File: writer.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (670 lines) | stat: -rw-r--r-- 25,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
"""
The ASE Calculator for OpenMX <http://www.openmx-square.org>: Python interface
to the software package for nano-scale material simulations based on density
functional theories.
    Copyright (C) 2018 JaeHwan Shim and JaeJun Yu

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation, either version 2.1 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with ASE.  If not, see <http://www.gnu.org/licenses/>.
"""
import os
import numpy as np
from ase.units import Bohr, Ha, Ry, fs, m, s
from ase.calculators.calculator import kpts2sizeandoffsets
from ase.calculators.openmx.reader import (read_electron_valency, get_file_name, get_standard_key)
from ase.calculators.openmx import parameters as param

keys = [param.tuple_integer_keys, param.tuple_float_keys,
        param.tuple_bool_keys, param.integer_keys, param.float_keys,
        param.string_keys, param.bool_keys, param.list_int_keys,
        param.list_bool_keys, param.list_float_keys, param.matrix_keys]


def write_openmx(label=None, atoms=None, parameters=None, properties=None,
                 system_changes=None):
    """
    From atom image, 'images', write '.dat' file.
    First, set
    Write input (dat)-file.
    See calculator.py for further details.

    Parameters:
        - atoms        : The Atoms object to write.
        - properties   : The properties which should be calculated.
        - system_changes : List of properties changed since last run.
    """
    from ase.calculators.openmx import parameters as param
    filtered_keywords = parameters_to_keywords(label=label, atoms=atoms,
                                               parameters=parameters,
                                               properties=properties,
                                               system_changes=system_changes)
    keys = ['string', 'bool', 'integer', 'float',
            'tuple_integer', 'tuple_float', 'tuple_bool',
            'matrix', 'list_int', 'list_bool', 'list_float']
    # Start writing the file
    filename = get_file_name('.dat', label)
    with open(filename, 'w') as fd:
        # Write 1-line keywords
        for fltrd_keyword in filtered_keywords.keys():
            for key in keys:
                openmx_keywords = getattr(param, key+'_keys')
                write = globals()['write_'+key]
                for omx_keyword in openmx_keywords:
                    if fltrd_keyword == get_standard_key(omx_keyword):
                        write(fd, omx_keyword, filtered_keywords[fltrd_keyword])


def parameters_to_keywords(label=None, atoms=None, parameters=None,
                           properties=None, system_changes=None):
    """
    Before writing `label.dat` file, set up the ASE variables to OpenMX
    keywords. First, It initializes with given openmx keywords and reconstruct
    dictionary using standard parameters. If standard parameters and openmx
    keywords are contradict to each other, ignores openmx keyword.
     It includes,

    For aesthetical purpose, sequnece of writing input file is specified.
    """
    from ase.calculators.openmx.parameters import matrix_keys
    from ase.calculators.openmx.parameters import unit_dat_keywords
    from collections import OrderedDict
    keywords = OrderedDict()
    sequence = [
        'system_currentdirectory', 'system_name', 'data_path',
        'level_of_fileout',
        'species_number', 'definition_of_atomic_species',
        'atoms_number', 'atoms_speciesandcoordinates_unit',
        'atoms_speciesandcoordinates', 'atoms_unitvectors_unit',
        'atoms_unitvectors', 'band_dispersion', 'band_nkpath',
        'band_kpath']

    directory, prefix = os.path.split(label)
    curdir = os.path.join(os.getcwd(), prefix)
    counterparts = {
        'system_currentdirectory': curdir,
        'system_name': prefix,
        'data_path': os.environ.get('OPENMX_DFT_DATA_PATH'),
        'species_number': len(get_species(atoms.get_chemical_symbols())),
        'atoms_number': len(atoms),
        'scf_restart': 'restart',
        'scf_maxiter': 'maxiter',
        'scf_xctype': 'xc',
        'scf_energycutoff': 'energy_cutoff',
        'scf_criterion': 'convergence',
        'scf_external_fields': 'external',
        'scf_mixing_type': 'mixer',
        'scf_electronic_temperature': 'smearing',
        'scf_system_charge': 'charge',
        'scf_eigenvaluesolver': 'eigensolver'
    }
    standard_units = {'eV': 1, 'Ha': Ha, 'Ry': Ry, 'Bohr': Bohr, 'fs': fs,
                      'K': 1, 'GV / m': 1e9/1.6e-19 / m, 'Ha/Bohr': Ha/Bohr,
                      'm/s': m/s, '_amu': 1, 'Tesla': 1}
    unit_dict = {get_standard_key(k): v for k, v in unit_dat_keywords.items()}

    for key in sequence:
        keywords[key] = None
    for key in parameters:
        if 'scf' in key:
            keywords[key] = None
    for key in parameters:
        if 'md' in key:
            keywords[key] = None

    # Initializes keywords to to given parameters
    for key in parameters.keys():
        keywords[key] = parameters[key]

    def parameter_overwrites(openmx_keyword):
        """
        In a situation conflicting ASE standard parameters and OpenMX keywords,
        ASE parameters overrides to OpenMX keywords. While doing so, units are
        converted to OpenMX unit.
        However, if both parameters and keyword are not given, we fill up that
        part in suitable manner
          openmx_keyword : key |  Name of key used in OpenMX
          keyword : value | value corresponds to openmx_keyword
          ase_parameter : key | Name of parameter used in ASE
          parameter : value | value corresponds to ase_parameter
        """
        ase_parameter = counterparts[openmx_keyword]
        keyword = parameters.get(openmx_keyword)
        parameter = parameters.get(ase_parameter)
        if parameter is not None:
            # Handles the unit
            unit = standard_units.get(unit_dict.get(openmx_keyword))
            if unit is not None:
                return parameter / unit
            return parameter
        elif keyword is not None:
            return keyword
        elif 'scf' in openmx_keyword:
            return None
        else:
            return counterparts[openmx_keyword]

    # Overwrites openmx keyword using standard parameters
    for openmx_keyword in counterparts.keys():
        keywords[openmx_keyword] = parameter_overwrites(openmx_keyword)

    # keywords['scf_stress_tensor'] = 'stress' in properties
    # This is not working due to the UnitCellFilter method.
    if 'energies' in properties:
        keywords['energy_decomposition'] = True
    if 'stress' in properties:
        keywords['scf_stress_tensor'] = True

    keywords['scf_xctype'] = get_xc(keywords['scf_xctype'])
    keywords['scf_kgrid'] = get_scf_kgrid(atoms, parameters)
    keywords['scf_spinpolarization'] = get_spinpol(atoms, parameters)

    if parameters.get('band_kpath') is not None:
        keywords['band_dispersion'] = True
    keywords['band_kpath'] = parameters.get('band_kpath')
    if parameters.get('band_nkpath') is not None:
        keywords['band_nkpath'] = len(keywords['band_kpath'])

    # Set up Wannier Environment
    if parameters.get('wannier_func_calc') is not None:
        keywords['species_number'] *= 2

    # Set up some parameters for the later use
    parameters['_xc'] = keywords['scf_xctype']
    parameters['_data_path'] = keywords['data_path']
    parameters['_year'] = get_dft_data_year(parameters)

    # Set up the matrix-type OpenMX keywords
    for key in matrix_keys:
        get_matrix_key = globals()['get_' + get_standard_key(key)]
        keywords[get_standard_key(key)] = get_matrix_key(atoms, parameters)
    return OrderedDict([(k, v)for k, v in keywords.items()
                        if not(v is None or
                               (isinstance(v, list) and v == []))])


def get_species(symbols):
    species = []
    [species.append(s) for s in symbols if s not in species]
    return species


def get_xc(xc):
    """
    Change the name of xc appropriate to OpenMX format
    """
    xc = xc.upper()
    assert xc.upper() in param.OpenMXParameters().allowed_xc
    if xc in ['PBE', 'GGA', 'GGA-PBE']:
        return 'GGA-PBE'
    elif xc in ['LDA']:
        return 'LDA'
    elif xc in ['CA', 'PW']:
        return 'LSDA-' + xc
    elif xc in ['LSDA', 'LSDA-CA']:
        return 'LSDA-CA'
    elif xc in ['LSDA-PW']:
        return 'LSDA-PW'
    else:
        return 'LDA'


def get_vps(xc):
    if xc in ['GGA-PBE']:
        return 'PBE'
    else:
        return 'CA'


def get_scf_kgrid(atoms, parameters):
    kpts, scf_kgrid = parameters.get('kpts'), parameters.get('scf_kgrid')
    if isinstance(kpts, (tuple, list, np.ndarray)) and len(kpts) == 3 and isinstance(kpts[0], int):
        return kpts
    elif isinstance(kpts, float) or isinstance(kpts, int):
        return tuple(kpts2sizeandoffsets(atoms=atoms, density=kpts)[0])
    else:
        return scf_kgrid


def get_definition_of_atomic_species(atoms, parameters):
    """
    Using atoms and parameters, Returns the list `definition_of_atomic_species`
    where matrix of strings contains the information between keywords.
    For example,
     definition_of_atomic_species =
         [['H','H5.0-s1>1p1>1','H_CA13'],
          ['C','C5.0-s1>1p1>1','C_CA13']]
    Goes to,
      <Definition.of.Atomic.Species
        H   H5.0-s1>1p1>1      H_CA13
        C   C5.0-s1>1p1>1      C_CA13
      Definition.of.Atomic.Species>
    Further more, you can specify the wannier information here.
    A. Define local functions for projectors
      Since the pseudo-atomic orbitals are used for projectors,
      the specification of them is the same as for the basis functions.
      An example setting, for silicon in diamond structure, is as following:
   Species.Number          2
      <Definition.of.Atomic.Species
        Si       Si7.0-s2p2d1    Si_CA13
        proj1    Si5.5-s1p1d1f1  Si_CA13
      Definition.of.Atomic.Species>
    """
    if parameters.get('definition_of_atomic_species') is not None:
        return parameters['definition_of_atomic_species']

    definition_of_atomic_species = []
    xc = parameters.get('_xc')
    year = parameters.get('_year')

    chem = atoms.get_chemical_symbols()
    species = get_species(chem)
    for element in species:
        rad_orb = get_cutoff_radius_and_orbital(element=element)
        suffix = get_pseudo_potential_suffix(element=element, xc=xc, year=year)
        definition_of_atomic_species.append([element, rad_orb, suffix])
    # Put the same orbital and radii with chemical symbol.
    wannier_projectors = parameters.get('definition_of_wannier_projectors', [])
    for i, projector in enumerate(wannier_projectors):
        full_projector = definition_of_atomic_species[i]
        full_projector[0] = projector
        definition_of_atomic_species.append(full_projector)
    return definition_of_atomic_species


def get_dft_data_year(parameters):
    """
    It seems there is no version or potential year checker in openmx, thus we
    implemented one. It parse the pesudo potential path variable such as
    `~/PATH/TO/OPENMX/openmx3.9/DFT_DATA19/` or `.../openmx3.8/DFT_DATA13/`.
    By spliting this string, we harness the number of the year that generated
    such pseudo potential path.
    """
    if parameters.get('dft_data_year') is not None:
        return str(parameters.get('dft_data_year'))
    data_path = parameters['_data_path']
    year = data_path.split('DFT_DATA')[1][:2]
    if year is not None:
        return year
    else:
        raise ValueError('DFT_DATA year can not be found. Please specify '
                         '`dft_data_year` as year of pseudo potential relesed')


def get_cutoff_radius_and_orbital(element=None, orbital=None):
    """
    For a given element, retruns the string specifying cutoff radius and
    orbital using default_settings.py. For example,
       'Si'   ->   'Si.7.0-s2p2d1'
    If one wannts to change the atomic radius for a special purpose, one should
    change the default_settings.py directly.
    """
    from ase.calculators.openmx import default_settings
    orbital = element
    orbital_letters = ['s', 'p', 'd', 'f', 'g', 'h']
    default_dictionary = default_settings.default_dictionary
    orbital_numbers = default_dictionary[element]['orbitals used']
    cutoff_radius = default_dictionary[element]['cutoff radius']
    orbital += "%.1f" % float(cutoff_radius) + '-'
    for i, orbital_number in enumerate(orbital_numbers):
        orbital += orbital_letters[i] + str(orbital_number)
    return orbital


def get_pseudo_potential_suffix(element=None, xc=None, year='13'):
    """
    For a given element, returns the string specifying pseudo potential suffix.
    For example,
        'Si'   ->   'Si_CA13'
    or
        'Si'   ->   'Si_CA19'
    depending on pseudo potential generation year
    """
    from ase.calculators.openmx import default_settings
    default_dictionary = default_settings.default_dictionary
    pseudo_potential_suffix = element
    vps = get_vps(xc)
    suffix = default_dictionary[element]['pseudo-potential suffix']
    pseudo_potential_suffix += '_' + vps + year + suffix
    return pseudo_potential_suffix


def get_atoms_speciesandcoordinates(atoms, parameters):
    """
    The atomic coordinates and the number of spin charge are given by the
    keyword
    'Atoms.SpeciesAndCoordinates' as follows:
    <Atoms.SpeciesAndCoordinates
     1  Mn    0.00000   0.00000   0.00000   8.0  5.0  45.0 0.0 45.0 0.0  1 on
     2  O     1.70000   0.00000   0.00000   3.0  3.0  45.0 0.0 45.0 0.0  1 on
    Atoms.SpeciesAndCoordinates>
    to know more, link <http://www.openmx-square.org/openmx_man3.7/node85.html>
    """
    atoms_speciesandcoordinates = []
    xc = parameters.get('_xc')
    year = parameters.get('_year')
    data_pth = parameters.get('_data_path')
    # Appending number and elemental symbol
    elements = atoms.get_chemical_symbols()
    for i, element in enumerate(elements):
        atoms_speciesandcoordinates.append([str(i + 1), element])
    # Appending positions
    unit = parameters.get('atoms_speciesandcoordinates_unit', 'ang').lower()
    if unit == 'ang':
        positions = atoms.get_positions()
    elif unit == 'frac':
        positions = atoms.get_scaled_positions(wrap=False)
    elif unit == 'au':
        positions = atoms.get_positions() / Bohr
    for i, position in enumerate(positions):
        atoms_speciesandcoordinates[i].extend(position)

    # Even if 'atoms_speciesandcoordinates_unit' exists, `positions` goes first
    if parameters.get('atoms_speciesandcoordinates') is not None:
        atoms_spncrd = parameters['atoms_speciesandcoordinates'].copy()
        for i in range(len(atoms)):
            atoms_spncrd[i][2] = atoms_speciesandcoordinates[i][2]
            atoms_spncrd[i][3] = atoms_speciesandcoordinates[i][3]
            atoms_spncrd[i][4] = atoms_speciesandcoordinates[i][4]
        return atoms_spncrd

    # Appending magnetic moment
    magmoms = atoms.get_initial_magnetic_moments()
    for i, magmom in enumerate(magmoms):
        up_down_spin = get_up_down_spin(magmom, elements[i], xc, data_pth, year)
        atoms_speciesandcoordinates[i].extend(up_down_spin)
    # Appending magnetic field Spin magnetic moment theta phi
    spin_directions = get_spin_direction(magmoms)
    for i, spin_direction in enumerate(spin_directions):
        atoms_speciesandcoordinates[i].extend(spin_direction)
    # Appending magnetic field for Orbital magnetic moment theta phi
    orbital_directions = get_orbital_direction()
    for i, orbital_direction in enumerate(orbital_directions):
        atoms_speciesandcoordinates[i].extend(orbital_direction)
    # Appending Noncolinear schem switch
    noncollinear_switches = get_noncollinear_switches()
    for i, noncollinear_switch in enumerate(noncollinear_switches):
        atoms_speciesandcoordinates[i].extend(noncollinear_switch)
    # Appending orbital_enhancement_switch
    lda_u_switches = get_lda_u_switches()
    for i, lda_u_switch in enumerate(lda_u_switches):
        atoms_speciesandcoordinates[i].extend(lda_u_switch)
    return atoms_speciesandcoordinates


def get_up_down_spin(magmom, element, xc, data_path, year):
    magmom = np.linalg.norm(magmom)
    suffix = get_pseudo_potential_suffix(element, xc, year)
    filename = os.path.join(data_path, 'VPS/' + suffix + '.vps')
    valence_electron = float(read_electron_valency(filename))
    return [valence_electron / 2 + magmom / 2, valence_electron / 2 - magmom/2]


def get_spin_direction(magmoms):
    '''
    From atoms.magmom, returns the spin direction of phi and theta
    '''
    if np.array(magmoms).dtype == float or \
       np.array(magmoms).dtype is np.float64:
        return []
    else:
        magmoms = np.array(magmoms)
        return magmoms/np.linalg.norm(magmoms, axis=1)


def get_orbital_direction():
    orbital_direction = []
    # print("Not Implemented Yet")
    return orbital_direction


def get_noncollinear_switches():
    noncolinear_switches = []
    # print("Not Implemented Yet")
    return noncolinear_switches


def get_lda_u_switches():
    lda_u_switches = []
    # print("Not Implemented Yet")
    return lda_u_switches


def get_spinpol(atoms, parameters):
    ''' Judgeds the keyword 'scf.SpinPolarization'
     If the keyword is not None, spinpol gets the keyword by following priority
       1. standard_spinpol
       2. scf_spinpolarization
       3. magnetic moments of atoms
    '''
    standard_spinpol = parameters.get('spinpol', None)
    scf_spinpolarization = parameters.get('scf_spinpolarization', None)
    m = atoms.get_initial_magnetic_moments()
    syn = {True: 'On', False: None, 'on': 'On', 'off': None,
           None: None, 'nc': 'NC'}
    spinpol = np.any(m >= 0.1)
    if scf_spinpolarization is not None:
        spinpol = scf_spinpolarization
    if standard_spinpol is not None:
        spinpol = standard_spinpol
    if isinstance(spinpol, str):
        spinpol = spinpol.lower()
    return syn[spinpol]


def get_atoms_unitvectors(atoms, parameters):
    zero_vec = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
    if np.all(atoms.get_cell() == zero_vec) is True:
        default_cell = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
        return parameters.get('atoms_unitvectors', default_cell)
    unit = parameters.get('atoms_unitvectors_unit', 'ang').lower()
    if unit == 'ang':
        atoms_unitvectors = atoms.get_cell()
    elif unit == 'au':
        atoms_unitvectors = atoms.get_cell() / Bohr
    return atoms_unitvectors


def get_hubbard_u_values(atoms, parameters):
    return parameters.get('hubbard_u_values', [])


def get_atoms_cont_orbitals(atoms, parameters):
    return parameters.get('atoms_cont_orbitals', [])


def get_md_fixed_xyz(atoms, parameters):
    return parameters.get('md_fixed_xyz', [])


def get_md_tempcontrol(atoms, parameters):
    return parameters.get('md_tempcontrol', [])


def get_md_init_velocity(atoms, parameters):
    return parameters.get('md_init_velocity', [])


def get_band_kpath_unitcell(atoms, parameters):
    return parameters.get('band_kpath_unitcell', [])


def get_band_kpath(atoms, parameters):
    kpts = parameters.get('kpts')
    if isinstance(kpts, list) and len(kpts) > 3:
        return get_kpath(kpts=kpts)
    else:
        return parameters.get('band_kpath', [])


def get_mo_kpoint(atoms, parameters):
    return parameters.get('mo_kpoint', [])


def get_wannier_initial_projectors(atoms, parameters):
    """
    B. Specify the orbital, central position and orientation of a projector
    Wannier.Initial.Projectos will be used to specify the projector name,
    local orbital function, center of local orbital, and the local z-axis and
    x-axis for orbital orientation.

    An example setting is shown here:
    wannier_initial_projectors=
    [['proj1-sp3','0.250','0.250','0.25','-1.0','0.0','0.0','0.0','0.0','-1.0']
    ,['proj1-sp3','0.000','0.000','0.00','0.0','0.0','1.0','1.0','0.0','0.0']]
    Goes to,
        <Wannier.Initial.Projectors
           proj1-sp3   0.250  0.250  0.250   -1.0 0.0 0.0    0.0  0.0 -1.0
           proj1-sp3   0.000  0.000  0.000    0.0 0.0 1.0    1.0  0.0  0.0
        Wannier.Initial.Projectors>
    """
    return parameters.get('wannier_initial_projectors', [])


def get_kpath(self, kpts=None, symbols=None, band_kpath=None, eps=1e-5):
    """
    Convert band_kpath <-> kpts. Symbols will be guess automatically
    by using dft space group method
    For example,
    kpts  = [(0, 0, 0), (0.125, 0, 0) ... (0.875, 0, 0),
             (1, 0, 0), (1, 0.0625, 0) .. (1, 0.4375,0),
             (1, 0.5,0),(0.9375, 0.5,0).. (    ...    ),
             (0.5, 0.5, 0.5) ...               ...     ,
                ...          ...               ...     ,
                ...        (0.875, 0, 0),(1.0, 0.0, 0.0)]
    band_kpath =
    [['15','0.0','0.0','0.0','1.0','0.0','0.0','g','X'],
     ['15','1.0','0.0','0.0','1.0','0.5','0.0','X','W'],
     ['15','1.0','0.5','0.0','0.5','0.5','0.5','W','L'],
     ['15','0.5','0.5','0.5','0.0','0.0','0.0','L','g'],
     ['15','0.0','0.0','0.0','1.0','0.0','0.0','g','X']]
    where, it will be written as
     <Band.kpath
      15  0.0 0.0 0.0   1.0 0.0 0.0   g X
      15  1.0 0.0 0.0   1.0 0.5 0.0   X W
      15  1.0 0.5 0.0   0.5 0.5 0.5   W L
      15  0.5 0.5 0.5   0.0 0.0 0.0   L g
      15  0.0 0.0 0.0   1.0 0.0 0.0   g X
     Band.kpath>
    """
    if kpts is None:
        kx_linspace = np.linspace(band_kpath[0]['start_point'][0],
                                  band_kpath[0]['end_point'][0],
                                  band_kpath[0][0])
        ky_linspace = np.linspace(band_kpath[0]['start_point'][1],
                                  band_kpath[0]['end_point'][1],
                                  band_kpath[0]['kpts'])
        kz_linspace = np.linspace(band_kpath[0]['start_point'][2],
                                  band_kpath[0]['end_point'][2],
                                  band_kpath[0]['kpts'])
        kpts = np.array([kx_linspace, ky_linspace, kz_linspace]).T
        for path in band_kpath[1:]:
            kx_linspace = np.linspace(path['start_point'][0],
                                      path['end_point'][0],
                                      path['kpts'])
            ky_linspace = np.linspace(path['start_point'][1],
                                      path['end_point'][1],
                                      path['kpts'])
            kz_linspace = np.linspace(path['start_point'][2],
                                      path['end_point'][2],
                                      path['kpts'])
            k_lin = np.array([kx_linspace, ky_linspace, kz_linspace]).T
            kpts = np.append(kpts, k_lin, axis=0)
        return kpts
    elif band_kpath is None:
        band_kpath = []
        points = np.asarray(kpts)
        diffs = points[1:] - points[:-1]
        kinks = abs(diffs[1:] - diffs[:-1]).sum(1) > eps
        N = len(points)
        indices = [0]
        indices.extend(np.arange(1, N - 1)[kinks])
        indices.append(N - 1)
        for start, end, s_sym, e_sym in zip(indices[1:], indices[:-1],
                                            symbols[1:], symbols[:-1]):
            band_kpath.append({'start_point': start, 'end_point': end,
                               'kpts': 20,
                               'path_symbols': (s_sym, e_sym)})
    else:
        raise KeyError('You should specify band_kpath or kpts')
        return band_kpath


def write_string(fd, key, value):
    fd.write("        ".join([key, value]))
    fd.write("\n")


def write_tuple_integer(fd, key, value):
    fd.write("        ".join([key, "%d %d %d" % value]))
    fd.write("\n")


def write_tuple_float(fd, key, value):
    fd.write("        ".join([key, "%.4f %.4f %.4f" % value]))
    fd.write("\n")


def write_tuple_bool(fd, key, value):
    omx_bl = {True: 'On', False: 'Off'}
    fd.write("        ".join([key, "%s %s %s" % [omx_bl[bl] for bl in value]]))
    fd.write("\n")


def write_integer(fd, key, value):
    fd.write("        ".join([key, "%d" % value]))
    fd.write("\n")


def write_float(fd, key, value):
    fd.write("        ".join([key, "%.8g" % value]))
    fd.write("\n")


def write_bool(fd, key, value):
    omx_bl = {True: 'On', False: 'Off'}
    fd.write("        ".join([key, "%s" % omx_bl[value]]))
    fd.write("\n")


def write_list_int(fd, key, value):
    fd.write("".join(key) + ' ' + "     ".join(map(str, value)))


def write_list_bool(fd, key, value):
    omx_bl = {True: 'On', False: 'Off'}
    fd.write("".join(key) + ' ' + "     ".join([omx_bl[bl] for bl in value]))


def write_list_float(fd, key, value):
    fd.write("".join(key) + ' ' + "     ".join(map(str, value)))


def write_matrix(fd, key, value):
    fd.write('<' + key)
    fd.write("\n")
    for line in value:
        fd.write("    " + "  ".join(map(str, line)))
        fd.write("\n")
    fd.write(key + '>')
    fd.write("\n\n")


def get_openmx_key(key):
    """
    For the writing purpose, we need to know Original OpenMX keyword format.
    By comparing keys in the parameters.py, restore the original key
    """
    for openmx_key in keys:
        for openmx_keyword in openmx_key:
            if key == get_standard_key(openmx_keyword):
                return openmx_keyword