File: placzek.py

package info (click to toggle)
python-ase 3.21.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,936 kB
  • sloc: python: 122,428; xml: 946; makefile: 111; javascript: 47
file content (179 lines) | stat: -rw-r--r-- 6,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np

import ase.units as u
from ase.vibrations.raman import Raman, RamanPhonons
from ase.vibrations.resonant_raman import ResonantRaman
from ase.calculators.excitation_list import polarizability


class Placzek(ResonantRaman):
    """Raman spectra within the Placzek approximation."""
    def __init__(self, *args, **kwargs):
        self._approx = 'PlaczekAlpha'
        ResonantRaman.__init__(self, *args, **kwargs)

    def set_approximation(self, value):
        raise ValueError('Approximation can not be set.')

    def read_excitations(self):
        """Read excitations from files written"""
        self.ex0E_p = None  # mark as read
        self.exm_r = []
        self.exp_r = []
        for a, i in zip(self.myindices, self.myxyz):
            exname = '%s.%d%s-' % (self.exname, a, i) + self.exext
            self.log('reading ' + exname)
            self.exm_r.append(self.exobj.read(exname, **self.exkwargs))
            exname = '%s.%d%s+' % (self.exname, a, i) + self.exext
            self.log('reading ' + exname)
            self.exp_r.append(self.exobj.read(exname, **self.exkwargs))

    def electronic_me_Qcc(self, omega, gamma=0):
        self.calculate_energies_and_modes()
        
        self.timer.start('init')
        V_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        pre = 1. / (2 * self.delta)
        pre *= u.Hartree * u.Bohr  # e^2Angstrom^2 / eV -> Angstrom^3

        om = omega
        if gamma:
            om += 1j * gamma
        self.timer.stop('init')
        
        self.timer.start('alpha derivatives')
        for i, r in enumerate(self.myr):
            V_rcc[r] = pre * (
                polarizability(self.exp_r[i], om,
                               form=self.dipole_form, tensor=True) -
                polarizability(self.exm_r[i], om,
                               form=self.dipole_form, tensor=True))
        self.comm.sum(V_rcc)
        self.timer.stop('alpha derivatives')

        return self.map_to_modes(V_rcc)


class PlaczekStatic(Raman):
    def read_excitations(self):
        """Read excitations from files written"""
        self.al0_rr = None  # mark as read
        self.alm_rr = []
        self.alp_rr = []
        for a, i in zip(self.myindices, self.myxyz):
            exname = '%s.%d%s-' % (self.exname, a, i) + self.exext
            self.log('reading ' + exname)
            self.alm_rr.append(np.loadtxt(exname))
            exname = '%s.%d%s+' % (self.exname, a, i) + self.exext
            self.log('reading ' + exname)
            self.alp_rr.append(np.loadtxt(exname))
            
    def electronic_me_Qcc(self):
        self.calculate_energies_and_modes()
        
        self.timer.start('init')
        V_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        pre = 1. / (2 * self.delta)
        pre *= u.Hartree * u.Bohr  # e^2Angstrom^2 / eV -> Angstrom^3
        self.timer.stop('init')
        
        self.timer.start('alpha derivatives')
        for i, r in enumerate(self.myr):
            V_rcc[r] = pre * (self.alp_rr[i] - self.alm_rr[i])
        self.comm.sum(V_rcc)
        self.timer.stop('alpha derivatives')
 
        return self.map_to_modes(V_rcc)


class PlaczekStaticPhonons(RamanPhonons, PlaczekStatic):
    pass


class Profeta(ResonantRaman):
    """Profeta type approximations.

    Reference
    ---------
    Mickael Profeta and Francesco Mauri
    Phys. Rev. B 63 (2000) 245415
    """
    def __init__(self, *args, **kwargs):
        self.set_approximation(kwargs.pop('approximation', 'Profeta'))
        self.nonresonant = kwargs.pop('nonresonant', True)
        ResonantRaman.__init__(self, *args, **kwargs)

    def set_approximation(self, value):
        approx = value.lower()
        if approx in ['profeta', 'placzek', 'p-p']:
            self._approx = value
        else:
            raise ValueError('Please use "Profeta", "Placzek" or "P-P".')
        
    def electronic_me_profeta_rcc(self, omega, gamma=0.1,
                                  energy_derivative=False):
        """Raman spectra in Profeta and Mauri approximation

        Returns
        -------
        Electronic matrix element, unit Angstrom^2
         """
        self.calculate_energies_and_modes()

        self.timer.start('amplitudes')

        self.timer.start('init')
        V_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        pre = 1. / (2 * self.delta)
        pre *= u.Hartree * u.Bohr  # e^2Angstrom^2 / eV -> Angstrom^3
        self.timer.stop('init')

        def kappa_cc(me_pc, e_p, omega, gamma, form='v'):
            """Kappa tensor after Profeta and Mauri
            PRB 63 (2001) 245415"""
            k_cc = np.zeros((3, 3), dtype=complex)
            for p, me_c in enumerate(me_pc):
                me_cc = np.outer(me_c, me_c.conj())
                k_cc += me_cc / (e_p[p] - omega - 1j * gamma)
                if self.nonresonant:
                    k_cc += me_cc.conj() / (e_p[p] + omega + 1j * gamma)
            return k_cc

        self.timer.start('kappa')
        mr = 0
        for a, i, r in zip(self.myindices, self.myxyz, self.myr):
            if not energy_derivative < 0:
                V_rcc[r] += pre * (
                    kappa_cc(self.expm_rpc[mr], self.ex0E_p,
                             omega, gamma, self.dipole_form) -
                    kappa_cc(self.exmm_rpc[mr], self.ex0E_p,
                             omega, gamma, self.dipole_form))
            if energy_derivative:
                V_rcc[r] += pre * (
                    kappa_cc(self.ex0m_pc, self.expE_rp[mr],
                             omega, gamma, self.dipole_form) -
                    kappa_cc(self.ex0m_pc, self.exmE_rp[mr],
                             omega, gamma, self.dipole_form))
            mr += 1
        self.comm.sum(V_rcc)
        self.timer.stop('kappa')
        self.timer.stop('amplitudes')

        return V_rcc

    def electronic_me_Qcc(self, omega, gamma):
        self.read()
        Vel_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        approximation = self.approximation.lower()
        if approximation == 'profeta':
            Vel_rcc += self.electronic_me_profeta_rcc(omega, gamma)
        elif approximation == 'placzek':
            Vel_rcc += self.electronic_me_profeta_rcc(omega, gamma, True)
        elif approximation == 'p-p':
            Vel_rcc += self.electronic_me_profeta_rcc(omega, gamma, -1)
        else:
            raise RuntimeError(
                'Bug: call with {0} should not happen!'.format(
                    self.approximation))

        return self.map_to_modes(Vel_rcc)