1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
import functools
import warnings
import numpy as np
from ase.utils import IOContext
def get_band_gap(calc, direct=False, spin=None, output='-'):
warnings.warn('Please use ase.dft.bandgap.bandgap() instead!')
gap, (s1, k1, n1), (s2, k2, n2) = bandgap(calc, direct, spin, output)
ns = calc.get_number_of_spins()
if ns == 2 and spin is None:
return gap, (s1, k1), (s2, k2)
return gap, k1, k2
def bandgap(calc=None, direct=False, spin=None, output='-',
eigenvalues=None, efermi=None, kpts=None):
"""Calculates the band-gap.
Parameters:
calc: Calculator object
Electronic structure calculator object.
direct: bool
Calculate direct band-gap.
spin: int or None
For spin-polarized systems, you can use spin=0 or spin=1 to look only
at a single spin-channel.
output: file descriptor
Use output=None for no text output or '-' for stdout (default).
eigenvalues: ndarray of shape (nspin, nkpt, nband) or (nkpt, nband)
Eigenvalues.
efermi: float
Fermi level (defaults to 0.0).
kpts: ndarray of shape (nkpt, 3)
For pretty text output only.
Returns a (gap, p1, p2) tuple where p1 and p2 are tuples of indices of the
valence and conduction points (s, k, n).
Example:
>>> gap, p1, p2 = bandgap(silicon.calc)
Gap: 1.2 eV
Transition (v -> c):
[0.000, 0.000, 0.000] -> [0.500, 0.500, 0.000]
>>> print(gap, p1, p2)
1.2 (0, 0, 3), (0, 5, 4)
>>> gap, p1, p2 = bandgap(silicon.calc, direct=True)
Direct gap: 3.4 eV
Transition at: [0.000, 0.000, 0.000]
>>> print(gap, p1, p2)
3.4 (0, 0, 3), (0, 0, 4)
"""
if calc:
kpts = calc.get_ibz_k_points()
nk = len(kpts)
ns = calc.get_number_of_spins()
eigenvalues = np.array([[calc.get_eigenvalues(kpt=k, spin=s)
for k in range(nk)]
for s in range(ns)])
if efermi is None:
efermi = calc.get_fermi_level()
efermi = efermi or 0.0
e_skn = eigenvalues - efermi
if eigenvalues.ndim == 2:
e_skn = e_skn[np.newaxis] # spinors
if not np.isfinite(e_skn).all():
raise ValueError('Bad eigenvalues!')
gap, (s1, k1, n1), (s2, k2, n2) = _bandgap(e_skn, spin, direct)
with IOContext() as iocontext:
fd = iocontext.openfile(output)
p = functools.partial(print, file=fd)
def skn(s, k, n):
"""Convert k or (s, k) to string."""
if kpts is None:
return '(s={}, k={}, n={})'.format(s, k, n)
return '(s={}, k={}, n={}, [{:.2f}, {:.2f}, {:.2f}])'.format(
s, k, n, *kpts[k])
if spin is not None:
p('spin={}: '.format(spin), end='')
if gap == 0.0:
p('No gap')
elif direct:
p('Direct gap: {:.3f} eV'.format(gap))
if s1 == s2:
p('Transition at:', skn(s1, k1, n1))
else:
p('Transition at:', skn('{}->{}'.format(s1, s2), k1, n1))
else:
p('Gap: {:.3f} eV'.format(gap))
p('Transition (v -> c):')
p(' ', skn(s1, k1, n1), '->', skn(s2, k2, n2))
if eigenvalues.ndim != 3:
p1 = (k1, n1)
p2 = (k2, n2)
else:
p1 = (s1, k1, n1)
p2 = (s2, k2, n2)
return gap, p1, p2
def _bandgap(e_skn, spin, direct):
"""Helper function."""
ns, nk, nb = e_skn.shape
s1 = s2 = k1 = k2 = n1 = n2 = None
N_sk = (e_skn < 0.0).sum(2) # number of occupied bands
# Check for bands crossing the fermi-level
if ns == 1:
if N_sk[0].ptp() > 0:
return 0.0, (None, None, None), (None, None, None)
elif spin is None:
if (N_sk.ptp(axis=1) > 0).any():
return 0.0, (None, None, None), (None, None, None)
elif N_sk[spin].ptp() > 0:
return 0.0, (None, None, None), (None, None, None)
if (N_sk == 0).any() or (N_sk == nb).any():
raise ValueError('Too few bands!')
e_skn = np.array([[e_skn[s, k, N_sk[s, k] - 1:N_sk[s, k] + 1]
for k in range(nk)]
for s in range(ns)])
ev_sk = e_skn[:, :, 0] # valence band
ec_sk = e_skn[:, :, 1] # conduction band
if ns == 1:
s1 = 0
s2 = 0
gap, k1, k2 = find_gap(ev_sk[0], ec_sk[0], direct)
n1 = N_sk[0, 0] - 1
n2 = n1 + 1
return gap, (0, k1, n1), (0, k2, n2)
if spin is None:
gap, k1, k2 = find_gap(ev_sk.ravel(), ec_sk.ravel(), direct)
if direct:
# Check also spin flips:
for s in [0, 1]:
g, k, _ = find_gap(ev_sk[s], ec_sk[1 - s], direct)
if g < gap:
gap = g
k1 = k + nk * s
k2 = k + nk * (1 - s)
if gap > 0.0:
s1, k1 = divmod(k1, nk)
s2, k2 = divmod(k2, nk)
n1 = N_sk[s1, k1] - 1
n2 = N_sk[s2, k2]
return gap, (s1, k1, n1), (s2, k2, n2)
return 0.0, (None, None, None), (None, None, None)
gap, k1, k2 = find_gap(ev_sk[spin], ec_sk[spin], direct)
s1 = spin
s2 = spin
n1 = N_sk[s1, k1] - 1
n2 = n1 + 1
return gap, (s1, k1, n1), (s2, k2, n2)
def find_gap(ev_k, ec_k, direct):
"""Helper function."""
if direct:
gap_k = ec_k - ev_k
k = gap_k.argmin()
return gap_k[k], k, k
kv = ev_k.argmax()
kc = ec_k.argmin()
return ec_k[kc] - ev_k[kv], kv, kc
|