1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
import sys
import numpy as np
import ase.units as u
from ase.parallel import world, parprint, paropen
from ase.phonons import Phonons
from ase.vibrations import Vibrations
from ase.utils.timing import Timer
from ase.utils import convert_string_to_fd
from ase.dft import monkhorst_pack
class RamanCalculatorBase:
def __init__(self, atoms, # XXX do we need atoms at this stage ?
*args,
name='raman',
exext='.alpha',
txt='-',
verbose=False,
comm=world,
**kwargs):
"""
Parameters
----------
atoms: ase Atoms object
exext: string
Extension for excitation filenames
txt:
Output stream
verbose:
Verbosity level of output
comm:
Communicator, default world
"""
kwargs['name'] = name
self.exname = kwargs.pop('exname', name)
super().__init__(atoms, *args, **kwargs)
self.exext = exext
self.timer = Timer()
self.txt = convert_string_to_fd(txt)
self.verbose = verbose
self.comm = comm
def log(self, message, pre='# ', end='\n'):
if self.verbose:
self.txt.write(pre + message + end)
self.txt.flush()
class StaticRamanCalculatorBase(RamanCalculatorBase):
"""Base class for Raman intensities derived from
static polarizabilities"""
def __init__(self, atoms, exobj, exkwargs=None, *args, **kwargs):
self.exobj = exobj
if exkwargs is None:
exkwargs = {}
self.exkwargs = exkwargs
super().__init__(atoms, *args, **kwargs)
def calculate(self, atoms, filename, fd):
# write forces
super().calculate(atoms, filename, fd)
# write static polarizability
fname = filename.replace('.pckl', self.exext)
np.savetxt(fname, self.exobj(**self.exkwargs).calculate(atoms))
class StaticRamanCalculator(StaticRamanCalculatorBase, Vibrations):
pass
class StaticRamanPhononsCalculator(StaticRamanCalculatorBase, Phonons):
pass
class RamanBase:
def __init__(self, atoms, # XXX do we need atoms at this stage ?
*args,
name='raman',
exname=None,
exext='.alpha',
txt='-',
verbose=False,
comm=world,
**kwargs):
"""
Parameters
----------
atoms: ase Atoms object
exext: string
Extension for excitation filenames
txt:
Output stream
verbose:
Verbosity level of output
comm:
Communicator, default world
"""
self.atoms = atoms
self.name = name
if exname is None:
self.exname = name
else:
self.exname = exname
self.exext = exext
self.timer = Timer()
self.txt = convert_string_to_fd(txt)
self.verbose = verbose
self.comm = comm
def log(self, message, pre='# ', end='\n'):
if self.verbose:
self.txt.write(pre + message + end)
self.txt.flush()
class RamanData(RamanBase):
"""Base class to evaluate Raman spectra from pre-computed data"""
def __init__(self, atoms, # XXX do we need atoms at this stage ?
*args,
exname=None, # name for excited state calculations
**kwargs):
"""
Parameters
----------
atoms: ase Atoms object
exname: string
name for excited state calculations (defaults to name),
used for reading excitations
"""
super().__init__(atoms, *args, **kwargs)
if exname is None:
exname = kwargs.get('name', self.name)
self.exname = exname
self._already_read = False
def get_energies(self):
self.calculate_energies_and_modes()
return self.om_Q
def init_parallel_read(self):
"""Initialize variables for parallel read"""
rank = self.comm.rank
indices = self.indices
self.ndof = 3 * len(indices)
myn = -(-self.ndof // self.comm.size) # ceil divide
self.slize = s = slice(myn * rank, myn * (rank + 1))
self.myindices = np.repeat(indices, 3)[s]
self.myxyz = ('xyz' * len(indices))[s]
self.myr = range(self.ndof)[s]
self.mynd = len(self.myr)
def read(self, *args, **kwargs):
"""Read data from a pre-performed calculation."""
if self._already_read:
return
self.timer.start('read')
self.timer.start('vibrations')
self.vibrations.read(*args, **kwargs)
self.timer.stop('vibrations')
self.timer.start('excitations')
self.init_parallel_read()
self.read_excitations()
self.timer.stop('excitations')
self._already_read = True
self.timer.stop('read')
@staticmethod
def m2(z):
return (z * z.conj()).real
def map_to_modes(self, V_rcc):
self.timer.start('map R2Q')
V_qcc = (V_rcc.T * self.im_r).T # units Angstrom^2 / sqrt(amu)
V_Qcc = np.dot(V_qcc.T, self.modes_Qq.T).T
self.timer.stop('map R2Q')
return V_Qcc
def me_Qcc(self, *args, **kwargs):
"""Full matrix element
Returns
-------
Matrix element in e^2 Angstrom^2 / eV
"""
# Angstrom^2 / sqrt(amu)
elme_Qcc = self.electronic_me_Qcc(*args, **kwargs)
# Angstrom^3 -> e^2 Angstrom^2 / eV
elme_Qcc /= u.Hartree * u.Bohr # e^2 Angstrom / eV / sqrt(amu)
return elme_Qcc * self.vib01_Q[:, None, None]
def get_absolute_intensities(self, delta=0, **kwargs):
"""Absolute Raman intensity or Raman scattering factor
Parameter
---------
delta: float
pre-factor for asymmetric anisotropy, default 0
References
----------
Porezag and Pederson, PRB 54 (1996) 7830-7836 (delta=0)
Baiardi and Barone, JCTC 11 (2015) 3267-3280 (delta=5)
Returns
-------
raman intensity, unit Ang**4/amu
"""
alpha2_r, gamma2_r, delta2_r = self._invariants(
self.electronic_me_Qcc(**kwargs))
return 45 * alpha2_r + delta * delta2_r + 7 * gamma2_r
def intensity(self, *args, **kwargs):
"""Raman intensity
Returns
-------
unit e^4 Angstrom^4 / eV^2
"""
self.calculate_energies_and_modes()
m2 = Raman.m2
alpha_Qcc = self.me_Qcc(*args, **kwargs)
if not self.observation: # XXXX remove
"""Simple sum, maybe too simple"""
return m2(alpha_Qcc).sum(axis=1).sum(axis=1)
# XXX enable when appropriate
# if self.observation['orientation'].lower() != 'random':
# raise NotImplementedError('not yet')
# random orientation of the molecular frame
# Woodward & Long,
# Guthmuller, J. J. Chem. Phys. 2016, 144 (6), 64106
alpha2_r, gamma2_r, delta2_r = self._invariants(alpha_Qcc)
if self.observation['geometry'] == '-Z(XX)Z': # Porto's notation
return (45 * alpha2_r + 5 * delta2_r + 4 * gamma2_r) / 45.
elif self.observation['geometry'] == '-Z(XY)Z': # Porto's notation
return gamma2_r / 15.
elif self.observation['scattered'] == 'Z':
# scattered light in direction of incoming light
return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
elif self.observation['scattered'] == 'parallel':
# scattered light perendicular and
# polarization in plane
return 6 * gamma2_r / 45.
elif self.observation['scattered'] == 'perpendicular':
# scattered light perendicular and
# polarization out of plane
return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
else:
raise NotImplementedError
def _invariants(self, alpha_Qcc):
"""Raman invariants
Parameter
---------
alpha_Qcc: array
Matrix element or polarizability tensor
Reference
---------
Derek A. Long, The Raman Effect, ISBN 0-471-49028-8
Returns
-------
mean polarizability, anisotropy, asymmetric anisotropy
"""
m2 = Raman.m2
alpha2_r = m2(alpha_Qcc[:, 0, 0] + alpha_Qcc[:, 1, 1] +
alpha_Qcc[:, 2, 2]) / 9.
delta2_r = 3 / 4. * (
m2(alpha_Qcc[:, 0, 1] - alpha_Qcc[:, 1, 0]) +
m2(alpha_Qcc[:, 0, 2] - alpha_Qcc[:, 2, 0]) +
m2(alpha_Qcc[:, 1, 2] - alpha_Qcc[:, 2, 1]))
gamma2_r = (3 / 4. * (m2(alpha_Qcc[:, 0, 1] + alpha_Qcc[:, 1, 0]) +
m2(alpha_Qcc[:, 0, 2] + alpha_Qcc[:, 2, 0]) +
m2(alpha_Qcc[:, 1, 2] + alpha_Qcc[:, 2, 1])) +
(m2(alpha_Qcc[:, 0, 0] - alpha_Qcc[:, 1, 1]) +
m2(alpha_Qcc[:, 0, 0] - alpha_Qcc[:, 2, 2]) +
m2(alpha_Qcc[:, 1, 1] - alpha_Qcc[:, 2, 2])) / 2)
return alpha2_r, gamma2_r, delta2_r
def summary(self, log=sys.stdout):
"""Print summary for given omega [eV]"""
hnu = self.get_energies()
intensities = self.get_absolute_intensities()
te = int(np.log10(intensities.max())) - 2
scale = 10**(-te)
if not te:
ts = ''
elif te > -2 and te < 3:
ts = str(10**te)
else:
ts = '10^{0}'.format(te)
if isinstance(log, str):
log = paropen(log, 'a')
parprint('-------------------------------------', file=log)
parprint(' Mode Frequency Intensity', file=log)
parprint(' # meV cm^-1 [{0}A^4/amu]'.format(ts), file=log)
parprint('-------------------------------------', file=log)
for n, e in enumerate(hnu):
if e.imag != 0:
c = 'i'
e = e.imag
else:
c = ' '
e = e.real
parprint('%3d %6.1f%s %7.1f%s %9.2f' %
(n, 1000 * e, c, e / u.invcm, c, intensities[n] * scale),
file=log)
parprint('-------------------------------------', file=log)
# XXX enable this in phonons
# parprint('Zero-point energy: %.3f eV' %
# self.vibrations.get_zero_point_energy(),
# file=log)
class Raman(RamanData):
def __init__(self, atoms, *args, **kwargs):
super().__init__(atoms, *args, **kwargs)
for key in ['txt', 'exext', 'exname']:
kwargs.pop(key, None)
kwargs['name'] = kwargs.get('name', self.name)
self.vibrations = Vibrations(atoms, *args, **kwargs)
self.delta = self.vibrations.delta
self.indices = self.vibrations.indices
def calculate_energies_and_modes(self):
if hasattr(self, 'im_r'):
return
self.read()
self.timer.start('energies_and_modes')
self.im_r = self.vibrations.im
self.modes_Qq = self.vibrations.modes
self.om_Q = self.vibrations.hnu.real # energies in eV
self.H = self.vibrations.H # XXX used in albrecht.py
# pre-factors for one vibrational excitation
with np.errstate(divide='ignore'):
self.vib01_Q = np.where(self.om_Q > 0,
1. / np.sqrt(2 * self.om_Q), 0)
# -> sqrt(amu) * Angstrom
self.vib01_Q *= np.sqrt(u.Ha * u._me / u._amu) * u.Bohr
self.timer.stop('energies_and_modes')
class RamanPhonons(RamanData):
def __init__(self, atoms, *args, **kwargs):
RamanData.__init__(self, atoms, *args, **kwargs)
for key in ['txt', 'exext', 'exname']:
kwargs.pop(key, None)
kwargs['name'] = kwargs.get('name', self.name)
self.vibrations = Phonons(atoms, *args, **kwargs)
self.delta = self.vibrations.delta
self.indices = self.vibrations.indices
self.kpts = (1, 1, 1)
@property
def kpts(self):
return self._kpts
@kpts.setter
def kpts(self, kpts):
if not hasattr(self, '_kpts') or kpts != self._kpts:
self._kpts = kpts
self.kpts_kc = monkhorst_pack(self.kpts)
if hasattr(self, 'im_r'):
del self.im_r # we'll have to recalculate
def calculate_energies_and_modes(self):
if not self._already_read:
if hasattr(self, 'im_r'):
del self.im_r
self.read()
if not hasattr(self, 'im_r'):
self.timer.start('band_structure')
omega_kl, u_kl = self.vibrations.band_structure(
self.kpts_kc, modes=True, verbose=self.verbose)
self.im_r = self.vibrations.m_inv_x
self.om_Q = omega_kl.ravel().real # energies in eV
self.modes_Qq = u_kl.reshape(len(self.om_Q),
3 * len(self.atoms))
self.modes_Qq /= self.im_r
self.om_v = self.om_Q
# pre-factors for one vibrational excitation
with np.errstate(divide='ignore', invalid='ignore'):
self.vib01_Q = np.where(
self.om_Q > 0, 1. / np.sqrt(2 * self.om_Q), 0)
# -> sqrt(amu) * Angstrom
self.vib01_Q *= np.sqrt(u.Ha * u._me / u._amu) * u.Bohr
self.timer.stop('band_structure')
|