1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
from functools import reduce
from itertools import combinations, chain
from math import factorial
from operator import mul
import numpy as np
from ase.units import kg, C, _hbar, kB
from ase.vibrations import Vibrations
class Factorial:
def __init__(self):
self._fac = [1]
self._inv = [1.]
def __call__(self, n):
try:
return self._fac[n]
except IndexError:
for i in range(len(self._fac), n + 1):
self._fac.append(i * self._fac[i - 1])
try:
self._inv.append(float(1. / self._fac[-1]))
except OverflowError:
self._inv.append(0.)
return self._fac[n]
def inv(self, n):
self(n)
return self._inv[n]
class FranckCondonOverlap:
"""Evaluate squared overlaps depending on the Huang-Rhys parameter."""
def __init__(self):
self.factorial = Factorial()
def directT0(self, n, S):
"""|<0|n>|^2
Direct squared Franck-Condon overlap corresponding to T=0.
"""
return np.exp(-S) * S**n * self.factorial.inv(n)
def direct(self, n, m, S_in):
"""|<n|m>|^2
Direct squared Franck-Condon overlap.
"""
if n > m:
# use symmetry
return self.direct(m, n, S_in)
S = np.array([S_in])
mask = np.where(S == 0)
S[mask] = 1 # hide zeros
s = 0
for k in range(n + 1):
s += (-1)**(n - k) * S**float(-k) / (
self.factorial(k) *
self.factorial(n - k) * self.factorial(m - k))
res = np.exp(-S) * S**(n + m) * s**2 * (
self.factorial(n) * self.factorial(m))
# use othogonality
res[mask] = int(n == m)
return res[0]
def direct0mm1(self, m, S):
"""<0|m><m|1>"""
sum = S**m
if m:
sum -= m * S**(m - 1)
return np.exp(-S) * np.sqrt(S) * sum * self.factorial.inv(m)
def direct0mm2(self, m, S):
"""<0|m><m|2>"""
sum = S**(m + 1)
if m >= 1:
sum -= 2 * m * S**m
if m >= 2:
sum += m * (m - 1) * S**(m - 1)
return np.exp(-S) / np.sqrt(2) * sum * self.factorial.inv(m)
class FranckCondonRecursive:
"""Recursive implementation of Franck-Condon overlaps
Notes
-----
The ovelaps are signed according to the sign of the displacements.
Reference
---------
Julien Guthmuller
The Journal of Chemical Physics 144, 064106 (2016); doi: 10.1063/1.4941449
"""
def __init__(self):
self.factorial = Factorial()
def ov0m(self, m, delta):
if m == 0:
return np.exp(-0.25 * delta**2)
else:
assert(m > 0)
return - delta / np.sqrt(2 * m) * self.ov0m(m - 1, delta)
def ov1m(self, m, delta):
sum = delta * self.ov0m(m, delta) / np.sqrt(2.)
if m == 0:
return sum
else:
assert(m > 0)
return sum + np.sqrt(m) * self.ov0m(m - 1, delta)
def ov2m(self, m, delta):
sum = delta * self.ov1m(m, delta) / 2
if m == 0:
return sum
else:
assert(m > 0)
return sum + np.sqrt(m / 2.) * self.ov1m(m - 1, delta)
def ov3m(self, m, delta):
sum = delta * self.ov2m(m, delta) / np.sqrt(6.)
if m == 0:
return sum
else:
assert(m > 0)
return sum + np.sqrt(m / 3.) * self.ov2m(m - 1, delta)
def ov0mm1(self, m, delta):
if m == 0:
return delta / np.sqrt(2) * self.ov0m(m, delta)**2
else:
return delta / np.sqrt(2) * (
self.ov0m(m, delta)**2 - self.ov0m(m - 1, delta)**2)
def direct0mm1(self, m, delta):
"""direct and fast <0|m><m|1>"""
S = delta**2 / 2.
sum = S**m
if m:
sum -= m * S**(m - 1)
return np.where(S == 0, 0,
(np.exp(-S) * delta / np.sqrt(2) * sum *
self.factorial.inv(m)))
def ov0mm2(self, m, delta):
if m == 0:
return delta**2 / np.sqrt(8) * self.ov0m(m, delta)**2
elif m == 1:
return delta**2 / np.sqrt(8) * (
self.ov0m(m, delta)**2 - 2 * self.ov0m(m - 1, delta)**2)
else:
return delta**2 / np.sqrt(8) * (
self.ov0m(m, delta)**2 - 2 * self.ov0m(m - 1, delta)**2 +
self.ov0m(m - 2, delta)**2)
def direct0mm2(self, m, delta):
"""direct and fast <0|m><m|2>"""
S = delta**2 / 2.
sum = S**(m + 1)
if m >= 1:
sum -= 2 * m * S**m
if m >= 2:
sum += m * (m - 1) * S**(m - 1)
return np.exp(-S) / np.sqrt(2) * sum * self.factorial.inv(m)
def ov1mm2(self, m, delta):
p1 = delta**3 / 4.
sum = p1 * self.ov0m(m, delta)**2
if m == 0:
return sum
p2 = delta - 3. * delta**3 / 4
sum += p2 * self.ov0m(m - 1, delta)**2
if m == 1:
return sum
sum -= p2 * self.ov0m(m - 2, delta)**2
if m == 2:
return sum
return sum - p1 * self.ov0m(m - 3, delta)**2
def direct1mm2(self, m, delta):
S = delta**2 / 2.
sum = S**2
if m > 0:
sum -= 2 * m * S
if m > 1:
sum += m * (m - 1)
with np.errstate(divide='ignore', invalid='ignore'):
return np.where(S == 0, 0,
(np.exp(-S) * S**(m - 1) / delta
* (S - m) * sum * self.factorial.inv(m)))
def direct0mm3(self, m, delta):
S = delta**2 / 2.
with np.errstate(divide='ignore', invalid='ignore'):
return np.where(
S == 0, 0,
(np.exp(-S) * S**(m - 1) / delta * np.sqrt(12.) *
(S**3 / 6. - m * S**2 / 2
+ m * (m - 1) * S / 2. - m * (m - 1) * (m - 2) / 6)
* self.factorial.inv(m)))
class FranckCondon:
def __init__(self, atoms, vibname, minfreq=-np.inf, maxfreq=np.inf):
"""Input is a atoms object and the corresponding vibrations.
With minfreq and maxfreq frequencies can
be excluded from the calculation"""
self.atoms = atoms
# V = a * v is the combined atom and xyz-index
self.mm05_V = np.repeat(1. / np.sqrt(atoms.get_masses()), 3)
self.minfreq = minfreq
self.maxfreq = maxfreq
self.shape = (len(self.atoms), 3)
vib = Vibrations(atoms, name=vibname)
self.energies = np.real(vib.get_energies(method='frederiksen')) # [eV]
self.frequencies = np.real(
vib.get_frequencies(method='frederiksen')) # [cm^-1]
self.modes = vib.modes
self.H = vib.H
def get_Huang_Rhys_factors(self, forces):
"""Evaluate Huang-Rhys factors and corresponding frequencies
from forces on atoms in the exited electronic state.
The double harmonic approximation is used. HR factors are
the first approximation of FC factors,
no combinations or higher quanta (>1) exitations are considered"""
assert(forces.shape == self.shape)
# Hesse matrix
H_VV = self.H
# sqrt of inverse mass matrix
mm05_V = self.mm05_V
# mass weighted Hesse matrix
Hm_VV = mm05_V[:, None] * H_VV * mm05_V
# mass weighted displacements
Fm_V = forces.flat * mm05_V
X_V = np.linalg.solve(Hm_VV, Fm_V)
# projection onto the modes
modes_VV = self.modes
d_V = np.dot(modes_VV, X_V)
# Huang-Rhys factors S
s = 1.e-20 / kg / C / _hbar**2 # SI units
S_V = s * d_V**2 * self.energies / 2
# reshape for minfreq
indices = np.where(self.frequencies <= self.minfreq)
np.append(indices, np.where(self.frequencies >= self.maxfreq))
S_V = np.delete(S_V, indices)
frequencies = np.delete(self.frequencies, indices)
return S_V, frequencies
def get_Franck_Condon_factors(self, temperature, forces, order=1):
"""Return FC factors and corresponding frequencies up to given order.
Parameters
----------
temperature: float
Temperature in K. Vibronic levels are occupied by a
Boltzman distribution.
forces: array
Forces on atoms in the exited electronic state
order: int
number of quanta taken into account, default
Returns
--------
FC: 3 entry list
FC[0] = FC factors for 0-0 and +-1 vibrational quantum
FC[1] = FC factors for +-2 vibrational quanta
FC[2] = FC factors for combinations
frequencies: 3 entry list
frequencies[0] correspond to FC[0]
frequencies[1] correspond to FC[1]
frequencies[2] correspond to FC[2]
"""
S, f = self.get_Huang_Rhys_factors(forces)
assert order > 0
n = order + 1
T = temperature
freq = np.array(f)
# frequencies and their multiples
freq_n = [[] * i for i in range(n - 1)]
freq_neg = [[] * i for i in range(n - 1)]
for i in range(1, n):
freq_n[i - 1] = freq * i
freq_neg[i - 1] = freq * (-i)
# combinations
freq_nn = [x for x in combinations(chain(*freq_n), 2)]
for i in range(len(freq_nn)):
freq_nn[i] = freq_nn[i][0] + freq_nn[i][1]
indices2 = []
for i, y in enumerate(freq):
ind = [j for j, x in enumerate(freq_nn) if y == 0 or x % y == 0]
indices2.append(ind)
indices2 = [x for x in chain(*indices2)]
freq_nn = np.delete(freq_nn, indices2)
frequencies = [[] * x for x in range(3)]
frequencies[0].append(freq_neg[0])
frequencies[0].append([0])
frequencies[0].append(freq_n[0])
frequencies[0] = [x for x in chain(*frequencies[0])]
for i in range(1, n - 1):
frequencies[1].append(freq_neg[i])
frequencies[1].append(freq_n[i])
frequencies[1] = [x for x in chain(*frequencies[1])]
frequencies[2] = freq_nn
# Franck-Condon factors
E = freq / 8065.5
f_n = [[] * i for i in range(n)]
for j in range(0, n):
f_n[j] = np.exp(-E * j / (kB * T))
# partition function
Z = np.empty(len(S))
Z = np.sum(f_n, 0)
# occupation probability
w_n = [[] * k for k in range(n)]
for l in range(n):
w_n[l] = f_n[l] / Z
# overlap wavefunctions
O_n = [[] * m for m in range(n)]
O_neg = [[] * m for m in range(n)]
for o in range(n):
O_n[o] = [[] * p for p in range(n)]
O_neg[o] = [[] * p for p in range(n - 1)]
for q in range(o, n + o):
a = np.minimum(o, q)
summe = []
for k in range(a + 1):
s = ((-1)**(q - k) * np.sqrt(S)**(o + q - 2 * k) *
factorial(o) * factorial(q) /
(factorial(k) * factorial(o - k) * factorial(q - k)))
summe.append(s)
summe = np.sum(summe, 0)
O_n[o][q - o] = (np.exp(-S / 2) /
(factorial(o) * factorial(q))**(0.5) *
summe)**2 * w_n[o]
for q in range(n - 1):
O_neg[o][q] = [0 * b for b in range(len(S))]
for q in range(o - 1, -1, -1):
a = np.minimum(o, q)
summe = []
for k in range(a + 1):
s = ((-1)**(q - k) * np.sqrt(S)**(o + q - 2 * k) *
factorial(o) * factorial(q) /
(factorial(k) * factorial(o - k) * factorial(q - k)))
summe.append(s)
summe = np.sum(summe, 0)
O_neg[o][q] = (np.exp(-S / 2) /
(factorial(o) * factorial(q))**(0.5) *
summe)**2 * w_n[o]
O_neg = np.delete(O_neg, 0, 0)
# Franck-Condon factors
FC_n = [[] * i for i in range(n)]
FC_n = np.sum(O_n, 0)
zero = reduce(mul, FC_n[0])
FC_neg = [[] * i for i in range(n - 2)]
FC_neg = np.sum(O_neg, 0)
FC_n = np.delete(FC_n, 0, 0)
# combination FC factors
FC_nn = [x for x in combinations(chain(*FC_n), 2)]
for i in range(len(FC_nn)):
FC_nn[i] = FC_nn[i][0] * FC_nn[i][1]
FC_nn = np.delete(FC_nn, indices2)
FC = [[] * x for x in range(3)]
FC[0].append(FC_neg[0])
FC[0].append([zero])
FC[0].append(FC_n[0])
FC[0] = [x for x in chain(*FC[0])]
for i in range(1, n - 1):
FC[1].append(FC_neg[i])
FC[1].append(FC_n[i])
FC[1] = [x for x in chain(*FC[1])]
FC[2] = FC_nn
return FC, frequencies
|