1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
"""This module defines an interface to ONETEP for use by the ASE.
Authors:
Edward Tait, ewt23@cam.ac.uk
Nicholas Hine, n.d.m.hine@warwick.ac.uk (current maintainer)
Based on castep.py by:
Max Hoffmann, max.hoffmann@ch.tum.de
Jörg Meyer, joerg.meyer@ch.tum.de
"""
from copy import deepcopy
from os.path import isfile
from warnings import warn
from numpy import array
from ase import Atoms
from ase.calculators.calculator import FileIOCalculator, ReadError
from ase.parallel import paropen
from ase.units import Bohr, Hartree
__all__ = ['Onetep']
class Onetep(FileIOCalculator):
"""Implements the calculator for the onetep linear
scaling DFT code. Recommended ASE_ONETEP_COMMAND format
is "onetep_executable_name PREFIX.dat > PREFIX.out 2> PREFIX.err" """
implemented_properties = ['energy', 'forces', 'dipole', 'magmom']
# Used to indicate 'parameters' which shouldn't be written to
# the onetep input file in the standard <key> : <value> format
# for example the NGWF radius is used in the species block and isn't
# written elsewhere in the input file
_dummy_parameters = ['ngwf_radius', 'xc', 'species_ngwf_radius',
'species_ngwf_number', 'species_solver',
'ngwf_radius_cond', 'pseudo_suffix',
'species_pseudo', 'species_core_wf',
'species_solver_cond', 'species_ngwf_number_cond',
'species_ngwf_radius_cond']
# Used to indicate which parameters are a kpoint path and should be
# written as such
_path_parameters = ['bsunfld_kpoint_path', 'bs_kpoint_path']
# Used to indicate which parameters are a block listing atom
# groupings for a variety of purposes
_group_parameters = ['species_bsunfld_groups', 'species_ldos_groups',
'species_locdipole_groups',
'species_bsunfld_projatoms',
'species_pdos_groups', 'species_tddft_ct',
'species_tddft_kernel', 'nbo_write_species',
'species_ngwf_plot']
# Used to indicate which parameters are a block of any other sort
# other than those above (the contents of the parameter is reproduced
# verbatim within the block)
_block_parameters = _path_parameters + _group_parameters + [
'species_constraints', 'nbo_species_ngwflabel',
'ddec_rmse_vdw', 'vdw_params', 'sol_ions', 'swri']
default_parameters = {'cutoff_energy': '1000 eV',
'kernel_cutoff': '1000 bohr',
'ngwf_radius': 12.0,
'ngwf_radius_cond': -1.0}
name = 'onetep'
def __init__(self, restart=None,
ignore_bad_restart_file=FileIOCalculator._deprecated,
label=None, command=None, atoms=None, **kwargs):
FileIOCalculator.__init__(self, restart, ignore_bad_restart_file,
label, atoms, command, **kwargs)
self.species = []
self.species_cond = []
self.pseudos = []
self.core_wfs = []
self.solvers = []
self.solvers_cond = []
self.restart = False
self.prefix = label
self.directory = '.'
def read(self, label):
"""Read a onetep .out file into the current instance."""
FileIOCalculator.read(self, label)
onetep_file = self.label + '.out'
warnings = []
try:
out = paropen(onetep_file, 'r')
except IOError:
raise ReadError('Could not open output file "%s"' % onetep_file)
# keep track of what we've read in
read_lattice = False
read_species = False
read_positions = False
line = out.readline()
if self.atoms is None:
self.atoms = Atoms()
self.atoms.calc = self
while line:
clean_line = line.strip().lower()
if '%block lattice_cart' in clean_line:
self._read_lattice(out)
read_lattice = True
elif '%block species_pot' in clean_line:
self._read_species_pot(out)
elif clean_line.endswith('%block species_atomic_set'):
self._read_species_solver(out)
elif clean_line.endswith('%block species'):
self._read_species(out)
read_species = True
elif '%block positions_abs' in clean_line:
self._read_positions(out)
read_positions = True
elif '%block species_cond' in clean_line:
self._read_species(out, cond=True)
elif '%block species_atomic_set_cond' in clean_line:
self._read_species_solver(out, cond=True)
elif 'warn' in line.lower():
warnings.append(line)
line = out.readline()
out.close()
if warnings:
warn('WARNING: %s contains warnings' % onetep_file)
for warning in warnings:
warn(warning)
if not (read_lattice and read_species and read_positions):
raise ReadError('Failed to read in essential calculation'
' data from output file "%s"' % onetep_file)
self.read_results(label)
def read_results(self, label=None):
FileIOCalculator.read_results(self)
if label is None:
onetep_file = self.label + '.out'
else:
onetep_file = label + '.out'
warnings = []
try:
out = paropen(onetep_file, 'r')
except IOError:
raise ReadError('Could not open output file "%s"' % onetep_file)
line = out.readline()
while line:
if '| Total' in line:
self.results['energy'] = Hartree * float(line.split()[-2])
elif ('Element Atom Cartesian components (Eh/a)'
in line):
self._read_forces(out)
elif ('Final Configuration' in line):
self._read_geom_output(out)
elif ('Integrated spin density' in line):
self.results['magmom'] = self._read_magmom(line)
elif '|Excitation| Energy (in Ha) | Oscillator Str' in line:
self._read_excitations(out)
elif ('Dipole Moment Calculation' in line):
self.results['dipole'] = self._read_dipole(out)
elif 'warn' in line.lower():
warnings.append(line)
line = out.readline()
if warnings:
warn('WARNING: %s contains warnings' % onetep_file)
for warning in warnings:
warn(warning)
def _read_lattice(self, out):
""" read the lattice parameters out of a onetep .out formatted file
stream"""
axes = []
l = out.readline()
# onetep assumes lengths are in atomic units by default
conv_fac = Bohr
if 'ang' in l:
l = out.readline()
conv_fac = 1.0
elif 'bohr' in l:
l = out.readline()
for _ in range(0, 3):
l = l.strip()
p = l.split()
if len(p) != 3:
raise ReadError('Malformed Lattice block line "%s"' % l)
try:
axes.append([conv_fac * float(comp) for comp in p[0:3]])
except ValueError:
raise ReadError("Can't parse line \"%s\" in axes block" % l)
l = out.readline()
self.atoms.set_cell(axes)
def _read_positions(self, out):
"""Read the contents of a positions_abs block into the calculator's
atoms object, setting both species and positions. Tries to strip out
comment lines and is aware of angstom vs. bohr"""
line = out.readline()
# onetep assumes lengths are in atomic units by default
conv_fac = Bohr
if 'ang' in line:
line = out.readline()
conv_fac = 1.0
elif 'bohr' in line:
line = out.readline()
symbols = []
positions = []
while '%endblock' not in line.lower():
line = line.strip()
if line[0] != '#':
atom, suffix = line.split(None, 1)
pos = suffix.split(None, 3)[0:3]
try:
pos = [conv_fac * float(p) for p in pos]
except ValueError:
raise ReadError('Malformed position line "%s"', line)
symbols.append(atom)
positions.append(pos)
line = out.readline()
tags = deepcopy(symbols)
for j in range(len(symbols)):
symbols[j] = ''.join(i for i in symbols[j] if not i.isdigit())
for j in range(len(tags)):
tags[j] = ''.join(i for i in tags[j] if not i.isalpha())
if tags[j] == '':
tags[j] = '0'
tags[j] = int(tags[j])
if len(self.atoms) != len(symbols):
self.atoms = Atoms(symbols=symbols, positions=positions)
self.atoms.set_chemical_symbols(symbols)
self.atoms.set_tags(tags)
self.atoms.set_positions(positions)
def _read_dipole(self, out):
"""Reads total dipole moment from ONETEP output file"""
# Find start of total dipole moment block
line = ()
while 'Total dipole moment' not in line:
line = out.readline()
# Read total dipole moment
dipolemoment = []
for label, pos in sorted({'dx': 6, 'dy': 2, 'dz': 2}.items()):
assert label in line.split()
value = float(line.split()[pos])*Bohr
dipolemoment.append(value)
line = out.readline()
return array(dipolemoment)
def _read_magmom(self, line):
"""Reads magnetic moment from Integrated Spin line"""
return float(line.split()[4])
def _read_geom_output(self, out):
"""Reads geometry optimisation output from ONETEP output file"""
conv_fac = Bohr
# Find start of atom positions
while 'x-----' not in out.readline():
pass
symbols = []
positions = []
# Read atom positions
line = out.readline()
while 'xxxxxx' not in line:
line = line.strip()
pos = line.split()[3:6]
pos = [conv_fac * float(p) for p in pos]
atom = line.split()[1]
positions.append(pos)
symbols.append(atom)
line = out.readline()
if len(positions) != len(self.atoms):
raise ReadError('Wrong number of atoms found in output geometry'
'block')
if len(symbols) != len(self.atoms):
raise ReadError('Wrong number of atoms found in output geometry'
'block')
# Update atoms object with new positions (and symbols)
self.atoms.set_positions(positions)
self.atoms.set_chemical_symbols(symbols)
def _read_species(self, out, cond=False):
""" Read in species block from a onetep output file"""
line = out.readline().strip()
species = []
while '%endblock' not in line.lower():
atom, element, z, nngwf, ngwf_radius = line.split(None, 5)
z = int(z)
nngwf = int(nngwf)
ngwf_radius = float(ngwf_radius)
species.append((atom, element, z, nngwf, ngwf_radius,))
line = out.readline().strip()
if not cond:
self.set_species(species)
else:
self.set_species_cond(species)
def _read_species_pot(self, out):
""" Read in pseudopotential information from a onetep output file"""
line = out.readline().strip()
pots = []
while '%endblock' not in line.lower() and len(line) > 0:
atom, suffix = line.split(None, 1)
filename = suffix.split('#', 1)[0].strip()
filename = filename.replace('"', '') # take out quotes
filename = filename.replace("'", '')
pots.append((atom, filename,))
line = out.readline().strip()
if len(line) == 0:
raise ReadError('End of file while reading potential block')
self.set_pseudos(pots)
def _read_species_solver(self, out, cond=False):
""" Read in pseudopotential information from a onetep output file"""
line = out.readline().strip()
solvers = []
while '%endblock' not in line.lower() and len(line) > 0:
atom, suffix = line.split(None, 1)
solver_str = suffix.split('#', 1)[0].strip()
solvers.append((atom, solver_str))
line = out.readline().strip()
if len(line) == 0:
raise ReadError('End of file while reading solver block')
if not cond:
self.set_solvers(solvers)
else:
self.set_solvers_cond(solvers)
def _read_forces(self, out):
""" Extract the computed forces from a onetep output file"""
forces = []
atomic2ang = Hartree / Bohr
while True:
line = out.readline()
fields = line.split()
if len(fields) > 6:
break
while len(fields) == 7:
force = [float(fcomp) * atomic2ang for fcomp in fields[-4:-1]]
forces.append(force)
line = out.readline()
fields = line.split()
self.results['forces'] = array(forces)
def _read_excitations(self, out):
""" Extract the computed electronic excitations from a onetep output
file."""
excitations = []
line = out.readline()
while line:
words = line.split()
if len(words) == 0:
break
excitations.append([float(words[0]), float(words[1])*Hartree, float(words[2])])
line = out.readline()
self.results['excitations'] = array(excitations)
def _generate_species_block(self, cond=False):
"""Create a default onetep species block, use -1 for the NGWF number
to trigger automatic NGWF number assigment using onetep's internal
routines."""
# check if we need to do anything.
if len(self.species) == len(self.atoms.get_chemical_symbols()):
return
parameters = self.parameters
atoms = self.atoms
if not cond:
self.species = []
default_ngwf_radius = self.parameters['ngwf_radius']
species_ngwf_rad_var = 'species_ngwf_radius'
species_ngwf_num_var = 'species_ngwf_number'
else:
self.species_cond = []
default_ngwf_radius = self.parameters['ngwf_radius_cond']
species_ngwf_rad_var = 'species_ngwf_radius_cond'
species_ngwf_num_var = 'species_ngwf_number_cond'
for sp in set(zip(atoms.get_atomic_numbers(),
atoms.get_chemical_symbols(),
["" if i == 0 else str(i) for i in atoms.get_tags()])):
try:
ngrad = parameters[species_ngwf_rad_var][sp[1]]
except KeyError:
ngrad = default_ngwf_radius
try:
ngnum = parameters[species_ngwf_num_var][sp[1]]
except KeyError:
ngnum = -1
if not cond:
self.species.append((sp[1]+sp[2], sp[1], sp[0], ngnum, ngrad))
else:
self.species_cond.append((sp[1]+sp[2], sp[1], sp[0], ngnum, ngrad))
def _generate_pseudo_block(self):
"""Create a default onetep pseudopotentials block, using the
element name with the variable pseudo_suffix appended to it by default,
unless the user has set overrides for specific species by setting
specific entries in species_pseudo"""
for sp in self.species:
try:
pseudo_string = self.parameters['species_pseudo'][sp[0]]
except KeyError:
try:
pseudo_string = sp[1] + self.parameters['pseudo_suffix']
except KeyError:
pseudo_string = sp[1] # bare elem name if pseudo suffix empty
self.pseudos.append((sp[0], pseudo_string))
def _generate_solver_block(self, cond=False):
"""Create a default onetep pseudoatomic solvers block, using 'SOLVE'
unless the user has set overrides for specific species by setting
specific entries in species_solver (_cond)"""
if not cond:
solver_var = 'species_solver'
else:
solver_var = 'species_solver_cond'
for sp in self.species:
try:
atomic_string = self.parameters[solver_var][sp[0]]
except KeyError:
atomic_string = 'SOLVE'
if not cond:
self.solvers.append((sp[0], atomic_string))
else:
self.solvers_cond.append((sp[0], atomic_string))
def _generate_core_wf_block(self):
"""Create a default onetep core wavefunctions block, using 'NONE'
unless the user has set overrides for specific species by setting
specific entries in species_core_wf. If all are NONE, no block
will be printed"""
any_core_wfs = False
for sp in self.species:
try:
core_wf_string = self.parameters['species_core_wf'][sp[0]]
any_core_wfs = True
except KeyError:
core_wf_string = 'NONE'
self.core_wfs.append((sp[0], core_wf_string))
# if no species core wavefunction definitions were set to anything
# other than 'NONE', delete the block entirely
if not any_core_wfs:
self.core_wfs = []
def set_pseudos(self, pots):
""" Sets the pseudopotential files used in this dat file """
self.pseudos = deepcopy(pots)
def set_solvers(self, solvers):
""" Sets the solver strings used in this dat file """
self.solvers = deepcopy(solvers)
def set_solvers_cond(self, solvers):
""" Sets the solver strings used in this dat file """
self.solvers_cond = deepcopy(solvers)
def set_atoms(self, atoms):
self.atoms = atoms
def set_species(self, sp):
""" Sets the species in the current dat instance,
in onetep this includes both atomic number information
as well as NGWF parameters like number and cut off radius"""
self.species = deepcopy(sp)
def set_species_cond(self, spc):
""" Sets the conduction species in the current dat instance,
in onetep this includes both atomic number information
as well as NGWF parameters like number and cut off radius"""
self.species_cond = deepcopy(spc)
def write_input(self, atoms, properties=None, system_changes=None):
"""Only writes the input .dat file and return
This can be useful if one quickly needs to prepare input files
for a cluster where no python or ASE is available. One can than
upload the file manually and read out the results using
Onetep().read().
"""
if atoms is None:
atoms = self.atoms
if self.restart:
self.parameters['read_tightbox_ngwfs'] = True
self.parameters['read_denskern'] = True
self._generate_species_block()
if len(self.pseudos) < len(self.species):
if 'pseudo_suffix' in self.parameters:
self._generate_pseudo_block()
if len(self.solvers) < len(self.species):
self._generate_solver_block()
if 'ngwf_radius_cond' in self.parameters:
if len(self.species_cond) < len(self.species):
self._generate_species_block(cond=True)
if len(self.solvers_cond) < len(self.species):
self._generate_solver_block(cond=True)
if len(self.core_wfs) < len(self.species):
self._generate_core_wf_block()
self._write_dat()
def get_dipole_moment(self, atoms=None):
self.parameters['polarisation_calculate'] = True
self.parameters['do_properties'] = True
return FileIOCalculator.get_dipole_moment(self, atoms)
def get_forces(self, atoms=None):
self.parameters['write_forces'] = True
return FileIOCalculator.get_forces(self, atoms)
def _write_dat(self, force_write=True):
"""This export function write minimal information to
a .dat file. If the atoms object is a trajectory, it will
take the last image.
"""
filename = self.label + '.dat'
if self.atoms is None:
raise Exception('No associated atoms object.')
atoms = self.atoms
parameters = self.parameters
if isfile(filename) and not force_write:
raise Exception('Target input file already exists.')
if 'xc' in parameters and 'xc_functional' in parameters \
and parameters['xc'] != parameters['xc_functional']:
raise Exception('Conflicting functionals defined! %s vs. %s' %
(parameters['xc'], parameters['xc_functional']))
fd = open(filename, 'w')
fd.write('######################################################\n')
fd.write('#ONETEP .dat file: %s\n' % filename)
fd.write('#Created using the Atomic Simulation Environment (ASE)\n')
fd.write('######################################################\n\n')
fd.write('%BLOCK LATTICE_CART\n')
fd.write('ang\n')
for line in atoms.get_cell():
fd.write(' %.10f %.10f %.10f\n' % tuple(line))
fd.write('%ENDBLOCK LATTICE_CART\n\n\n')
keyword = 'POSITIONS_ABS'
positions = atoms.get_positions()
tags = ["" if i == 0 else str(i) for i in atoms.get_tags()]
pos_block = [('%s %8.6f %8.6f %8.6f' %
(x+z, y[0], y[1], y[2])) for (x, y, z)
in zip(atoms.get_chemical_symbols(), positions, tags)]
fd.write('%%BLOCK %s\n' % keyword)
fd.write('ang\n')
for line in pos_block:
fd.write(' %s\n' % line)
fd.write('%%ENDBLOCK %s\n\n' % keyword)
keyword = 'SPECIES'
sp_block = [('%s %s %d %d %8.6f' % sp) for sp in self.species]
fd.write('%%BLOCK %s\n' % keyword)
for line in sorted(sp_block):
fd.write(' %s\n' % line)
fd.write('%%ENDBLOCK %s\n\n' % keyword)
if ((self.parameters['ngwf_radius_cond'] > 0) or
len(self.species_cond) == len(self.species)):
keyword = 'SPECIES_COND'
sp_block = [('%s %s %d %d %8.6f' % sp) for sp in self.species_cond]
fd.write('%%BLOCK %s\n' % keyword)
for line in sorted(sp_block):
fd.write(' %s\n' % line)
fd.write('%%ENDBLOCK %s\n\n' % keyword)
keyword = 'SPECIES_POT'
fd.write('%%BLOCK %s\n' % keyword)
for sp in sorted(self.pseudos):
fd.write(' %s "%s"\n' % (sp[0], sp[1]))
fd.write('%%ENDBLOCK %s\n\n' % keyword)
keyword = 'SPECIES_ATOMIC_SET'
fd.write('%%BLOCK %s\n' % keyword)
for sp in sorted(self.solvers):
fd.write(' %s "%s"\n' % (sp[0], sp[1]))
fd.write('%%ENDBLOCK %s\n\n' % keyword)
if ((self.parameters['ngwf_radius_cond'] > 0) or
len(self.solvers_cond) == len(self.species)):
keyword = 'SPECIES_ATOMIC_SET_COND'
fd.write('%%BLOCK %s\n' % keyword)
for sp in sorted(self.solvers_cond):
fd.write(' %s "%s"\n' % (sp[0], sp[1]))
fd.write('%%ENDBLOCK %s\n\n' % keyword)
if self.core_wfs:
keyword = 'SPECIES_CORE_WF'
fd.write('%%BLOCK %s\n' % keyword)
for sp in sorted(self.core_wfs):
fd.write(' %s "%s"\n' % (sp[0], sp[1]))
fd.write('%%ENDBLOCK %s\n\n' % keyword)
if 'bsunfld_calculate' in self.parameters:
if 'species_bsunfld_groups' not in self.parameters:
self.parameters['species_bsunfld_groups'] = self.atoms.get_chemical_symbols()
# Loop over parameters entries in alphabetal order, outputting
# them as keywords or blocks as appropriate
for p, param in sorted(parameters.items()):
if param is not None and \
p.lower() not in self._dummy_parameters:
if p.lower() in self._block_parameters:
keyword = p.upper()
fd.write('\n%%BLOCK %s\n' % keyword)
if p.lower() in self._path_parameters:
self.write_kpt_path(fd, param)
elif p.lower() in self._group_parameters:
self.write_groups(fd, param)
else:
fd.write('%s\n' % str(param))
fd.write('%%ENDBLOCK %s\n\n' % keyword)
else:
fd.write('%s : %s\n' % (p, param))
if p.upper() == 'XC':
# Onetep calls XC something else...
fd.write('xc_functional : %s\n' % param)
fd.close()
def write_kpt_path(self, fd, path):
"""Writes a k-point path to a ONETEP input file"""
for kpt in array(path):
fd.write(' %8.6f %8.6f %8.6f\n' % (kpt[0], kpt[1], kpt[2]))
def write_groups(self, fd, groups):
"""Writes multiple groups of atom labels to a ONETEP input file"""
for grp in groups:
fd.write(" ".join(map(str, grp)))
fd.write('\n')
def __repr__(self):
"""Returns generic, fast to capture representation of
ONETEP settings along with atoms object.
"""
expr = ''
expr += '-----------------Atoms--------------------\n'
if self.atoms is not None:
expr += str('%20s\n' % self.atoms)
else:
expr += 'None\n'
expr += '\n-----------------Species---------------------\n'
expr += str(self.species)
expr += '\n-----------------Pseudos---------------------\n'
expr += str(self.pseudos)
expr += '\n-----------------Options------------\n'
for key in self.parameters:
expr += '%20s : %s\n' % (key, self.parameters[key])
return expr
def set_label(self, label):
"""The label is part of each seed, which in turn is a prefix
in each ONETEP related file.
"""
self.label = label
self.prefix = label
|