1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
"""Helper functions for creating supercells."""
import numpy as np
from ase import Atoms
class SupercellError(Exception):
"""Use if construction of supercell fails"""
def get_deviation_from_optimal_cell_shape(cell, target_shape="sc", norm=None):
r"""
Calculates the deviation of the given cell metric from the ideal
cell metric defining a certain shape. Specifically, the function
evaluates the expression `\Delta = || Q \mathbf{h} -
\mathbf{h}_{target}||_2`, where `\mathbf{h}` is the input
metric (*cell*) and `Q` is a normalization factor (*norm*)
while the target metric `\mathbf{h}_{target}` (via
*target_shape*) represent simple cubic ('sc') or face-centered
cubic ('fcc') cell shapes.
Parameters:
cell: 2D array of floats
Metric given as a (3x3 matrix) of the input structure.
target_shape: str
Desired supercell shape. Can be 'sc' for simple cubic or
'fcc' for face-centered cubic.
norm: float
Specify the normalization factor. This is useful to avoid
recomputing the normalization factor when computing the
deviation for a series of P matrices.
"""
if target_shape in ["sc", "simple-cubic"]:
target_metric = np.eye(3)
elif target_shape in ["fcc", "face-centered cubic"]:
target_metric = 0.5 * np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]])
if not norm:
norm = (np.linalg.det(cell) / np.linalg.det(target_metric)) ** (
-1.0 / 3
)
return np.linalg.norm(norm * cell - target_metric)
def find_optimal_cell_shape(
cell,
target_size,
target_shape,
lower_limit=-2,
upper_limit=2,
verbose=False,
):
"""Returns the transformation matrix that produces a supercell
corresponding to *target_size* unit cells with metric *cell* that
most closely approximates the shape defined by *target_shape*.
Parameters:
cell: 2D array of floats
Metric given as a (3x3 matrix) of the input structure.
target_size: integer
Size of desired super cell in number of unit cells.
target_shape: str
Desired supercell shape. Can be 'sc' for simple cubic or
'fcc' for face-centered cubic.
lower_limit: int
Lower limit of search range.
upper_limit: int
Upper limit of search range.
verbose: bool
Set to True to obtain additional information regarding
construction of transformation matrix.
"""
# Set up target metric
if target_shape in ["sc", "simple-cubic"]:
target_metric = np.eye(3)
elif target_shape in ["fcc", "face-centered cubic"]:
target_metric = 0.5 * np.array(
[[0, 1, 1], [1, 0, 1], [1, 1, 0]], dtype=float
)
if verbose:
print("target metric (h_target):")
print(target_metric)
# Normalize cell metric to reduce computation time during looping
norm = (
target_size * np.linalg.det(cell) / np.linalg.det(target_metric)
) ** (-1.0 / 3)
norm_cell = norm * cell
if verbose:
print("normalization factor (Q): %g" % norm)
# Approximate initial P matrix
ideal_P = np.dot(target_metric, np.linalg.inv(norm_cell))
if verbose:
print("idealized transformation matrix:")
print(ideal_P)
starting_P = np.array(np.around(ideal_P, 0), dtype=int)
if verbose:
print("closest integer transformation matrix (P_0):")
print(starting_P)
# Prepare run.
from itertools import product
best_score = 1e6
optimal_P = None
for dP in product(range(lower_limit, upper_limit + 1), repeat=9):
dP = np.array(dP, dtype=int).reshape(3, 3)
P = starting_P + dP
if int(np.around(np.linalg.det(P), 0)) != target_size:
continue
score = get_deviation_from_optimal_cell_shape(
np.dot(P, norm_cell), target_shape=target_shape, norm=1.0
)
if score < best_score:
best_score = score
optimal_P = P
if optimal_P is None:
print("Failed to find a transformation matrix.")
return None
# Finalize.
if verbose:
print("smallest score (|Q P h_p - h_target|_2): %f" % best_score)
print("optimal transformation matrix (P_opt):")
print(optimal_P)
print("supercell metric:")
print(np.round(np.dot(optimal_P, cell), 4))
print(
"determinant of optimal transformation matrix: %g"
% np.linalg.det(optimal_P)
)
return optimal_P
def make_supercell(prim, P, wrap=True, tol=1e-5):
r"""Generate a supercell by applying a general transformation (*P*) to
the input configuration (*prim*).
The transformation is described by a 3x3 integer matrix
`\mathbf{P}`. Specifically, the new cell metric
`\mathbf{h}` is given in terms of the metric of the input
configuration `\mathbf{h}_p` by `\mathbf{P h}_p =
\mathbf{h}`.
Parameters:
prim: ASE Atoms object
Input configuration.
P: 3x3 integer matrix
Transformation matrix `\mathbf{P}`.
wrap: bool
wrap in the end
tol: float
tolerance for wrapping
"""
supercell_matrix = P
supercell = clean_matrix(supercell_matrix @ prim.cell)
# cartesian lattice points
lattice_points_frac = lattice_points_in_supercell(supercell_matrix)
lattice_points = np.dot(lattice_points_frac, supercell)
superatoms = Atoms(cell=supercell, pbc=prim.pbc)
for lp in lattice_points:
shifted_atoms = prim.copy()
shifted_atoms.positions += lp
superatoms.extend(shifted_atoms)
# check number of atoms is correct
n_target = int(np.round(np.linalg.det(supercell_matrix) * len(prim)))
if n_target != len(superatoms):
msg = "Number of atoms in supercell: {}, expected: {}".format(
n_target, len(superatoms)
)
raise SupercellError(msg)
if wrap:
superatoms.wrap(eps=tol)
return superatoms
def lattice_points_in_supercell(supercell_matrix):
"""Find all lattice points contained in a supercell.
Adapted from pymatgen, which is available under MIT license:
The MIT License (MIT) Copyright (c) 2011-2012 MIT & The Regents of the
University of California, through Lawrence Berkeley National Laboratory
"""
diagonals = np.array(
[
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
]
)
d_points = np.dot(diagonals, supercell_matrix)
mins = np.min(d_points, axis=0)
maxes = np.max(d_points, axis=0) + 1
ar = np.arange(mins[0], maxes[0])[:, None] * np.array([1, 0, 0])[None, :]
br = np.arange(mins[1], maxes[1])[:, None] * np.array([0, 1, 0])[None, :]
cr = np.arange(mins[2], maxes[2])[:, None] * np.array([0, 0, 1])[None, :]
all_points = ar[:, None, None] + br[None, :, None] + cr[None, None, :]
all_points = all_points.reshape((-1, 3))
frac_points = np.dot(all_points, np.linalg.inv(supercell_matrix))
tvects = frac_points[
np.all(frac_points < 1 - 1e-10, axis=1)
& np.all(frac_points >= -1e-10, axis=1)
]
assert len(tvects) == round(abs(np.linalg.det(supercell_matrix)))
return tvects
def clean_matrix(matrix, eps=1e-12):
""" clean from small values"""
matrix = np.array(matrix)
for ij in np.ndindex(matrix.shape):
if abs(matrix[ij]) < eps:
matrix[ij] = 0
return matrix
|