File: bandgap.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (184 lines) | stat: -rw-r--r-- 5,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import functools
import warnings

import numpy as np

from ase.utils import IOContext


def get_band_gap(calc, direct=False, spin=None, output='-'):
    warnings.warn('Please use ase.dft.bandgap.bandgap() instead!')
    gap, (s1, k1, n1), (s2, k2, n2) = bandgap(calc, direct, spin, output)
    ns = calc.get_number_of_spins()
    if ns == 2 and spin is None:
        return gap, (s1, k1), (s2, k2)
    return gap, k1, k2


def bandgap(calc=None, direct=False, spin=None, output='-',
            eigenvalues=None, efermi=None, kpts=None):
    """Calculates the band-gap.

    Parameters:

    calc: Calculator object
        Electronic structure calculator object.
    direct: bool
        Calculate direct band-gap.
    spin: int or None
        For spin-polarized systems, you can use spin=0 or spin=1 to look only
        at a single spin-channel.
    output: file descriptor
        Use output=None for no text output or '-' for stdout (default).
    eigenvalues: ndarray of shape (nspin, nkpt, nband) or (nkpt, nband)
        Eigenvalues.
    efermi: float
        Fermi level (defaults to 0.0).
    kpts: ndarray of shape (nkpt, 3)
        For pretty text output only.

    Returns a (gap, p1, p2) tuple where p1 and p2 are tuples of indices of the
    valence and conduction points (s, k, n).

    Example:

    >>> gap, p1, p2 = bandgap(silicon.calc)
    Gap: 1.2 eV
    Transition (v -> c):
        [0.000, 0.000, 0.000] -> [0.500, 0.500, 0.000]
    >>> print(gap, p1, p2)
    1.2 (0, 0, 3), (0, 5, 4)
    >>> gap, p1, p2 = bandgap(silicon.calc, direct=True)
    Direct gap: 3.4 eV
    Transition at: [0.000, 0.000, 0.000]
    >>> print(gap, p1, p2)
    3.4 (0, 0, 3), (0, 0, 4)
    """

    if calc:
        kpts = calc.get_ibz_k_points()
        nk = len(kpts)
        ns = calc.get_number_of_spins()
        eigenvalues = np.array([[calc.get_eigenvalues(kpt=k, spin=s)
                                 for k in range(nk)]
                                for s in range(ns)])
        if efermi is None:
            efermi = calc.get_fermi_level()

    efermi = efermi or 0.0

    e_skn = eigenvalues - efermi
    if eigenvalues.ndim == 2:
        e_skn = e_skn[np.newaxis]  # spinors

    if not np.isfinite(e_skn).all():
        raise ValueError('Bad eigenvalues!')

    gap, (s1, k1, n1), (s2, k2, n2) = _bandgap(e_skn, spin, direct)

    with IOContext() as iocontext:
        fd = iocontext.openfile(output)
        p = functools.partial(print, file=fd)

        def skn(s, k, n):
            """Convert k or (s, k) to string."""
            if kpts is None:
                return '(s={}, k={}, n={})'.format(s, k, n)
            return '(s={}, k={}, n={}, [{:.2f}, {:.2f}, {:.2f}])'.format(
                s, k, n, *kpts[k])

        if spin is not None:
            p('spin={}: '.format(spin), end='')
        if gap == 0.0:
            p('No gap')
        elif direct:
            p('Direct gap: {:.3f} eV'.format(gap))
            if s1 == s2:
                p('Transition at:', skn(s1, k1, n1))
            else:
                p('Transition at:', skn('{}->{}'.format(s1, s2), k1, n1))
        else:
            p('Gap: {:.3f} eV'.format(gap))
            p('Transition (v -> c):')
            p(' ', skn(s1, k1, n1), '->', skn(s2, k2, n2))

    if eigenvalues.ndim != 3:
        p1 = (k1, n1)
        p2 = (k2, n2)
    else:
        p1 = (s1, k1, n1)
        p2 = (s2, k2, n2)

    return gap, p1, p2


def _bandgap(e_skn, spin, direct):
    """Helper function."""
    ns, nk, nb = e_skn.shape
    s1 = s2 = k1 = k2 = n1 = n2 = None

    N_sk = (e_skn < 0.0).sum(2)  # number of occupied bands

    # Check for bands crossing the fermi-level
    if ns == 1:
        if N_sk[0].ptp() > 0:
            return 0.0, (None, None, None), (None, None, None)
    elif spin is None:
        if (N_sk.ptp(axis=1) > 0).any():
            return 0.0, (None, None, None), (None, None, None)
    elif N_sk[spin].ptp() > 0:
        return 0.0, (None, None, None), (None, None, None)

    if (N_sk == 0).any() or (N_sk == nb).any():
        raise ValueError('Too few bands!')

    e_skn = np.array([[e_skn[s, k, N_sk[s, k] - 1:N_sk[s, k] + 1]
                       for k in range(nk)]
                      for s in range(ns)])
    ev_sk = e_skn[:, :, 0]  # valence band
    ec_sk = e_skn[:, :, 1]  # conduction band

    if ns == 1:
        s1 = 0
        s2 = 0
        gap, k1, k2 = find_gap(ev_sk[0], ec_sk[0], direct)
        n1 = N_sk[0, 0] - 1
        n2 = n1 + 1
        return gap, (0, k1, n1), (0, k2, n2)

    if spin is None:
        gap, k1, k2 = find_gap(ev_sk.ravel(), ec_sk.ravel(), direct)
        if direct:
            # Check also spin flips:
            for s in [0, 1]:
                g, k, _ = find_gap(ev_sk[s], ec_sk[1 - s], direct)
                if g < gap:
                    gap = g
                    k1 = k + nk * s
                    k2 = k + nk * (1 - s)

        if gap > 0.0:
            s1, k1 = divmod(k1, nk)
            s2, k2 = divmod(k2, nk)
            n1 = N_sk[s1, k1] - 1
            n2 = N_sk[s2, k2]
            return gap, (s1, k1, n1), (s2, k2, n2)
        return 0.0, (None, None, None), (None, None, None)

    gap, k1, k2 = find_gap(ev_sk[spin], ec_sk[spin], direct)
    s1 = spin
    s2 = spin
    n1 = N_sk[s1, k1] - 1
    n2 = n1 + 1
    return gap, (s1, k1, n1), (s2, k2, n2)


def find_gap(ev_k, ec_k, direct):
    """Helper function."""
    if direct:
        gap_k = ec_k - ev_k
        k = gap_k.argmin()
        return gap_k[k], k, k
    kv = ev_k.argmax()
    kc = ec_k.argmin()
    return ec_k[kc] - ev_k[kv], kv, kc