File: particle_mutations.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (508 lines) | stat: -rw-r--r-- 18,932 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import numpy as np
from operator import itemgetter

from ase.ga.offspring_creator import OffspringCreator
from ase.ga.utilities import get_distance_matrix, get_nndist
from ase import Atoms


class Mutation(OffspringCreator):
    """Base class for all particle mutation type operators.
    Do not call this class directly."""

    def __init__(self, num_muts=1, rng=np.random):
        OffspringCreator.__init__(self, num_muts=num_muts, rng=rng)
        self.descriptor = 'Mutation'
        self.min_inputs = 1

    @classmethod
    def get_atomic_configuration(cls, atoms, elements=None, eps=4e-2):
        """Returns the atomic configuration of the particle as a list of
        lists. Each list contain the indices of the atoms sitting at the
        same distance from the geometrical center of the particle. Highly
        symmetrical particles will often have many atoms in each shell.

        For further elaboration see:
        J. Montejano-Carrizales and J. Moran-Lopez, Geometrical
        characteristics of compact nanoclusters, Nanostruct. Mater., 1,
        5, 397-409 (1992)

        Parameters:

        elements: Only take into account the elements specified in this
            list. Default is to take all elements into account.

        eps: The distance allowed to separate elements within each shell."""
        atoms = atoms.copy()
        if elements is None:
            e = list(set(atoms.get_chemical_symbols()))
        else:
            e = elements
        atoms.set_constraint()
        atoms.center()
        geo_mid = np.array([(atoms.get_cell() / 2.)[i][i] for i in range(3)])
        dists = [(np.linalg.norm(geo_mid - atoms[i].position), i)
                 for i in range(len(atoms))]
        dists.sort(key=itemgetter(0))
        atomic_conf = []
        old_dist = -10.
        for dist, i in dists:
            if abs(dist - old_dist) > eps:
                atomic_conf.append([i])
            else:
                atomic_conf[-1].append(i)
            old_dist = dist
        sorted_elems = sorted(set(atoms.get_chemical_symbols()))
        if e is not None and sorted(e) != sorted_elems:
            for shell in atomic_conf:
                torem = []
                for i in shell:
                    if atoms[i].symbol not in e:
                        torem.append(i)
                for i in torem:
                    shell.remove(i)
        return atomic_conf

    @classmethod
    def get_list_of_possible_permutations(cls, atoms, l1, l2):
        """Returns a list of available permutations from the two
        lists of indices, l1 and l2. Checking that identical elements
        are not permuted."""
        possible_permutations = []
        for i in l1:
            for j in l2:
                if atoms[int(i)].symbol != atoms[int(j)].symbol:
                    possible_permutations.append((i, j))
        return possible_permutations


class RandomMutation(Mutation):
    """Moves a random atom the supplied length in a random direction."""

    def __init__(self, length=2., num_muts=1, rng=np.random):
        Mutation.__init__(self, num_muts=num_muts, rng=rng)
        self.descriptor = 'RandomMutation'
        self.length = length

    def mutate(self, atoms):
        """ Does the actual mutation. """
        tbm = self.rng.choice(range(len(atoms)))

        indi = Atoms()
        for a in atoms:
            if a.index == tbm:
                a.position += self.random_vector(self.length, rng=self.rng)
            indi.append(a)
        return indi

    def get_new_individual(self, parents):
        f = parents[0]

        indi = self.initialize_individual(f)
        indi.info['data']['parents'] = [f.info['confid']]

        to_mut = f.copy()
        for _ in range(self.num_muts):
            to_mut = self.mutate(to_mut)

        for atom in to_mut:
            indi.append(atom)

        return (self.finalize_individual(indi),
                self.descriptor + ':Parent {0}'.format(f.info['confid']))

    @classmethod
    def random_vector(cls, l, rng=np.random):
        """return random vector of length l"""
        vec = np.array([rng.rand() * 2 - 1 for i in range(3)])
        vl = np.linalg.norm(vec)
        return np.array([v * l / vl for v in vec])


class RandomPermutation(Mutation):
    """Permutes two random atoms.

    Parameters:

    num_muts: the number of times to perform this operation.

    rng: Random number generator
        By default numpy.random.
    """

    def __init__(self, elements=None, num_muts=1, rng=np.random):
        Mutation.__init__(self, num_muts=num_muts, rng=rng)
        self.descriptor = 'RandomPermutation'
        self.elements = elements

    def get_new_individual(self, parents):
        f = parents[0].copy()

        diffatoms = len(set(f.numbers))
        assert diffatoms > 1, 'Permutations with one atomic type is not valid'

        indi = self.initialize_individual(f)
        indi.info['data']['parents'] = [f.info['confid']]

        for _ in range(self.num_muts):
            RandomPermutation.mutate(f, self.elements, rng=self.rng)

        for atom in f:
            indi.append(atom)

        return (self.finalize_individual(indi),
                self.descriptor + ':Parent {0}'.format(f.info['confid']))

    @classmethod
    def mutate(cls, atoms, elements=None, rng=np.random):
        """Do the actual permutation."""
        if elements is None:
            indices = range(len(atoms))
        else:
            indices = [a.index for a in atoms if a.symbol in elements]
        i1 = rng.choice(indices)
        i2 = rng.choice(indices)
        while atoms[i1].symbol == atoms[i2].symbol:
            i2 = rng.choice(indices)
        atoms.symbols[[i1, i2]] = atoms.symbols[[i2, i1]]


class COM2surfPermutation(Mutation):
    """The Center Of Mass to surface (COM2surf) permutation operator
    described in
    S. Lysgaard et al., Top. Catal., 2014, 57 (1-4), pp 33-39

    Parameters:

    elements: which elements should be included in this permutation,
        for example: include all metals and exclude all adsorbates

    min_ratio: minimum ratio of each element in the core or surface region.
        If elements=[a, b] then ratio of a is Na / (Na + Nb) (N: Number of).
        If less than minimum ratio is present in the core, the region defining
        the core will be extended until the minimum ratio is met, and vice
        versa for the surface region. It has the potential reach the
        recursive limit if an element has a smaller total ratio in the
        complete particle. In that case remember to decrease this min_ratio.

    num_muts: the number of times to perform this operation.

    rng: Random number generator
        By default numpy.random.
    """

    def __init__(self, elements=None, min_ratio=0.25, num_muts=1,
                 rng=np.random):
        Mutation.__init__(self, num_muts=num_muts, rng=rng)
        self.descriptor = 'COM2surfPermutation'
        self.min_ratio = min_ratio
        self.elements = elements

    def get_new_individual(self, parents):
        f = parents[0].copy()

        diffatoms = len(set(f.numbers))
        assert diffatoms > 1, 'Permutations with one atomic type is not valid'

        indi = self.initialize_individual(f)
        indi.info['data']['parents'] = [f.info['confid']]

        for _ in range(self.num_muts):
            elems = self.elements
            COM2surfPermutation.mutate(f, elems, self.min_ratio, rng=self.rng)

        for atom in f:
            indi.append(atom)

        return (self.finalize_individual(indi),
                self.descriptor + ':Parent {0}'.format(f.info['confid']))

    @classmethod
    def mutate(cls, atoms, elements, min_ratio, rng=np.random):
        """Performs the COM2surf permutation."""
        ac = atoms.copy()
        if elements is not None:
            del ac[[a.index for a in ac if a.symbol not in elements]]
        syms = ac.get_chemical_symbols()
        for el in set(syms):
            assert syms.count(el) / float(len(syms)) > min_ratio

        atomic_conf = Mutation.get_atomic_configuration(atoms,
                                                        elements=elements)
        core = COM2surfPermutation.get_core_indices(atoms,
                                                    atomic_conf,
                                                    min_ratio)
        shell = COM2surfPermutation.get_shell_indices(atoms,
                                                      atomic_conf,
                                                      min_ratio)
        permuts = Mutation.get_list_of_possible_permutations(atoms,
                                                             core,
                                                             shell)
        chosen = rng.randint(len(permuts))
        swap = list(permuts[chosen])
        atoms.symbols[swap] = atoms.symbols[swap[::-1]]

    @classmethod
    def get_core_indices(cls, atoms, atomic_conf, min_ratio, recurs=0):
        """Recursive function that returns the indices in the core subject to
        the min_ratio constraint. The indices are found from the supplied
        atomic configuration."""
        elements = list(set([atoms[i].symbol
                             for subl in atomic_conf for i in subl]))

        core = [i for subl in atomic_conf[:1 + recurs] for i in subl]
        while len(core) < 1:
            recurs += 1
            core = [i for subl in atomic_conf[:1 + recurs] for i in subl]

        for elem in elements:
            ratio = len([i for i in core
                         if atoms[i].symbol == elem]) / float(len(core))
            if ratio < min_ratio:
                return COM2surfPermutation.get_core_indices(atoms,
                                                            atomic_conf,
                                                            min_ratio,
                                                            recurs + 1)
        return core

    @classmethod
    def get_shell_indices(cls, atoms, atomic_conf, min_ratio, recurs=0):
        """Recursive function that returns the indices in the surface
        subject to the min_ratio constraint. The indices are found from
        the supplied atomic configuration."""
        elements = list(set([atoms[i].symbol
                             for subl in atomic_conf for i in subl]))

        shell = [i for subl in atomic_conf[-1 - recurs:] for i in subl]
        while len(shell) < 1:
            recurs += 1
            shell = [i for subl in atomic_conf[-1 - recurs:] for i in subl]

        for elem in elements:
            ratio = len([i for i in shell
                         if atoms[i].symbol == elem]) / float(len(shell))
            if ratio < min_ratio:
                return COM2surfPermutation.get_shell_indices(atoms,
                                                             atomic_conf,
                                                             min_ratio,
                                                             recurs + 1)
        return shell


class _NeighborhoodPermutation(Mutation):
    """Helper class that holds common functions to all permutations
    that look at the neighborhoods of each atoms."""
    @classmethod
    def get_possible_poor2rich_permutations(cls, atoms, inverse=False,
                                            recurs=0, distance_matrix=None):
        dm = distance_matrix
        if dm is None:
            dm = get_distance_matrix(atoms)
        # Adding a small value (0.2) to overcome slight variations
        # in the average bond length
        nndist = get_nndist(atoms, dm) + 0.2
        same_neighbors = {}

        def f(x):
            return x[1]
        for i, atom in enumerate(atoms):
            same_neighbors[i] = 0
            neighbors = [j for j in range(len(dm[i])) if dm[i][j] < nndist]
            for n in neighbors:
                if atoms[n].symbol == atom.symbol:
                    same_neighbors[i] += 1
        sorted_same = sorted(same_neighbors.items(), key=f)
        if inverse:
            sorted_same.reverse()
        poor_indices = [j[0] for j in sorted_same
                        if abs(j[1] - sorted_same[0][1]) <= recurs]
        rich_indices = [j[0] for j in sorted_same
                        if abs(j[1] - sorted_same[-1][1]) <= recurs]
        permuts = Mutation.get_list_of_possible_permutations(atoms,
                                                             poor_indices,
                                                             rich_indices)

        if len(permuts) == 0:
            _NP = _NeighborhoodPermutation
            return _NP.get_possible_poor2rich_permutations(atoms, inverse,
                                                           recurs + 1, dm)
        return permuts


class Poor2richPermutation(_NeighborhoodPermutation):
    """The poor to rich (Poor2rich) permutation operator described in
    S. Lysgaard et al., Top. Catal., 2014, 57 (1-4), pp 33-39

    Permutes two atoms from regions short of the same elements, to
    regions rich in the same elements.
    (Inverse of Rich2poorPermutation)

    Parameters:

    elements: Which elements to take into account in this permutation

    rng: Random number generator
        By default numpy.random.
    """

    def __init__(self, elements=[], num_muts=1, rng=np.random):
        _NeighborhoodPermutation.__init__(self, num_muts=num_muts, rng=rng)
        self.descriptor = 'Poor2richPermutation'
        self.elements = elements

    def get_new_individual(self, parents):
        f = parents[0].copy()

        diffatoms = len(set(f.numbers))
        assert diffatoms > 1, 'Permutations with one atomic type is not valid'

        indi = self.initialize_individual(f)
        indi.info['data']['parents'] = [f.info['confid']]

        for _ in range(self.num_muts):
            Poor2richPermutation.mutate(f, self.elements, rng=self.rng)

        for atom in f:
            indi.append(atom)

        return (self.finalize_individual(indi),
                self.descriptor + ':Parent {0}'.format(f.info['confid']))

    @classmethod
    def mutate(cls, atoms, elements, rng=np.random):
        _NP = _NeighborhoodPermutation
        # indices = [a.index for a in atoms if a.symbol in elements]
        ac = atoms.copy()
        del ac[[atom.index for atom in ac
                if atom.symbol not in elements]]
        permuts = _NP.get_possible_poor2rich_permutations(ac)
        swap = list(rng.choice(permuts))
        atoms.symbols[swap] = atoms.symbols[swap[::-1]]


class Rich2poorPermutation(_NeighborhoodPermutation):
    """
    The rich to poor (Rich2poor) permutation operator described in
    S. Lysgaard et al., Top. Catal., 2014, 57 (1-4), pp 33-39

    Permutes two atoms from regions rich in the same elements, to
    regions short of the same elements.
    (Inverse of Poor2richPermutation)

    Parameters:

    elements: Which elements to take into account in this permutation

    rng: Random number generator
        By default numpy.random.
    """

    def __init__(self, elements=None, num_muts=1, rng=np.random):
        _NeighborhoodPermutation.__init__(self, num_muts=num_muts, rng=rng)
        self.descriptor = 'Rich2poorPermutation'
        self.elements = elements

    def get_new_individual(self, parents):
        f = parents[0].copy()

        diffatoms = len(set(f.numbers))
        assert diffatoms > 1, 'Permutations with one atomic type is not valid'

        indi = self.initialize_individual(f)
        indi.info['data']['parents'] = [f.info['confid']]

        if self.elements is None:
            elems = list(set(f.get_chemical_symbols()))
        else:
            elems = self.elements
        for _ in range(self.num_muts):
            Rich2poorPermutation.mutate(f, elems, rng=self.rng)

        for atom in f:
            indi.append(atom)

        return (self.finalize_individual(indi),
                self.descriptor + ':Parent {0}'.format(f.info['confid']))

    @classmethod
    def mutate(cls, atoms, elements, rng=np.random):
        _NP = _NeighborhoodPermutation
        ac = atoms.copy()
        del ac[[atom.index for atom in ac
                if atom.symbol not in elements]]
        permuts = _NP.get_possible_poor2rich_permutations(ac,
                                                          inverse=True)
        swap = list(rng.choice(permuts))
        atoms.symbols[swap] = atoms.symbols[swap[::-1]]


class SymmetricSubstitute(Mutation):
    """Permute all atoms within a subshell of the symmetric particle.
    The atoms within a subshell all have the same distance to the center,
    these are all equivalent under the particle point group symmetry.

    """

    def __init__(self, elements=None, num_muts=1, rng=np.random):
        Mutation.__init__(self, num_muts=num_muts, rng=rng)
        self.descriptor = 'SymmetricSubstitute'
        self.elements = elements

    def substitute(self, atoms):
        """Does the actual substitution"""
        atoms = atoms.copy()
        aconf = self.get_atomic_configuration(atoms,
                                              elements=self.elements)
        itbm = self.rng.randint(0, len(aconf) - 1)
        to_element = self.rng.choice(self.elements)

        for i in aconf[itbm]:
            atoms[i].symbol = to_element

        return atoms

    def get_new_individual(self, parents):
        f = parents[0]

        indi = self.substitute(f)
        indi = self.initialize_individual(f, indi)
        indi.info['data']['parents'] = [f.info['confid']]

        return (self.finalize_individual(indi),
                self.descriptor + ':Parent {0}'.format(f.info['confid']))


class RandomSubstitute(Mutation):
    """Substitutes one atom with another atom type. The possible atom types
    are supplied in the parameter elements"""

    def __init__(self, elements=None, num_muts=1, rng=np.random):
        Mutation.__init__(self, num_muts=num_muts, rng=rng)
        self.descriptor = 'RandomSubstitute'
        self.elements = elements

    def substitute(self, atoms):
        """Does the actual substitution"""
        atoms = atoms.copy()
        if self.elements is None:
            elems = list(set(atoms.get_chemical_symbols()))
        else:
            elems = self.elements[:]
        possible_indices = [a.index for a in atoms
                            if a.symbol in elems]
        itbm = self.rng.choice(possible_indices)
        elems.remove(atoms[itbm].symbol)
        new_symbol = self.rng.choice(elems)
        atoms[itbm].symbol = new_symbol

        return atoms

    def get_new_individual(self, parents):
        f = parents[0]

        indi = self.substitute(f)
        indi = self.initialize_individual(f, indi)
        indi.info['data']['parents'] = [f.info['confid']]

        return (self.finalize_individual(indi),
                self.descriptor + ':Parent {0}'.format(f.info['confid']))