FC[0])]

        for i in range(1, n - 1):
            FC[1].append(FC_neg[i])
            FC[1].append(FC_n[i])
        FC[1] = [x for x in chain(*FC[1])]

        FC[2] = FC_nn

        return FC, frequencies