1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
from math import sqrt
from ase.atoms import Atoms
from ase.symbols import string2symbols
from ase.data import reference_states, atomic_numbers, chemical_symbols
from ase.utils import plural
def incompatible_cell(*, want, have):
return RuntimeError('Cannot create {} cell for {} structure'
.format(want, have))
def bulk(name, crystalstructure=None, a=None, b=None, c=None, *, alpha=None,
covera=None, u=None, orthorhombic=False, cubic=False,
basis=None):
"""Creating bulk systems.
Crystal structure and lattice constant(s) will be guessed if not
provided.
name: str
Chemical symbol or symbols as in 'MgO' or 'NaCl'.
crystalstructure: str
Must be one of sc, fcc, bcc, tetragonal, bct, hcp, rhombohedral,
orthorhombic, mlc, diamond, zincblende, rocksalt, cesiumchloride,
fluorite or wurtzite.
a: float
Lattice constant.
b: float
Lattice constant. If only a and b is given, b will be interpreted
as c instead.
c: float
Lattice constant.
alpha: float
Angle in degrees for rhombohedral lattice.
covera: float
c/a ratio used for hcp. Default is ideal ratio: sqrt(8/3).
u: float
Internal coordinate for Wurtzite structure.
orthorhombic: bool
Construct orthorhombic unit cell instead of primitive cell
which is the default.
cubic: bool
Construct cubic unit cell if possible.
"""
if c is None and b is not None:
# If user passes (a, b) positionally, we want it as (a, c) instead:
c, b = b, c
if covera is not None and c is not None:
raise ValueError("Don't specify both c and c/a!")
xref = None
ref = {}
if name in chemical_symbols:
Z = atomic_numbers[name]
ref = reference_states[Z]
if ref is not None:
xref = ref['symmetry']
# If user did not specify crystal structure, and no basis
# is given, and the reference state says we need one, but
# does not have one, then we can't proceed.
if (crystalstructure is None and basis is None
and 'basis' in ref and ref['basis'] is None):
# XXX This is getting much too complicated, we need to split
# this function up. A lot.
raise RuntimeError('This structure requires an atomic basis')
if ref is None:
ref = {} # easier to 'get' things from empty dictionary than None
if xref == 'cubic':
# P and Mn are listed as 'cubic' but the lattice constants
# are 7 and 9. They must be something other than simple cubic
# then. We used to just return the cubic one but that must
# have been wrong somehow. --askhl
raise RuntimeError('Only simple cubic ("sc") supported')
# Mapping of name to number of atoms in primitive cell.
structures = {'sc': 1, 'fcc': 1, 'bcc': 1,
'tetragonal': 1,
'bct': 1,
'hcp': 1,
'rhombohedral': 1,
'orthorhombic': 1,
'mcl': 1,
'diamond': 1,
'zincblende': 2, 'rocksalt': 2, 'cesiumchloride': 2,
'fluorite': 3, 'wurtzite': 2}
if crystalstructure is None:
crystalstructure = xref
if crystalstructure not in structures:
raise ValueError('No suitable reference data for bulk {}.'
' Reference data: {}'
.format(name, ref))
if crystalstructure not in structures:
raise ValueError('Unknown structure: {}.'
.format(crystalstructure))
# Check name:
natoms = len(string2symbols(name))
natoms0 = structures[crystalstructure]
if natoms != natoms0:
raise ValueError('Please specify {} for {} and not {}'
.format(plural(natoms0, 'atom'),
crystalstructure, natoms))
if alpha is None:
alpha = ref.get('alpha')
if a is None:
if xref != crystalstructure:
raise ValueError('You need to specify the lattice constant.')
try:
a = ref['a']
except KeyError:
raise KeyError('No reference lattice parameter "a" for "{}"'
.format(name))
if b is None:
bovera = ref.get('b/a')
if bovera is not None and a is not None:
b = bovera * a
if crystalstructure in ['hcp', 'wurtzite']:
if cubic:
raise incompatible_cell(want='cubic', have=crystalstructure)
if c is not None:
covera = c / a
elif covera is None:
if xref == crystalstructure:
covera = ref['c/a']
else:
covera = sqrt(8 / 3)
if covera is None:
covera = ref.get('c/a')
if c is None and covera is not None:
c = covera * a
if orthorhombic and crystalstructure not in ['sc', 'tetragonal',
'orthorhombic']:
return _orthorhombic_bulk(name, crystalstructure, a, covera, u)
if cubic and crystalstructure in ['bcc', 'cesiumchloride']:
return _orthorhombic_bulk(name, crystalstructure, a, covera)
if cubic and crystalstructure != 'sc':
return _cubic_bulk(name, crystalstructure, a)
if crystalstructure == 'sc':
atoms = Atoms(name, cell=(a, a, a), pbc=True)
elif crystalstructure == 'fcc':
b = a / 2
atoms = Atoms(name, cell=[(0, b, b), (b, 0, b), (b, b, 0)], pbc=True)
elif crystalstructure == 'bcc':
b = a / 2
atoms = Atoms(name, cell=[(-b, b, b), (b, -b, b), (b, b, -b)],
pbc=True)
elif crystalstructure == 'hcp':
atoms = Atoms(2 * name,
scaled_positions=[(0, 0, 0),
(1 / 3, 2 / 3, 0.5)],
cell=[(a, 0, 0),
(-a / 2, a * sqrt(3) / 2, 0),
(0, 0, covera * a)],
pbc=True)
elif crystalstructure == 'diamond':
atoms = bulk(2 * name, 'zincblende', a)
elif crystalstructure == 'zincblende':
s1, s2 = string2symbols(name)
atoms = bulk(s1, 'fcc', a) + bulk(s2, 'fcc', a)
atoms.positions[1] += a / 4
elif crystalstructure == 'rocksalt':
s1, s2 = string2symbols(name)
atoms = bulk(s1, 'fcc', a) + bulk(s2, 'fcc', a)
atoms.positions[1, 0] += a / 2
elif crystalstructure == 'cesiumchloride':
s1, s2 = string2symbols(name)
atoms = bulk(s1, 'sc', a) + bulk(s2, 'sc', a)
atoms.positions[1, :] += a / 2
elif crystalstructure == 'fluorite':
s1, s2, s3 = string2symbols(name)
atoms = bulk(s1, 'fcc', a) + bulk(s2, 'fcc', a) + bulk(s3, 'fcc', a)
atoms.positions[1, :] += a / 4
atoms.positions[2, :] += a * 3 / 4
elif crystalstructure == 'wurtzite':
u = u or 0.25 + 1 / 3 / covera**2
atoms = Atoms(2 * name,
scaled_positions=[(0, 0, 0),
(1 / 3, 2 / 3, 0.5 - u),
(1 / 3, 2 / 3, 0.5),
(0, 0, 1 - u)],
cell=[(a, 0, 0),
(-a / 2, a * sqrt(3) / 2, 0),
(0, 0, a * covera)],
pbc=True)
elif crystalstructure == 'bct':
from ase.lattice import BCT
if basis is None:
basis = ref.get('basis')
if basis is not None:
natoms = len(basis)
lat = BCT(a=a, c=c)
atoms = Atoms([name] * natoms, cell=lat.tocell(), pbc=True,
scaled_positions=basis)
elif crystalstructure == 'rhombohedral':
atoms = _build_rhl(name, a, alpha, basis)
elif crystalstructure == 'orthorhombic':
atoms = Atoms(name, cell=[a, b, c], pbc=True)
else:
raise ValueError('Unknown crystal structure: ' + crystalstructure)
if orthorhombic:
assert atoms.cell.orthorhombic
if cubic:
assert abs(atoms.cell.angles() - 90).all() < 1e-10
return atoms
def _build_rhl(name, a, alpha, basis):
from ase.lattice import RHL
lat = RHL(a, alpha)
cell = lat.tocell()
if basis is None:
# RHL: Given by A&M as scaled coordinates "x" of cell.sum(0):
basis_x = reference_states[atomic_numbers[name]]['basis_x']
basis = basis_x[:, None].repeat(3, axis=1)
natoms = len(basis)
return Atoms([name] * natoms, cell=cell, scaled_positions=basis, pbc=True)
def _orthorhombic_bulk(name, crystalstructure, a, covera=None, u=None):
if crystalstructure == 'fcc':
b = a / sqrt(2)
atoms = Atoms(2 * name, cell=(b, b, a), pbc=True,
scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)])
elif crystalstructure == 'bcc':
atoms = Atoms(2 * name, cell=(a, a, a), pbc=True,
scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)])
elif crystalstructure == 'hcp':
atoms = Atoms(4 * name,
cell=(a, a * sqrt(3), covera * a),
scaled_positions=[(0, 0, 0),
(0.5, 0.5, 0),
(0.5, 1 / 6, 0.5),
(0, 2 / 3, 0.5)],
pbc=True)
elif crystalstructure == 'diamond':
atoms = _orthorhombic_bulk(2 * name, 'zincblende', a)
elif crystalstructure == 'zincblende':
s1, s2 = string2symbols(name)
b = a / sqrt(2)
atoms = Atoms(2 * name, cell=(b, b, a), pbc=True,
scaled_positions=[(0, 0, 0), (0.5, 0, 0.25),
(0.5, 0.5, 0.5), (0, 0.5, 0.75)])
elif crystalstructure == 'rocksalt':
s1, s2 = string2symbols(name)
b = a / sqrt(2)
atoms = Atoms(2 * name, cell=(b, b, a), pbc=True,
scaled_positions=[(0, 0, 0), (0.5, 0.5, 0),
(0.5, 0.5, 0.5), (0, 0, 0.5)])
elif crystalstructure == 'cesiumchloride':
atoms = Atoms(name, cell=(a, a, a), pbc=True,
scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)])
elif crystalstructure == 'wurtzite':
u = u or 0.25 + 1 / 3 / covera**2
atoms = Atoms(4 * name,
cell=(a, a * 3**0.5, covera * a),
scaled_positions=[(0, 0, 0),
(0, 1 / 3, 0.5 - u),
(0, 1 / 3, 0.5),
(0, 0, 1 - u),
(0.5, 0.5, 0),
(0.5, 5 / 6, 0.5 - u),
(0.5, 5 / 6, 0.5),
(0.5, 0.5, 1 - u)],
pbc=True)
else:
raise incompatible_cell(want='orthorhombic', have=crystalstructure)
return atoms
def _cubic_bulk(name, crystalstructure, a):
if crystalstructure == 'fcc':
atoms = Atoms(4 * name, cell=(a, a, a), pbc=True,
scaled_positions=[(0, 0, 0), (0, 0.5, 0.5),
(0.5, 0, 0.5), (0.5, 0.5, 0)])
elif crystalstructure == 'diamond':
atoms = _cubic_bulk(2 * name, 'zincblende', a)
elif crystalstructure == 'zincblende':
atoms = Atoms(4 * name, cell=(a, a, a), pbc=True,
scaled_positions=[(0, 0, 0), (0.25, 0.25, 0.25),
(0, 0.5, 0.5), (0.25, 0.75, 0.75),
(0.5, 0, 0.5), (0.75, 0.25, 0.75),
(0.5, 0.5, 0), (0.75, 0.75, 0.25)])
elif crystalstructure == 'rocksalt':
atoms = Atoms(4 * name, cell=(a, a, a), pbc=True,
scaled_positions=[(0, 0, 0), (0.5, 0, 0),
(0, 0.5, 0.5), (0.5, 0.5, 0.5),
(0.5, 0, 0.5), (0, 0, 0.5),
(0.5, 0.5, 0), (0, 0.5, 0)])
else:
raise incompatible_cell(want='cubic', have=crystalstructure)
return atoms
|