1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
"""This module defines an ASE interface to FHI-aims.
Felix Hanke hanke@liverpool.ac.uk
Jonas Bjork j.bjork@liverpool.ac.uk
Simon P. Rittmeyer simon.rittmeyer@tum.de
"""
import os
import warnings
import time
from typing import Optional
import re
import numpy as np
from ase.units import Hartree
from ase.io.aims import write_aims, read_aims
from ase.data import atomic_numbers
from ase.calculators.calculator import FileIOCalculator, Parameters, kpts2mp, \
ReadError, PropertyNotImplementedError
def get_aims_version(string):
match = re.search(r'\s*FHI-aims version\s*:\s*(\S+)', string, re.M)
return match.group(1)
float_keys = [
'charge',
'charge_mix_param',
'default_initial_moment',
'fixed_spin_moment',
'hartree_convergence_parameter',
'harmonic_length_scale',
'ini_linear_mix_param',
'ini_spin_mix_parma',
'initial_moment',
'MD_MB_init',
'MD_time_step',
'prec_mix_param',
'set_vacuum_level',
'spin_mix_param',
]
exp_keys = [
'basis_threshold',
'occupation_thr',
'sc_accuracy_eev',
'sc_accuracy_etot',
'sc_accuracy_forces',
'sc_accuracy_rho',
'sc_accuracy_stress',
]
string_keys = [
'communication_type',
'density_update_method',
'KS_method',
'mixer',
'output_level',
'packed_matrix_format',
'relax_unit_cell',
'restart',
'restart_read_only',
'restart_write_only',
'spin',
'total_energy_method',
'qpe_calc',
'xc',
'species_dir',
'run_command',
'plus_u',
]
int_keys = [
'empty_states',
'ini_linear_mixing',
'max_relaxation_steps',
'max_zeroin',
'multiplicity',
'n_max_pulay',
'sc_iter_limit',
'walltime',
]
bool_keys = [
'collect_eigenvectors',
'compute_forces',
'compute_kinetic',
'compute_numerical_stress',
'compute_analytical_stress',
'compute_heat_flux',
'distributed_spline_storage',
'evaluate_work_function',
'final_forces_cleaned',
'hessian_to_restart_geometry',
'load_balancing',
'MD_clean_rotations',
'MD_restart',
'override_illconditioning',
'override_relativity',
'restart_relaxations',
'squeeze_memory',
'symmetry_reduced_k_grid',
'use_density_matrix',
'use_dipole_correction',
'use_local_index',
'use_logsbt',
'vdw_correction_hirshfeld',
]
list_keys = [
'init_hess',
'k_grid',
'k_offset',
'MD_run',
'MD_schedule',
'MD_segment',
'mixer_threshold',
'occupation_type',
'output',
'cube',
'preconditioner',
'relativistic',
'relax_geometry',
]
class Aims(FileIOCalculator):
# was "command" before the refactoring to dynamical commands
__command_default = 'aims.version.serial.x > aims.out'
__outfilename_default = 'aims.out'
implemented_properties = ['energy', 'forces', 'stress', 'stresses',
'dipole', 'magmom']
def __init__(self, restart=None,
ignore_bad_restart_file=FileIOCalculator._deprecated,
label=os.curdir, atoms=None, cubes=None, radmul=None,
tier=None, aims_command=None,
outfilename=None, **kwargs):
"""Construct the FHI-aims calculator.
The keyword arguments (kwargs) can be one of the ASE standard
keywords: 'xc', 'kpts' and 'smearing' or any of FHI-aims'
native keywords.
.. note:: The behavior of command/run_command has been refactored ase X.X.X
It is now possible to independently specify the command to call
FHI-aims and the outputfile into which stdout is directed. In
general, we replaced
<run_command> = <aims_command> + " > " + <outfilename
That is,what used to be, e.g.,
>>> calc = Aims(run_command = "mpiexec -np 4 aims.x > aims.out")
can now be achieved with the two arguments
>>> calc = Aims(aims_command = "mpiexec -np 4 aims.x"
>>> outfilename = "aims.out")
Backward compatibility, however, is provided. Also, the command
actually used to run FHI-aims is dynamically updated (i.e., the
"command" member variable). That is, e.g.,
>>> calc = Aims()
>>> print(calc.command)
aims.version.serial.x > aims.out
>>> calc.outfilename = "systemX.out"
>>> print(calc.command)
aims.version.serial.x > systemX.out
>>> calc.aims_command = "mpiexec -np 4 aims.version.scalapack.mpi.x"
>>> print(calc.command)
mpiexec -np 4 aims.version.scalapack.mpi > systemX.out
Arguments:
cubes: AimsCube object
Cube file specification.
radmul: int
Set radial multiplier for the basis set of all atomic species.
tier: int or array of ints
Set basis set tier for all atomic species.
aims_command : str
The full command as executed to run FHI-aims *without* the
redirection to stdout. For instance "mpiexec -np 4 aims.x". Note
that this is not the same as "command" or "run_command".
.. note:: Added in ase X.X.X
outfilename : str
The file (incl. path) to which stdout is redirected. Defaults to
"aims.out"
.. note:: Added in ase X.X.X
run_command : str, optional (default=None)
Same as "command", see FileIOCalculator documentation.
.. note:: Deprecated in ase X.X.X
outfilename : str, optional (default=aims.out)
File into which the stdout of the FHI aims run is piped into. Note
that this will be only of any effect, if the <run_command> does not
yet contain a '>' directive.
plus_u : dict
For DFT+U. Adds a +U term to one specific shell of the species.
kwargs : dict
Any of the base class arguments.
"""
# yes, we pop the key and run it through our legacy filters
command = kwargs.pop('command', None)
# Check for the "run_command" (deprecated keyword)
# Consistently, the "command" argument should be used as suggested by the FileIO base class.
# For legacy reasons, however, we here also accept "run_command"
run_command = kwargs.pop('run_command', None)
if run_command:
# this warning is debatable... in my eyes it is more consistent to
# use 'command'
warnings.warn('Argument "run_command" is deprecated and will be replaced with "command". Alternatively, use "aims_command" and "outfile". See documentation for more details.')
if command:
warnings.warn('Caution! Argument "command" overwrites "run_command.')
else:
command = run_command
# this is the fallback to the default value for empty init
if np.all([i is None for i in (command, aims_command, outfilename)]):
# we go for the FileIOCalculator default way (env variable) with the former default as fallback
command = os.environ.get('ASE_AIMS_COMMAND', Aims.__command_default)
# filter the command and set the member variables "aims_command" and "outfilename"
self.__init_command(command=command,
aims_command=aims_command,
outfilename=outfilename)
FileIOCalculator.__init__(self, restart, ignore_bad_restart_file,
label, atoms,
# well, this is not nice, but cannot work around it...
command=self.command,
**kwargs)
self.cubes = cubes
self.radmul = radmul
self.tier = tier
# handling the filtering for dynamical commands with properties,
@property # type: ignore
def command(self) -> Optional[str]: # type: ignore
return self.__command
@command.setter
def command(self, x):
self.__update_command(command=x)
@property
def aims_command(self):
return self.__aims_command
@aims_command.setter
def aims_command(self, x):
self.__update_command(aims_command=x)
@property
def outfilename(self):
return self.__outfilename
@outfilename.setter
def outfilename(self, x):
self.__update_command(outfilename=x)
def __init_command(self, command=None, aims_command=None,
outfilename=None):
"""
Create the private variables for which properties are defines and set
them accordingly.
"""
# new class variables due to dynamical command handling
self.__aims_command = None
self.__outfilename = None
self.__command: Optional[str] = None
# filter the command and set the member variables "aims_command" and "outfilename"
self.__update_command(command=command,
aims_command=aims_command,
outfilename=outfilename)
# legacy handling of the (run_)command behavior a.k.a. a universal setter routine
def __update_command(self, command=None, aims_command=None,
outfilename=None):
"""
Abstracted generic setter routine for a dynamic behavior of "command".
The command that is actually called on the command line and enters the
base class, is <command> = <aims_command> > <outfilename>.
This new scheme has been introduced in order to conveniently change the
outfile name from the outside while automatically updating the
<command> member variable.
Obiously, changing <command> conflicts with changing <aims_command>
and/or <outfilename>, which thus raises a <ValueError>. This should,
however, not happen if this routine is not used outside the property
definitions.
Parameters
----------
command : str
The full command as executed to run FHI-aims. This includes
any potential mpiexec call, as well as the redirection of stdout.
For instance "mpiexec -np 4 aims.x > aims.out".
aims_command : str
The full command as executed to run FHI-aims *without* the
redirection to stdout. For instance "mpiexec -np 4 aims.x"
outfilename : str
The file (incl. path) to which stdout is redirected.
"""
# disentangle the command if given
if command:
if aims_command:
raise ValueError('Cannot specify "command" and "aims_command" simultaneously.')
if outfilename:
raise ValueError('Cannot specify "command" and "outfilename" simultaneously.')
# check if the redirection of stdout is included
command_spl = command.split('>')
if len(command_spl) > 1:
self.__aims_command = command_spl[0].strip()
self.__outfilename = command_spl[-1].strip()
else:
# this should not happen if used correctly
# but just to ensure legacy behavior of how "run_command" was handled
self.__aims_command = command.strip()
self.__outfilename = Aims.__outfilename_default
else:
if aims_command is not None:
self.__aims_command = aims_command
elif outfilename is None:
# nothing to do here, empty call with 3x None
return
if outfilename is not None:
self.__outfilename = outfilename
else:
# default to 'aims.out'
if not self.outfilename:
self.__outfilename = Aims.__outfilename_default
self.__command = '{0:s} > {1:s}'.format(self.aims_command,
self.outfilename)
def set_atoms(self, atoms):
self.atoms = atoms
def set_label(self, label, update_outfilename=False):
msg = "Aims.set_label is not supported anymore, please use `directory`"
raise RuntimeError(msg)
@property
def out(self):
return os.path.join(self.label, self.outfilename)
def check_state(self, atoms):
system_changes = FileIOCalculator.check_state(self, atoms)
# Ignore unit cell for molecules:
if not atoms.pbc.any() and 'cell' in system_changes:
system_changes.remove('cell')
return system_changes
def set(self, **kwargs):
xc = kwargs.get('xc')
if xc:
kwargs['xc'] = {'LDA': 'pw-lda', 'PBE': 'pbe'}.get(xc, xc)
changed_parameters = FileIOCalculator.set(self, **kwargs)
if changed_parameters:
self.reset()
return changed_parameters
def write_input(self, atoms, properties=None, system_changes=None,
ghosts=None, geo_constrain=None, scaled=None, velocities=None):
FileIOCalculator.write_input(self, atoms, properties, system_changes)
if geo_constrain is None:
geo_constrain = "relax_geometry" in self.parameters
if scaled is None:
scaled = np.all(atoms.get_pbc())
if velocities is None:
velocities = atoms.has('momenta')
have_lattice_vectors = atoms.pbc.any()
have_k_grid = ('k_grid' in self.parameters or
'kpts' in self.parameters)
if have_lattice_vectors and not have_k_grid:
raise RuntimeError('Found lattice vectors but no k-grid!')
if not have_lattice_vectors and have_k_grid:
raise RuntimeError('Found k-grid but no lattice vectors!')
write_aims(
os.path.join(self.directory, 'geometry.in'),
atoms,
scaled,
geo_constrain,
velocities=velocities,
ghosts=ghosts
)
self.write_control(atoms, os.path.join(self.directory, 'control.in'))
self.write_species(atoms, os.path.join(self.directory, 'control.in'))
self.parameters.write(os.path.join(self.directory, 'parameters.ase'))
def prepare_input_files(self):
"""
Wrapper function to prepare input filesi, e.g., to a run on a remote
machine
"""
if self.atoms is None:
raise ValueError('No atoms object attached')
self.write_input(self.atoms)
def write_control(self, atoms, filename, debug=False):
lim = '#' + '='*79
output = open(filename, 'w')
output.write(lim + '\n')
for line in ['FHI-aims file: ' + filename,
'Created using the Atomic Simulation Environment (ASE)',
time.asctime(),
]:
output.write('# ' + line + '\n')
if debug:
output.write('# \n# List of parameters used to initialize the calculator:',)
for p, v in self.parameters.items():
s = '# {} : {}\n'.format(p, v)
output.write(s)
output.write(lim + '\n')
assert not ('kpts' in self.parameters and 'k_grid' in self.parameters)
assert not ('smearing' in self.parameters and
'occupation_type' in self.parameters)
for key, value in self.parameters.items():
if key == 'kpts':
mp = kpts2mp(atoms, self.parameters.kpts)
output.write('%-35s%d %d %d\n' % (('k_grid',) + tuple(mp)))
dk = 0.5 - 0.5 / np.array(mp)
output.write('%-35s%f %f %f\n' % (('k_offset',) + tuple(dk)))
elif key == 'species_dir' or key == 'run_command':
continue
elif key == 'plus_u':
continue
elif key == 'smearing':
name = self.parameters.smearing[0].lower()
if name == 'fermi-dirac':
name = 'fermi'
width = self.parameters.smearing[1]
output.write('%-35s%s %f' % ('occupation_type', name, width))
if name == 'methfessel-paxton':
order = self.parameters.smearing[2]
output.write(' %d' % order)
output.write('\n' % order)
elif key == 'output':
for output_type in value:
output.write('%-35s%s\n' % (key, output_type))
elif key == 'vdw_correction_hirshfeld' and value:
output.write('%-35s\n' % key)
elif key in bool_keys:
output.write('%-35s.%s.\n' % (key, repr(bool(value)).lower()))
elif isinstance(value, (tuple, list)):
output.write('%-35s%s\n' %
(key, ' '.join(str(x) for x in value)))
elif isinstance(value, str):
output.write('%-35s%s\n' % (key, value))
else:
output.write('%-35s%r\n' % (key, value))
if self.cubes:
self.cubes.write(output)
output.write(lim + '\n\n')
output.close()
def read(self, label=None):
if label is None:
label = self.label
FileIOCalculator.read(self, label)
geometry = os.path.join(self.directory, 'geometry.in')
control = os.path.join(self.directory, 'control.in')
for filename in [geometry, control, self.out]:
if not os.path.isfile(filename):
raise ReadError
self.atoms, symmetry_block = read_aims(geometry, True)
self.parameters = Parameters.read(os.path.join(self.directory,
'parameters.ase'))
if symmetry_block:
self.parameters["symmetry_block"] = symmetry_block
self.read_results()
def read_results(self):
converged = self.read_convergence()
if not converged:
os.system('tail -20 ' + self.out)
raise RuntimeError('FHI-aims did not converge!\n' +
'The last lines of output are printed above ' +
'and should give an indication why.')
self.read_energy()
if ('compute_forces' in self.parameters or
'sc_accuracy_forces' in self.parameters):
self.read_forces()
if ('sc_accuracy_stress' in self.parameters or
('compute_numerical_stress' in self.parameters
and self.parameters['compute_numerical_stress']) or
('compute_analytical_stress' in self.parameters
and self.parameters['compute_analytical_stress']) or
('compute_heat_flux' in self.parameters
and self.parameters['compute_heat_flux'])):
self.read_stress()
if ('compute_heat_flux' in self.parameters
and self.parameters['compute_heat_flux']):
self.read_stresses()
if ('dipole' in self.parameters.get('output', []) and
not self.atoms.pbc.any()):
self.read_dipole()
def write_species(self, atoms, filename):
self.ctrlname = filename
species_path = self.parameters.get('species_dir')
if species_path is None:
species_path = os.environ.get('AIMS_SPECIES_DIR')
if species_path is None:
raise RuntimeError(
'Missing species directory! Use species_dir ' +
'parameter or set $AIMS_SPECIES_DIR environment variable.')
control = open(filename, 'a')
symbols = atoms.get_chemical_symbols()
symbols2 = []
for n, symbol in enumerate(symbols):
if symbol not in symbols2:
symbols2.append(symbol)
if self.tier is not None:
if isinstance(self.tier, int):
self.tierlist = np.ones(len(symbols2), 'int') * self.tier
elif isinstance(self.tier, list):
assert len(self.tier) == len(symbols2)
self.tierlist = self.tier
for i, symbol in enumerate(symbols2):
fd = os.path.join(species_path, '%02i_%s_default' %
(atomic_numbers[symbol], symbol))
reached_tiers = False
for line in open(fd, 'r'):
if self.tier is not None:
if 'First tier' in line:
reached_tiers = True
self.targettier = self.tierlist[i]
self.foundtarget = False
self.do_uncomment = True
if reached_tiers:
line = self.format_tiers(line)
control.write(line)
if self.tier is not None and not self.foundtarget:
raise RuntimeError(
"Basis tier %i not found for element %s" %
(self.targettier, symbol))
if self.parameters.get('plus_u') is not None:
if symbol in self.parameters.plus_u.keys():
control.write('plus_u %s \n' %
self.parameters.plus_u[symbol])
control.close()
if self.radmul is not None:
self.set_radial_multiplier()
def format_tiers(self, line):
if 'meV' in line:
assert line[0] == '#'
if 'tier' in line and 'Further' not in line:
tier = line.split(" tier")[0]
tier = tier.split('"')[-1]
current_tier = self.translate_tier(tier)
if current_tier == self.targettier:
self.foundtarget = True
elif current_tier > self.targettier:
self.do_uncomment = False
else:
self.do_uncomment = False
return line
elif self.do_uncomment and line[0] == '#':
return line[1:]
elif not self.do_uncomment and line[0] != '#':
return '#' + line
else:
return line
def translate_tier(self, tier):
if tier.lower() == 'first':
return 1
elif tier.lower() == 'second':
return 2
elif tier.lower() == 'third':
return 3
elif tier.lower() == 'fourth':
return 4
else:
return -1
def set_radial_multiplier(self):
assert isinstance(self.radmul, int)
newctrl = self.ctrlname + '.new'
fin = open(self.ctrlname, 'r')
fout = open(newctrl, 'w')
newline = " radial_multiplier %i\n" % self.radmul
for line in fin:
if ' radial_multiplier' in line:
fout.write(newline)
else:
fout.write(line)
fin.close()
fout.close()
os.rename(newctrl, self.ctrlname)
def get_dipole_moment(self, atoms):
if ('dipole' not in self.parameters.get('output', []) or
atoms.pbc.any()):
raise PropertyNotImplementedError
return FileIOCalculator.get_dipole_moment(self, atoms)
def get_stress(self, atoms):
if ('compute_numerical_stress' not in self.parameters and
'compute_analytical_stress' not in self.parameters):
raise PropertyNotImplementedError
return FileIOCalculator.get_stress(self, atoms)
def get_forces(self, atoms):
if ('compute_forces' not in self.parameters and
'sc_accuracy_forces' not in self.parameters):
raise PropertyNotImplementedError
return FileIOCalculator.get_forces(self, atoms)
def read_dipole(self):
"Method that reads the electric dipole moment from the output file."
for line in open(self.out, 'r'):
if line.rfind('Total dipole moment [eAng]') > -1:
dipolemoment = np.array([float(f)
for f in line.split()[6:9]])
self.results['dipole'] = dipolemoment
def read_energy(self):
for line in open(self.out, 'r'):
if line.rfind('Total energy corrected') > -1:
E0 = float(line.split()[5])
elif line.rfind('Total energy uncorrected') > -1:
F = float(line.split()[5])
self.results['free_energy'] = F
self.results['energy'] = E0
def read_forces(self):
"""Method that reads forces from the output file.
If 'all' is switched on, the forces for all ionic steps
in the output file will be returned, in other case only the
forces for the last ionic configuration are returned."""
lines = open(self.out, 'r').readlines()
forces = np.zeros([len(self.atoms), 3])
for n, line in enumerate(lines):
if line.rfind('Total atomic forces') > -1:
for iatom in range(len(self.atoms)):
data = lines[n + iatom + 1].split()
for iforce in range(3):
forces[iatom, iforce] = float(data[2 + iforce])
self.results['forces'] = forces
def read_stress(self):
lines = open(self.out, 'r').readlines()
stress = None
for n, line in enumerate(lines):
if (line.rfind('| Analytical stress tensor') > -1 or
line.rfind('Numerical stress tensor') > -1):
stress = []
for i in [n + 5, n + 6, n + 7]:
data = lines[i].split()
stress += [float(data[2]), float(data[3]), float(data[4])]
# rearrange in 6-component form and return
self.results['stress'] = np.array([stress[0], stress[4], stress[8],
stress[5], stress[2], stress[1]])
def read_stresses(self):
""" Read stress per atom """
with open(self.out) as fd:
next(l for l in fd if
'Per atom stress (eV) used for heat flux calculation' in l)
# scroll to boundary
next(l for l in fd if '-------------' in l)
stresses = []
for l in [next(fd) for _ in range(len(self.atoms))]:
# Read stresses and rearrange from
# (xx, yy, zz, xy, xz, yz) to (xx, yy, zz, yz, xz, xy)
xx, yy, zz, xy, xz, yz = [float(d) for d in l.split()[2:8]]
stresses.append([xx, yy, zz, yz, xz, xy])
self.results['stresses'] = np.array(stresses)
def get_stresses(self, voigt=False):
""" Return stress per atom
Returns an array of the six independent components of the
symmetric stress tensor per atom, in the traditional Voigt order
(xx, yy, zz, yz, xz, xy) or as a 3x3 matrix. Default is 3x3 matrix.
"""
voigt_stresses = self.results['stresses']
if voigt:
return voigt_stresses
else:
stresses = np.zeros((len(self.atoms), 3, 3))
for ii, stress in enumerate(voigt_stresses):
xx, yy, zz, yz, xz, xy = stress
stresses[ii] = np.array([(xx, xy, xz),
(xy, yy, yz),
(xz, yz, zz)])
return stresses
def read_convergence(self):
converged = False
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('Have a nice day') > -1:
converged = True
return converged
def get_number_of_iterations(self):
return self.read_number_of_iterations()
def read_number_of_iterations(self):
niter = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('| Number of self-consistency cycles') > -1:
niter = int(line.split(':')[-1].strip())
return niter
def get_electronic_temperature(self):
return self.read_electronic_temperature()
def read_electronic_temperature(self):
width = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('Occupation type:') > -1:
width = float(line.split('=')[-1].strip().split()[0])
return width
def get_number_of_electrons(self):
return self.read_number_of_electrons()
def read_number_of_electrons(self):
nelect = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('The structure contains') > -1:
nelect = float(line.split()[-2].strip())
return nelect
def get_number_of_bands(self):
return self.read_number_of_bands()
def read_number_of_bands(self):
nband = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('Number of Kohn-Sham states') > -1:
nband = int(line.split(':')[-1].strip())
return nband
def get_k_point_weights(self):
return self.read_kpts(mode='k_point_weights')
def get_bz_k_points(self):
raise NotImplementedError
def get_ibz_k_points(self):
return self.read_kpts(mode='ibz_k_points')
def get_spin_polarized(self):
return self.read_number_of_spins()
def get_number_of_spins(self):
return 1 + self.get_spin_polarized()
def get_magnetic_moment(self, atoms=None):
return self.read_magnetic_moment()
def read_number_of_spins(self):
spinpol = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('| Number of spin channels') > -1:
spinpol = int(line.split(':')[-1].strip()) - 1
return spinpol
def read_magnetic_moment(self):
magmom = None
if not self.get_spin_polarized():
magmom = 0.0
else: # only for spinpolarized system Magnetisation is printed
for line in open(self.out, 'r').readlines():
if line.find('N_up - N_down') != -1: # last one
magmom = float(line.split(':')[-1].strip())
return magmom
def get_fermi_level(self):
return self.read_fermi()
def get_eigenvalues(self, kpt=0, spin=0):
return self.read_eigenvalues(kpt, spin, 'eigenvalues')
def get_occupations(self, kpt=0, spin=0):
return self.read_eigenvalues(kpt, spin, 'occupations')
def read_fermi(self):
E_f = None
lines = open(self.out, 'r').readlines()
for n, line in enumerate(lines):
if line.rfind('| Chemical potential (Fermi level) in eV') > -1:
E_f = float(line.split(':')[-1].strip())
return E_f
def read_kpts(self, mode='ibz_k_points'):
""" Returns list of kpts weights or kpts coordinates. """
values = []
assert mode in ['ibz_k_points', 'k_point_weights']
lines = open(self.out, 'r').readlines()
kpts = None
kptsstart = None
for n, line in enumerate(lines):
if line.rfind('| Number of k-points') > -1:
kpts = int(line.split(':')[-1].strip())
for n, line in enumerate(lines):
if line.rfind('K-points in task') > -1:
kptsstart = n # last occurrence of (
assert kpts is not None
assert kptsstart is not None
text = lines[kptsstart + 1:]
values = []
for line in text[:kpts]:
if mode == 'ibz_k_points':
b = [float(c.strip()) for c in line.split()[4:7]]
else:
b = float(line.split()[-1])
values.append(b)
if len(values) == 0:
values = None
return np.array(values)
def read_eigenvalues(self, kpt=0, spin=0, mode='eigenvalues'):
""" Returns list of last eigenvalues, occupations
for given kpt and spin. """
values = []
assert mode in ['eigenvalues', 'occupations']
lines = open(self.out, 'r').readlines()
# number of kpts
kpts = None
for n, line in enumerate(lines):
if line.rfind('| Number of k-points') > -1:
kpts = int(line.split(':')[-1].strip())
break
assert kpts is not None
assert kpt + 1 <= kpts
# find last (eigenvalues)
eigvalstart = None
for n, line in enumerate(lines):
# eigenvalues come after Preliminary charge convergence reached
if line.rfind('Preliminary charge convergence reached') > -1:
eigvalstart = n
break
assert eigvalstart is not None
lines = lines[eigvalstart:]
for n, line in enumerate(lines):
if line.rfind('Writing Kohn-Sham eigenvalues') > -1:
eigvalstart = n
break
assert eigvalstart is not None
text = lines[eigvalstart + 1:] # remove first 1 line
# find the requested k-point
nbands = self.read_number_of_bands()
sppol = self.get_spin_polarized()
beg = ((nbands + 4 + int(sppol) * 1) * kpt * (sppol + 1) +
3 + sppol * 2 + kpt * sppol)
if self.get_spin_polarized():
if spin == 0:
beg = beg
end = beg + nbands
else:
beg = beg + nbands + 5
end = beg + nbands
else:
end = beg + nbands
values = []
for line in text[beg:end]:
# aims prints stars for large values ...
line = line.replace('**************', ' 10000')
line = line.replace('***************', ' 10000')
line = line.replace('****************', ' 10000')
b = [float(c.strip()) for c in line.split()[1:]]
values.append(b)
if mode == 'eigenvalues':
values = [Hartree * v[1] for v in values]
else:
values = [v[0] for v in values]
if len(values) == 0:
values = None
return np.array(values)
class AimsCube:
"Object to ensure the output of cube files, can be attached to Aims object"
def __init__(self, origin=(0, 0, 0),
edges=[(0.1, 0.0, 0.0), (0.0, 0.1, 0.0), (0.0, 0.0, 0.1)],
points=(50, 50, 50), plots=None):
"""parameters:
origin, edges, points:
Same as in the FHI-aims output
plots:
what to print, same names as in FHI-aims """
self.name = 'AimsCube'
self.origin = origin
self.edges = edges
self.points = points
self.plots = plots
def ncubes(self):
"""returns the number of cube files to output """
if self.plots:
number = len(self.plots)
else:
number = 0
return number
def set(self, **kwargs):
""" set any of the parameters ... """
# NOT IMPLEMENTED AT THE MOMENT!
def move_to_base_name(self, basename):
""" when output tracking is on or the base namem is not standard,
this routine will rename add the base to the cube file output for
easier tracking """
for plot in self.plots:
found = False
cube = plot.split()
if (cube[0] == 'total_density' or
cube[0] == 'spin_density' or
cube[0] == 'delta_density'):
found = True
old_name = cube[0] + '.cube'
new_name = basename + '.' + old_name
if cube[0] == 'eigenstate' or cube[0] == 'eigenstate_density':
found = True
state = int(cube[1])
s_state = cube[1]
for i in [10, 100, 1000, 10000]:
if state < i:
s_state = '0' + s_state
old_name = cube[0] + '_' + s_state + '_spin_1.cube'
new_name = basename + '.' + old_name
if found:
os.system('mv ' + old_name + ' ' + new_name)
def add_plot(self, name):
""" in case you forgot one ... """
self.plots += [name]
def write(self, file):
""" write the necessary output to the already opened control.in """
file.write('output cube ' + self.plots[0] + '\n')
file.write(' cube origin ')
for ival in self.origin:
file.write(str(ival) + ' ')
file.write('\n')
for i in range(3):
file.write(' cube edge ' + str(self.points[i]) + ' ')
for ival in self.edges[i]:
file.write(str(ival) + ' ')
file.write('\n')
if self.ncubes() > 1:
for i in range(self.ncubes() - 1):
file.write('output cube ' + self.plots[i + 1] + '\n')
|