1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
"""
The ASE Calculator for OpenMX <http://www.openmx-square.org>: Python interface
to the software package for nano-scale material simulations based on density
functional theories.
Copyright (C) 2018 JaeHwan Shim and JaeJun Yu
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with ASE. If not, see <http://www.gnu.org/licenses/>.
"""
import os
import numpy as np
from ase.units import Bohr, Ha, Ry, fs, m, s
from ase.calculators.calculator import kpts2sizeandoffsets
from ase.calculators.openmx.reader import (read_electron_valency, get_file_name, get_standard_key)
from ase.calculators.openmx import parameters as param
keys = [param.tuple_integer_keys, param.tuple_float_keys,
param.tuple_bool_keys, param.integer_keys, param.float_keys,
param.string_keys, param.bool_keys, param.list_int_keys,
param.list_bool_keys, param.list_float_keys, param.matrix_keys]
def write_openmx(label=None, atoms=None, parameters=None, properties=None,
system_changes=None):
"""
From atom image, 'images', write '.dat' file.
First, set
Write input (dat)-file.
See calculator.py for further details.
Parameters:
- atoms : The Atoms object to write.
- properties : The properties which should be calculated.
- system_changes : List of properties changed since last run.
"""
from ase.calculators.openmx import parameters as param
filtered_keywords = parameters_to_keywords(label=label, atoms=atoms,
parameters=parameters,
properties=properties,
system_changes=system_changes)
keys = ['string', 'bool', 'integer', 'float',
'tuple_integer', 'tuple_float', 'tuple_bool',
'matrix', 'list_int', 'list_bool', 'list_float']
# Start writing the file
filename = get_file_name('.dat', label)
with open(filename, 'w') as fd:
# Write 1-line keywords
for fltrd_keyword in filtered_keywords.keys():
for key in keys:
openmx_keywords = getattr(param, key+'_keys')
write = globals()['write_'+key]
for omx_keyword in openmx_keywords:
if fltrd_keyword == get_standard_key(omx_keyword):
write(fd, omx_keyword, filtered_keywords[fltrd_keyword])
def parameters_to_keywords(label=None, atoms=None, parameters=None,
properties=None, system_changes=None):
"""
Before writing `label.dat` file, set up the ASE variables to OpenMX
keywords. First, It initializes with given openmx keywords and reconstruct
dictionary using standard parameters. If standard parameters and openmx
keywords are contradict to each other, ignores openmx keyword.
It includes,
For aesthetical purpose, sequnece of writing input file is specified.
"""
from ase.calculators.openmx.parameters import matrix_keys
from ase.calculators.openmx.parameters import unit_dat_keywords
from collections import OrderedDict
keywords = OrderedDict()
sequence = [
'system_currentdirectory', 'system_name', 'data_path',
'level_of_fileout',
'species_number', 'definition_of_atomic_species',
'atoms_number', 'atoms_speciesandcoordinates_unit',
'atoms_speciesandcoordinates', 'atoms_unitvectors_unit',
'atoms_unitvectors', 'band_dispersion', 'band_nkpath',
'band_kpath']
directory, prefix = os.path.split(label)
curdir = os.path.join(os.getcwd(), prefix)
counterparts = {
'system_currentdirectory': curdir,
'system_name': prefix,
'data_path': os.environ.get('OPENMX_DFT_DATA_PATH'),
'species_number': len(get_species(atoms.get_chemical_symbols())),
'atoms_number': len(atoms),
'scf_restart': 'restart',
'scf_maxiter': 'maxiter',
'scf_xctype': 'xc',
'scf_energycutoff': 'energy_cutoff',
'scf_criterion': 'convergence',
'scf_external_fields': 'external',
'scf_mixing_type': 'mixer',
'scf_electronic_temperature': 'smearing',
'scf_system_charge': 'charge',
'scf_eigenvaluesolver': 'eigensolver'
}
standard_units = {'eV': 1, 'Ha': Ha, 'Ry': Ry, 'Bohr': Bohr, 'fs': fs,
'K': 1, 'GV / m': 1e9/1.6e-19 / m, 'Ha/Bohr': Ha/Bohr,
'm/s': m/s, '_amu': 1, 'Tesla': 1}
unit_dict = {get_standard_key(k): v for k, v in unit_dat_keywords.items()}
for key in sequence:
keywords[key] = None
for key in parameters:
if 'scf' in key:
keywords[key] = None
for key in parameters:
if 'md' in key:
keywords[key] = None
# Initializes keywords to to given parameters
for key in parameters.keys():
keywords[key] = parameters[key]
def parameter_overwrites(openmx_keyword):
"""
In a situation conflicting ASE standard parameters and OpenMX keywords,
ASE parameters overrides to OpenMX keywords. While doing so, units are
converted to OpenMX unit.
However, if both parameters and keyword are not given, we fill up that
part in suitable manner
openmx_keyword : key | Name of key used in OpenMX
keyword : value | value corresponds to openmx_keyword
ase_parameter : key | Name of parameter used in ASE
parameter : value | value corresponds to ase_parameter
"""
ase_parameter = counterparts[openmx_keyword]
keyword = parameters.get(openmx_keyword)
parameter = parameters.get(ase_parameter)
if parameter is not None:
# Handles the unit
unit = standard_units.get(unit_dict.get(openmx_keyword))
if unit is not None:
return parameter / unit
return parameter
elif keyword is not None:
return keyword
elif 'scf' in openmx_keyword:
return None
else:
return counterparts[openmx_keyword]
# Overwrites openmx keyword using standard parameters
for openmx_keyword in counterparts.keys():
keywords[openmx_keyword] = parameter_overwrites(openmx_keyword)
# keywords['scf_stress_tensor'] = 'stress' in properties
# This is not working due to the UnitCellFilter method.
if 'energies' in properties:
keywords['energy_decomposition'] = True
if 'stress' in properties:
keywords['scf_stress_tensor'] = True
keywords['scf_xctype'] = get_xc(keywords['scf_xctype'])
keywords['scf_kgrid'] = get_scf_kgrid(atoms, parameters)
keywords['scf_spinpolarization'] = get_spinpol(atoms, parameters)
if parameters.get('band_kpath') is not None:
keywords['band_dispersion'] = True
keywords['band_kpath'] = parameters.get('band_kpath')
if parameters.get('band_nkpath') is not None:
keywords['band_nkpath'] = len(keywords['band_kpath'])
# Set up Wannier Environment
if parameters.get('wannier_func_calc') is not None:
keywords['species_number'] *= 2
# Set up some parameters for the later use
parameters['_xc'] = keywords['scf_xctype']
parameters['_data_path'] = keywords['data_path']
parameters['_year'] = get_dft_data_year(parameters)
# Set up the matrix-type OpenMX keywords
for key in matrix_keys:
get_matrix_key = globals()['get_' + get_standard_key(key)]
keywords[get_standard_key(key)] = get_matrix_key(atoms, parameters)
return OrderedDict([(k, v)for k, v in keywords.items()
if not(v is None or
(isinstance(v, list) and v == []))])
def get_species(symbols):
species = []
[species.append(s) for s in symbols if s not in species]
return species
def get_xc(xc):
"""
Change the name of xc appropriate to OpenMX format
"""
xc = xc.upper()
assert xc.upper() in param.OpenMXParameters().allowed_xc
if xc in ['PBE', 'GGA', 'GGA-PBE']:
return 'GGA-PBE'
elif xc in ['LDA']:
return 'LDA'
elif xc in ['CA', 'PW']:
return 'LSDA-' + xc
elif xc in ['LSDA', 'LSDA-CA']:
return 'LSDA-CA'
elif xc in ['LSDA-PW']:
return 'LSDA-PW'
else:
return 'LDA'
def get_vps(xc):
if xc in ['GGA-PBE']:
return 'PBE'
else:
return 'CA'
def get_scf_kgrid(atoms, parameters):
kpts, scf_kgrid = parameters.get('kpts'), parameters.get('scf_kgrid')
if isinstance(kpts, (tuple, list, np.ndarray)) and len(kpts) == 3 and isinstance(kpts[0], int):
return kpts
elif isinstance(kpts, float) or isinstance(kpts, int):
return tuple(kpts2sizeandoffsets(atoms=atoms, density=kpts)[0])
else:
return scf_kgrid
def get_definition_of_atomic_species(atoms, parameters):
"""
Using atoms and parameters, Returns the list `definition_of_atomic_species`
where matrix of strings contains the information between keywords.
For example,
definition_of_atomic_species =
[['H','H5.0-s1>1p1>1','H_CA13'],
['C','C5.0-s1>1p1>1','C_CA13']]
Goes to,
<Definition.of.Atomic.Species
H H5.0-s1>1p1>1 H_CA13
C C5.0-s1>1p1>1 C_CA13
Definition.of.Atomic.Species>
Further more, you can specify the wannier information here.
A. Define local functions for projectors
Since the pseudo-atomic orbitals are used for projectors,
the specification of them is the same as for the basis functions.
An example setting, for silicon in diamond structure, is as following:
Species.Number 2
<Definition.of.Atomic.Species
Si Si7.0-s2p2d1 Si_CA13
proj1 Si5.5-s1p1d1f1 Si_CA13
Definition.of.Atomic.Species>
"""
if parameters.get('definition_of_atomic_species') is not None:
return parameters['definition_of_atomic_species']
definition_of_atomic_species = []
xc = parameters.get('_xc')
year = parameters.get('_year')
chem = atoms.get_chemical_symbols()
species = get_species(chem)
for element in species:
rad_orb = get_cutoff_radius_and_orbital(element=element)
suffix = get_pseudo_potential_suffix(element=element, xc=xc, year=year)
definition_of_atomic_species.append([element, rad_orb, suffix])
# Put the same orbital and radii with chemical symbol.
wannier_projectors = parameters.get('definition_of_wannier_projectors', [])
for i, projector in enumerate(wannier_projectors):
full_projector = definition_of_atomic_species[i]
full_projector[0] = projector
definition_of_atomic_species.append(full_projector)
return definition_of_atomic_species
def get_dft_data_year(parameters):
"""
It seems there is no version or potential year checker in openmx, thus we
implemented one. It parse the pesudo potential path variable such as
`~/PATH/TO/OPENMX/openmx3.9/DFT_DATA19/` or `.../openmx3.8/DFT_DATA13/`.
By spliting this string, we harness the number of the year that generated
such pseudo potential path.
"""
if parameters.get('dft_data_year') is not None:
return str(parameters.get('dft_data_year'))
data_path = parameters['_data_path']
year = data_path.split('DFT_DATA')[1][:2]
if year is not None:
return year
else:
raise ValueError('DFT_DATA year can not be found. Please specify '
'`dft_data_year` as year of pseudo potential relesed')
def get_cutoff_radius_and_orbital(element=None, orbital=None):
"""
For a given element, retruns the string specifying cutoff radius and
orbital using default_settings.py. For example,
'Si' -> 'Si.7.0-s2p2d1'
If one wannts to change the atomic radius for a special purpose, one should
change the default_settings.py directly.
"""
from ase.calculators.openmx import default_settings
orbital = element
orbital_letters = ['s', 'p', 'd', 'f', 'g', 'h']
default_dictionary = default_settings.default_dictionary
orbital_numbers = default_dictionary[element]['orbitals used']
cutoff_radius = default_dictionary[element]['cutoff radius']
orbital += "%.1f" % float(cutoff_radius) + '-'
for i, orbital_number in enumerate(orbital_numbers):
orbital += orbital_letters[i] + str(orbital_number)
return orbital
def get_pseudo_potential_suffix(element=None, xc=None, year='13'):
"""
For a given element, returns the string specifying pseudo potential suffix.
For example,
'Si' -> 'Si_CA13'
or
'Si' -> 'Si_CA19'
depending on pseudo potential generation year
"""
from ase.calculators.openmx import default_settings
default_dictionary = default_settings.default_dictionary
pseudo_potential_suffix = element
vps = get_vps(xc)
suffix = default_dictionary[element]['pseudo-potential suffix']
pseudo_potential_suffix += '_' + vps + year + suffix
return pseudo_potential_suffix
def get_atoms_speciesandcoordinates(atoms, parameters):
"""
The atomic coordinates and the number of spin charge are given by the
keyword
'Atoms.SpeciesAndCoordinates' as follows:
<Atoms.SpeciesAndCoordinates
1 Mn 0.00000 0.00000 0.00000 8.0 5.0 45.0 0.0 45.0 0.0 1 on
2 O 1.70000 0.00000 0.00000 3.0 3.0 45.0 0.0 45.0 0.0 1 on
Atoms.SpeciesAndCoordinates>
to know more, link <http://www.openmx-square.org/openmx_man3.7/node85.html>
"""
atoms_speciesandcoordinates = []
xc = parameters.get('_xc')
year = parameters.get('_year')
data_pth = parameters.get('_data_path')
# Appending number and elemental symbol
elements = atoms.get_chemical_symbols()
for i, element in enumerate(elements):
atoms_speciesandcoordinates.append([str(i + 1), element])
# Appending positions
unit = parameters.get('atoms_speciesandcoordinates_unit', 'ang').lower()
if unit == 'ang':
positions = atoms.get_positions()
elif unit == 'frac':
positions = atoms.get_scaled_positions(wrap=False)
elif unit == 'au':
positions = atoms.get_positions() / Bohr
for i, position in enumerate(positions):
atoms_speciesandcoordinates[i].extend(position)
# Even if 'atoms_speciesandcoordinates_unit' exists, `positions` goes first
if parameters.get('atoms_speciesandcoordinates') is not None:
atoms_spncrd = parameters['atoms_speciesandcoordinates'].copy()
for i in range(len(atoms)):
atoms_spncrd[i][2] = atoms_speciesandcoordinates[i][2]
atoms_spncrd[i][3] = atoms_speciesandcoordinates[i][3]
atoms_spncrd[i][4] = atoms_speciesandcoordinates[i][4]
return atoms_spncrd
# Appending magnetic moment
magmoms = atoms.get_initial_magnetic_moments()
for i, magmom in enumerate(magmoms):
up_down_spin = get_up_down_spin(magmom, elements[i], xc, data_pth, year)
atoms_speciesandcoordinates[i].extend(up_down_spin)
# Appending magnetic field Spin magnetic moment theta phi
spin_directions = get_spin_direction(magmoms)
for i, spin_direction in enumerate(spin_directions):
atoms_speciesandcoordinates[i].extend(spin_direction)
# Appending magnetic field for Orbital magnetic moment theta phi
orbital_directions = get_orbital_direction()
for i, orbital_direction in enumerate(orbital_directions):
atoms_speciesandcoordinates[i].extend(orbital_direction)
# Appending Noncolinear schem switch
noncollinear_switches = get_noncollinear_switches()
for i, noncollinear_switch in enumerate(noncollinear_switches):
atoms_speciesandcoordinates[i].extend(noncollinear_switch)
# Appending orbital_enhancement_switch
lda_u_switches = get_lda_u_switches()
for i, lda_u_switch in enumerate(lda_u_switches):
atoms_speciesandcoordinates[i].extend(lda_u_switch)
return atoms_speciesandcoordinates
def get_up_down_spin(magmom, element, xc, data_path, year):
magmom = np.linalg.norm(magmom)
suffix = get_pseudo_potential_suffix(element, xc, year)
filename = os.path.join(data_path, 'VPS/' + suffix + '.vps')
valence_electron = float(read_electron_valency(filename))
return [valence_electron / 2 + magmom / 2, valence_electron / 2 - magmom/2]
def get_spin_direction(magmoms):
'''
From atoms.magmom, returns the spin direction of phi and theta
'''
if np.array(magmoms).dtype == float or \
np.array(magmoms).dtype is np.float64:
return []
else:
magmoms = np.array(magmoms)
return magmoms/np.linalg.norm(magmoms, axis=1)
def get_orbital_direction():
orbital_direction = []
# print("Not Implemented Yet")
return orbital_direction
def get_noncollinear_switches():
noncolinear_switches = []
# print("Not Implemented Yet")
return noncolinear_switches
def get_lda_u_switches():
lda_u_switches = []
# print("Not Implemented Yet")
return lda_u_switches
def get_spinpol(atoms, parameters):
''' Judgeds the keyword 'scf.SpinPolarization'
If the keyword is not None, spinpol gets the keyword by following priority
1. standard_spinpol
2. scf_spinpolarization
3. magnetic moments of atoms
'''
standard_spinpol = parameters.get('spinpol', None)
scf_spinpolarization = parameters.get('scf_spinpolarization', None)
m = atoms.get_initial_magnetic_moments()
syn = {True: 'On', False: None, 'on': 'On', 'off': None,
None: None, 'nc': 'NC'}
spinpol = np.any(m >= 0.1)
if scf_spinpolarization is not None:
spinpol = scf_spinpolarization
if standard_spinpol is not None:
spinpol = standard_spinpol
if isinstance(spinpol, str):
spinpol = spinpol.lower()
return syn[spinpol]
def get_atoms_unitvectors(atoms, parameters):
zero_vec = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
if np.all(atoms.get_cell() == zero_vec) is True:
default_cell = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
return parameters.get('atoms_unitvectors', default_cell)
unit = parameters.get('atoms_unitvectors_unit', 'ang').lower()
if unit == 'ang':
atoms_unitvectors = atoms.get_cell()
elif unit == 'au':
atoms_unitvectors = atoms.get_cell() / Bohr
return atoms_unitvectors
def get_hubbard_u_values(atoms, parameters):
return parameters.get('hubbard_u_values', [])
def get_atoms_cont_orbitals(atoms, parameters):
return parameters.get('atoms_cont_orbitals', [])
def get_md_fixed_xyz(atoms, parameters):
return parameters.get('md_fixed_xyz', [])
def get_md_tempcontrol(atoms, parameters):
return parameters.get('md_tempcontrol', [])
def get_md_init_velocity(atoms, parameters):
return parameters.get('md_init_velocity', [])
def get_band_kpath_unitcell(atoms, parameters):
return parameters.get('band_kpath_unitcell', [])
def get_band_kpath(atoms, parameters):
kpts = parameters.get('kpts')
if isinstance(kpts, list) and len(kpts) > 3:
return get_kpath(kpts=kpts)
else:
return parameters.get('band_kpath', [])
def get_mo_kpoint(atoms, parameters):
return parameters.get('mo_kpoint', [])
def get_wannier_initial_projectors(atoms, parameters):
"""
B. Specify the orbital, central position and orientation of a projector
Wannier.Initial.Projectos will be used to specify the projector name,
local orbital function, center of local orbital, and the local z-axis and
x-axis for orbital orientation.
An example setting is shown here:
wannier_initial_projectors=
[['proj1-sp3','0.250','0.250','0.25','-1.0','0.0','0.0','0.0','0.0','-1.0']
,['proj1-sp3','0.000','0.000','0.00','0.0','0.0','1.0','1.0','0.0','0.0']]
Goes to,
<Wannier.Initial.Projectors
proj1-sp3 0.250 0.250 0.250 -1.0 0.0 0.0 0.0 0.0 -1.0
proj1-sp3 0.000 0.000 0.000 0.0 0.0 1.0 1.0 0.0 0.0
Wannier.Initial.Projectors>
"""
return parameters.get('wannier_initial_projectors', [])
def get_kpath(self, kpts=None, symbols=None, band_kpath=None, eps=1e-5):
"""
Convert band_kpath <-> kpts. Symbols will be guess automatically
by using dft space group method
For example,
kpts = [(0, 0, 0), (0.125, 0, 0) ... (0.875, 0, 0),
(1, 0, 0), (1, 0.0625, 0) .. (1, 0.4375,0),
(1, 0.5,0),(0.9375, 0.5,0).. ( ... ),
(0.5, 0.5, 0.5) ... ... ,
... ... ... ,
... (0.875, 0, 0),(1.0, 0.0, 0.0)]
band_kpath =
[['15','0.0','0.0','0.0','1.0','0.0','0.0','g','X'],
['15','1.0','0.0','0.0','1.0','0.5','0.0','X','W'],
['15','1.0','0.5','0.0','0.5','0.5','0.5','W','L'],
['15','0.5','0.5','0.5','0.0','0.0','0.0','L','g'],
['15','0.0','0.0','0.0','1.0','0.0','0.0','g','X']]
where, it will be written as
<Band.kpath
15 0.0 0.0 0.0 1.0 0.0 0.0 g X
15 1.0 0.0 0.0 1.0 0.5 0.0 X W
15 1.0 0.5 0.0 0.5 0.5 0.5 W L
15 0.5 0.5 0.5 0.0 0.0 0.0 L g
15 0.0 0.0 0.0 1.0 0.0 0.0 g X
Band.kpath>
"""
if kpts is None:
kx_linspace = np.linspace(band_kpath[0]['start_point'][0],
band_kpath[0]['end_point'][0],
band_kpath[0][0])
ky_linspace = np.linspace(band_kpath[0]['start_point'][1],
band_kpath[0]['end_point'][1],
band_kpath[0]['kpts'])
kz_linspace = np.linspace(band_kpath[0]['start_point'][2],
band_kpath[0]['end_point'][2],
band_kpath[0]['kpts'])
kpts = np.array([kx_linspace, ky_linspace, kz_linspace]).T
for path in band_kpath[1:]:
kx_linspace = np.linspace(path['start_point'][0],
path['end_point'][0],
path['kpts'])
ky_linspace = np.linspace(path['start_point'][1],
path['end_point'][1],
path['kpts'])
kz_linspace = np.linspace(path['start_point'][2],
path['end_point'][2],
path['kpts'])
k_lin = np.array([kx_linspace, ky_linspace, kz_linspace]).T
kpts = np.append(kpts, k_lin, axis=0)
return kpts
elif band_kpath is None:
band_kpath = []
points = np.asarray(kpts)
diffs = points[1:] - points[:-1]
kinks = abs(diffs[1:] - diffs[:-1]).sum(1) > eps
N = len(points)
indices = [0]
indices.extend(np.arange(1, N - 1)[kinks])
indices.append(N - 1)
for start, end, s_sym, e_sym in zip(indices[1:], indices[:-1],
symbols[1:], symbols[:-1]):
band_kpath.append({'start_point': start, 'end_point': end,
'kpts': 20,
'path_symbols': (s_sym, e_sym)})
else:
raise KeyError('You should specify band_kpath or kpts')
return band_kpath
def write_string(fd, key, value):
fd.write(" ".join([key, value]))
fd.write("\n")
def write_tuple_integer(fd, key, value):
fd.write(" ".join([key, "%d %d %d" % value]))
fd.write("\n")
def write_tuple_float(fd, key, value):
fd.write(" ".join([key, "%.4f %.4f %.4f" % value]))
fd.write("\n")
def write_tuple_bool(fd, key, value):
omx_bl = {True: 'On', False: 'Off'}
fd.write(" ".join([key, "%s %s %s" % [omx_bl[bl] for bl in value]]))
fd.write("\n")
def write_integer(fd, key, value):
fd.write(" ".join([key, "%d" % value]))
fd.write("\n")
def write_float(fd, key, value):
fd.write(" ".join([key, "%.8g" % value]))
fd.write("\n")
def write_bool(fd, key, value):
omx_bl = {True: 'On', False: 'Off'}
fd.write(" ".join([key, "%s" % omx_bl[value]]))
fd.write("\n")
def write_list_int(fd, key, value):
fd.write("".join(key) + ' ' + " ".join(map(str, value)))
def write_list_bool(fd, key, value):
omx_bl = {True: 'On', False: 'Off'}
fd.write("".join(key) + ' ' + " ".join([omx_bl[bl] for bl in value]))
def write_list_float(fd, key, value):
fd.write("".join(key) + ' ' + " ".join(map(str, value)))
def write_matrix(fd, key, value):
fd.write('<' + key)
fd.write("\n")
for line in value:
fd.write(" " + " ".join(map(str, line)))
fd.write("\n")
fd.write(key + '>')
fd.write("\n\n")
def get_openmx_key(key):
"""
For the writing purpose, we need to know Original OpenMX keyword format.
By comparing keys in the parameters.py, restore the original key
"""
for openmx_key in keys:
for openmx_keyword in openmx_key:
if key == get_standard_key(openmx_keyword):
return openmx_keyword
|