1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
|
""" Implementation of a population for maintaining a GA population and
proposing structures to pair. """
from math import tanh, sqrt, exp
from operator import itemgetter
import numpy as np
from ase.db.core import now
from ase.ga import get_raw_score
def count_looks_like(a, all_cand, comp):
"""Utility method for counting occurrences."""
n = 0
for b in all_cand:
if a.info['confid'] == b.info['confid']:
continue
if comp.looks_like(a, b):
n += 1
return n
class Population:
"""Population class which maintains the current population
and proposes which candidates to pair together.
Parameters:
data_connection: DataConnection object
Bla bla bla.
population_size: int
The number of candidates in the population.
comparator: Comparator object
this will tell if two configurations are equal.
Default compare atoms objects directly.
logfile: str
Text file that contains information about the population
The format is::
timestamp: generation(if available): id1,id2,id3...
Using this file greatly speeds up convergence checks.
Default None meaning that no file is written.
use_extinct: boolean
Set this to True if mass extinction and the extinct key
are going to be used. Default is False.
rng: Random number generator
By default numpy.random.
"""
def __init__(self, data_connection, population_size,
comparator=None, logfile=None, use_extinct=False,
rng=np.random):
self.dc = data_connection
self.pop_size = population_size
if comparator is None:
from ase.ga.standard_comparators import AtomsComparator
comparator = AtomsComparator()
self.comparator = comparator
self.logfile = logfile
self.use_extinct = use_extinct
self.rng = rng
self.pop = []
self.pairs = None
self.all_cand = None
self.__initialize_pop__()
def __initialize_pop__(self):
""" Private method that initializes the population when
the population is created. """
# Get all relaxed candidates from the database
ue = self.use_extinct
all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
all_cand.sort(key=lambda x: x.info['key_value_pairs']['raw_score'],
reverse=True)
# all_cand.sort(key=lambda x: x.get_potential_energy())
# Fill up the population with the self.pop_size most stable
# unique candidates.
i = 0
while i < len(all_cand) and len(self.pop) < self.pop_size:
c = all_cand[i]
i += 1
eq = False
for a in self.pop:
if self.comparator.looks_like(a, c):
eq = True
break
if not eq:
self.pop.append(c)
for a in self.pop:
a.info['looks_like'] = count_looks_like(a, all_cand,
self.comparator)
self.all_cand = all_cand
self.__calc_participation__()
def __calc_participation__(self):
""" Determines, from the database, how many times each
candidate has been used to generate new candidates. """
(participation, pairs) = self.dc.get_participation_in_pairing()
for a in self.pop:
if a.info['confid'] in participation.keys():
a.info['n_paired'] = participation[a.info['confid']]
else:
a.info['n_paired'] = 0
self.pairs = pairs
def update(self, new_cand=None):
""" New candidates can be added to the database
after the population object has been created.
This method extracts these new candidates from the
database and includes them in the population. """
if len(self.pop) == 0:
self.__initialize_pop__()
if new_cand is None:
ue = self.use_extinct
new_cand = self.dc.get_all_relaxed_candidates(only_new=True,
use_extinct=ue)
for a in new_cand:
self.__add_candidate__(a)
self.all_cand.append(a)
self.__calc_participation__()
self._write_log()
def get_current_population(self):
""" Returns a copy of the current population. """
self.update()
return [a.copy() for a in self.pop]
def get_population_after_generation(self, gen):
""" Returns a copy of the population as it where
after generation gen"""
if self.logfile is not None:
fd = open(self.logfile, 'r')
gens = {}
for l in fd:
_, no, popul = l.split(':')
gens[int(no)] = [int(i) for i in popul.split(',')]
fd.close()
return [c.copy() for c in self.all_cand[::-1]
if c.info['relax_id'] in gens[gen]]
all_candidates = [c for c in self.all_cand
if c.info['key_value_pairs']['generation'] <= gen]
cands = [all_candidates[0]]
for b in all_candidates:
if b not in cands:
for a in cands:
if self.comparator.looks_like(a, b):
break
else:
cands.append(b)
pop = cands[:self.pop_size]
return [a.copy() for a in pop]
def __add_candidate__(self, a):
""" Adds a single candidate to the population. """
# check if the structure is too low in raw score
raw_score_a = get_raw_score(a)
raw_score_worst = get_raw_score(self.pop[-1])
if raw_score_a < raw_score_worst \
and len(self.pop) == self.pop_size:
return
# check if the new candidate should
# replace a similar structure in the population
for (i, b) in enumerate(self.pop):
if self.comparator.looks_like(a, b):
if get_raw_score(b) < raw_score_a:
del self.pop[i]
a.info['looks_like'] = count_looks_like(a,
self.all_cand,
self.comparator)
self.pop.append(a)
self.pop.sort(key=lambda x: get_raw_score(x),
reverse=True)
return
# the new candidate needs to be added, so remove the highest
# energy one
if len(self.pop) == self.pop_size:
del self.pop[-1]
# add the new candidate
a.info['looks_like'] = count_looks_like(a,
self.all_cand,
self.comparator)
self.pop.append(a)
self.pop.sort(key=lambda x: get_raw_score(x), reverse=True)
def __get_fitness__(self, indecies, with_history=True):
"""Calculates the fitness using the formula from
L.B. Vilhelmsen et al., JACS, 2012, 134 (30), pp 12807-12816
Sign change on the fitness compared to the formulation in the
abovementioned paper due to maximizing raw_score instead of
minimizing energy. (Set raw_score=-energy to optimize the energy)
"""
scores = [get_raw_score(x) for x in self.pop]
min_s = min(scores)
max_s = max(scores)
T = min_s - max_s
if isinstance(indecies, int):
indecies = [indecies]
f = [0.5 * (1. - tanh(2. * (scores[i] - max_s) / T - 1.))
for i in indecies]
if with_history:
M = [float(self.pop[i].info['n_paired']) for i in indecies]
L = [float(self.pop[i].info['looks_like']) for i in indecies]
f = [f[i] * 1. / sqrt(1. + M[i]) * 1. / sqrt(1. + L[i])
for i in range(len(f))]
return f
def get_two_candidates(self, with_history=True):
""" Returns two candidates for pairing employing the
fitness criteria from
L.B. Vilhelmsen et al., JACS, 2012, 134 (30), pp 12807-12816
and the roulete wheel selection scheme described in
R.L. Johnston Dalton Transactions,
Vol. 22, No. 22. (2003), pp. 4193-4207
"""
if len(self.pop) < 2:
self.update()
if len(self.pop) < 2:
return None
fit = self.__get_fitness__(range(len(self.pop)), with_history)
fmax = max(fit)
c1 = self.pop[0]
c2 = self.pop[0]
used_before = False
while c1.info['confid'] == c2.info['confid'] and not used_before:
nnf = True
while nnf:
t = self.rng.randint(len(self.pop))
if fit[t] > self.rng.rand() * fmax:
c1 = self.pop[t]
nnf = False
nnf = True
while nnf:
t = self.rng.randint(len(self.pop))
if fit[t] > self.rng.rand() * fmax:
c2 = self.pop[t]
nnf = False
c1id = c1.info['confid']
c2id = c2.info['confid']
used_before = (min([c1id, c2id]), max([c1id, c2id])) in self.pairs
return (c1.copy(), c2.copy())
def get_one_candidate(self, with_history=True):
"""Returns one candidate for mutation employing the
fitness criteria from
L.B. Vilhelmsen et al., JACS, 2012, 134 (30), pp 12807-12816
and the roulete wheel selection scheme described in
R.L. Johnston Dalton Transactions,
Vol. 22, No. 22. (2003), pp. 4193-4207
"""
if len(self.pop) < 1:
self.update()
if len(self.pop) < 1:
return None
fit = self.__get_fitness__(range(len(self.pop)), with_history)
fmax = max(fit)
nnf = True
while nnf:
t = self.rng.randint(len(self.pop))
if fit[t] > self.rng.rand() * fmax:
c1 = self.pop[t]
nnf = False
return c1.copy()
def _write_log(self):
"""Writes the population to a logfile.
The format is::
timestamp: generation(if available): id1,id2,id3..."""
if self.logfile is not None:
ids = [str(a.info['relax_id']) for a in self.pop]
if ids != []:
try:
gen_nums = [c.info['key_value_pairs']['generation']
for c in self.all_cand]
max_gen = max(gen_nums)
except KeyError:
max_gen = ' '
fd = open(self.logfile, 'a')
fd.write('{time}: {gen}: {pop}\n'.format(time=now(),
pop=','.join(ids),
gen=max_gen))
fd.close()
def is_uniform(self, func, min_std, pop=None):
"""Tests whether the current population is uniform or diverse.
Returns True if uniform, False otherwise.
Parameters:
func: function
that takes one argument an atoms object and returns a value that
will be used for testing against the rest of the population.
min_std: int or float
The minimum standard deviation, if the population has a lower
std dev it is uniform.
pop: list, optional
use this list of Atoms objects instead of the current population.
"""
if pop is None:
pop = self.pop
vals = [func(a) for a in pop]
stddev = np.std(vals)
if stddev < min_std:
return True
return False
def mass_extinction(self, ids):
"""Kills every candidate in the database with gaid in the
supplied list of ids. Typically used on the main part of the current
population if the diversity is to small.
Parameters:
ids: list
list of ids of candidates to be killed.
"""
for confid in ids:
self.dc.kill_candidate(confid)
self.pop = []
class RandomPopulation(Population):
def __init__(self, data_connection, population_size,
comparator=None, logfile=None, exclude_used_pairs=False,
bad_candidates=0, use_extinct=False):
self.exclude_used_pairs = exclude_used_pairs
self.bad_candidates = bad_candidates
Population.__init__(self, data_connection, population_size,
comparator, logfile, use_extinct)
def __initialize_pop__(self):
""" Private method that initializes the population when
the population is created. """
# Get all relaxed candidates from the database
ue = self.use_extinct
all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)
# all_cand.sort(key=lambda x: x.get_potential_energy())
if len(all_cand) > 0:
# Fill up the population with the self.pop_size most stable
# unique candidates.
ratings = []
best_raw = get_raw_score(all_cand[0])
i = 0
while i < len(all_cand):
c = all_cand[i]
i += 1
eq = False
for a in self.pop:
if self.comparator.looks_like(a, c):
eq = True
break
if not eq:
if len(self.pop) < self.pop_size - self.bad_candidates:
self.pop.append(c)
else:
exp_fact = exp(get_raw_score(c) / best_raw)
ratings.append([c, (exp_fact - 1) * self.rng.rand()])
ratings.sort(key=itemgetter(1), reverse=True)
for i in range(self.bad_candidates):
self.pop.append(ratings[i][0])
for a in self.pop:
a.info['looks_like'] = count_looks_like(a, all_cand,
self.comparator)
self.all_cand = all_cand
self.__calc_participation__()
def update(self):
""" The update method in Population will add to the end of
the population, that can't be used here since we might have
bad candidates that need to stay in the population, therefore
just recalc the population every time. """
self.pop = []
self.__initialize_pop__()
self._write_log()
def get_one_candidate(self):
"""Returns one candidates at random."""
if len(self.pop) < 1:
self.update()
if len(self.pop) < 1:
return None
t = self.rng.randint(len(self.pop))
c = self.pop[t]
return c.copy()
def get_two_candidates(self):
"""Returns two candidates at random."""
if len(self.pop) < 2:
self.update()
if len(self.pop) < 2:
return None
c1 = self.pop[0]
c2 = self.pop[0]
used_before = False
while c1.info['confid'] == c2.info['confid'] and not used_before:
t = self.rng.randint(len(self.pop))
c1 = self.pop[t]
t = self.rng.randint(len(self.pop))
c2 = self.pop[t]
c1id = c1.info['confid']
c2id = c2.info['confid']
used_before = (tuple(sorted([c1id, c2id])) in self.pairs and
self.exclude_used_pairs)
return (c1.copy(), c2.copy())
class FitnessSharingPopulation(Population):
""" Fitness sharing population that penalizes structures if they are
too similar. This is determined by a distance measure
Parameters:
comp_key: string
Key where the distance measure can be found in the
atoms.info['key_value_pairs'] dictionary.
threshold: float or int
Value above which no penalization of the fitness takes place
alpha_sh: float or int
Determines the shape of the sharing function.
Default is 1, which gives a linear sharing function.
"""
def __init__(self, data_connection, population_size,
comp_key, threshold, alpha_sh=1.,
comparator=None, logfile=None, use_extinct=False):
self.comp_key = comp_key
self.dt = threshold # dissimilarity threshold
self.alpha_sh = alpha_sh
self.fit_scaling = 1.
self.sh_cache = dict()
Population.__init__(self, data_connection, population_size,
comparator, logfile, use_extinct)
def __get_fitness__(self, candidates):
"""Input should be sorted according to raw_score."""
max_s = get_raw_score(candidates[0])
min_s = get_raw_score(candidates[-1])
T = min_s - max_s
shared_fit = []
for c in candidates:
sc = get_raw_score(c)
obj_fit = 0.5 * (1. - tanh(2. * (sc - max_s) / T - 1.))
m = 1.
ck = c.info['key_value_pairs'][self.comp_key]
for other in candidates:
if other != c:
name = tuple(sorted([c.info['confid'],
other.info['confid']]))
if name not in self.sh_cache:
ok = other.info['key_value_pairs'][self.comp_key]
d = abs(ck - ok)
if d < self.dt:
v = 1 - (d / self.dt)**self.alpha_sh
self.sh_cache[name] = v
else:
self.sh_cache[name] = 0
m += self.sh_cache[name]
shf = (obj_fit ** self.fit_scaling) / m
shared_fit.append(shf)
return shared_fit
def update(self):
""" The update method in Population will add to the end of
the population, that can't be used here since the shared fitness
will change for all candidates when new are added, therefore
just recalc the population every time. """
self.pop = []
self.__initialize_pop__()
self._write_log()
def __initialize_pop__(self):
# Get all relaxed candidates from the database
ue = self.use_extinct
all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)
if len(all_cand) > 0:
shared_fit = self.__get_fitness__(all_cand)
all_sorted = list(zip(*sorted(zip(shared_fit, all_cand),
reverse=True)))[1]
# Fill up the population with the self.pop_size most stable
# unique candidates.
i = 0
while i < len(all_sorted) and len(self.pop) < self.pop_size:
c = all_sorted[i]
i += 1
eq = False
for a in self.pop:
if self.comparator.looks_like(a, c):
eq = True
break
if not eq:
self.pop.append(c)
for a in self.pop:
a.info['looks_like'] = count_looks_like(a, all_cand,
self.comparator)
self.all_cand = all_cand
def get_two_candidates(self):
""" Returns two candidates for pairing employing the
fitness criteria from
L.B. Vilhelmsen et al., JACS, 2012, 134 (30), pp 12807-12816
and the roulete wheel selection scheme described in
R.L. Johnston Dalton Transactions,
Vol. 22, No. 22. (2003), pp. 4193-4207
"""
if len(self.pop) < 2:
self.update()
if len(self.pop) < 2:
return None
fit = self.__get_fitness__(self.pop)
fmax = max(fit)
c1 = self.pop[0]
c2 = self.pop[0]
while c1.info['confid'] == c2.info['confid']:
nnf = True
while nnf:
t = self.rng.randint(len(self.pop))
if fit[t] > self.rng.rand() * fmax:
c1 = self.pop[t]
nnf = False
nnf = True
while nnf:
t = self.rng.randint(len(self.pop))
if fit[t] > self.rng.rand() * fmax:
c2 = self.pop[t]
nnf = False
return (c1.copy(), c2.copy())
class RankFitnessPopulation(Population):
""" Ranks the fitness relative to set variable to flatten the surface
in a certain direction such that mating across variable is equally
likely irrespective of raw_score.
Parameters:
variable_function: function
A function that takes as input an Atoms object and returns
the variable that differentiates the ranks.
exp_function: boolean
If True use an exponential function for ranking the fitness.
If False use the same as in Population. Default True.
exp_prefactor: float
The prefactor used in the exponential fitness scaling function.
Default 0.5
"""
def __init__(self, data_connection, population_size, variable_function,
comparator=None, logfile=None, use_extinct=False,
exp_function=True, exp_prefactor=0.5):
self.exp_function = exp_function
self.exp_prefactor = exp_prefactor
self.vf = variable_function
# The current fitness is set at each update of the population
self.current_fitness = None
Population.__init__(self, data_connection, population_size,
comparator, logfile, use_extinct)
def get_rank(self, rcand, key=None):
# Set the initial order of the candidates, will need to
# be returned in this order at the end of ranking.
ordered = list(zip(range(len(rcand)), rcand))
# Niche and rank candidates.
rec_nic = []
rank_fit = []
for o, c in ordered:
if o not in rec_nic:
ntr = []
ce1 = self.vf(c)
rec_nic.append(o)
ntr.append([o, c])
for oother, cother in ordered:
if oother not in rec_nic:
ce2 = self.vf(cother)
if ce1 == ce2:
# put the now processed in oother
# in rec_nic as well
rec_nic.append(oother)
ntr.append([oother, cother])
# Each niche is sorted according to raw_score and
# assigned a fitness according to the ranking of
# the candidates
ntr.sort(key=lambda x: x[1].info['key_value_pairs'][key],
reverse=True)
start_rank = -1
cor = 0
for on, cn in ntr:
rank = start_rank - cor
rank_fit.append([on, cn, rank])
cor += 1
# The original order is reformed
rank_fit.sort(key=itemgetter(0), reverse=False)
return np.array(list(zip(*rank_fit))[2])
def __get_fitness__(self, candidates):
expf = self.exp_function
rfit = self.get_rank(candidates, key='raw_score')
if not expf:
rmax = max(rfit)
rmin = min(rfit)
T = rmin - rmax
# If using obj_rank probability, must have non-zero T val.
# pop_size must be greater than number of permutations.
# We test for this here
msg = "Equal fitness for best and worst candidate in the "
msg += "population! Fitness scaling is impossible! "
msg += "Try with a larger population."
assert T != 0., msg
return 0.5 * (1. - np.tanh(2. * (rfit - rmax) / T - 1.))
else:
return self.exp_prefactor ** (-rfit - 1)
def update(self):
""" The update method in Population will add to the end of
the population, that can't be used here since the fitness
will potentially change for all candidates when new are added,
therefore just recalc the population every time. """
self.pop = []
self.__initialize_pop__()
self.current_fitness = self.__get_fitness__(self.pop)
self._write_log()
def __initialize_pop__(self):
# Get all relaxed candidates from the database
ue = self.use_extinct
all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)
if len(all_cand) > 0:
fitf = self.__get_fitness__(all_cand)
all_sorted = list(zip(fitf, all_cand))
all_sorted.sort(key=itemgetter(0), reverse=True)
sort_cand = []
for _, t2 in all_sorted:
sort_cand.append(t2)
all_sorted = sort_cand
# Fill up the population with the self.pop_size most stable
# unique candidates.
i = 0
while i < len(all_sorted) and len(self.pop) < self.pop_size:
c = all_sorted[i]
c_vf = self.vf(c)
i += 1
eq = False
for a in self.pop:
a_vf = self.vf(a)
# Only run comparator if the variable_function (self.vf)
# returns the same. If it returns something different the
# candidates are inherently different.
# This is done to speed up.
if a_vf == c_vf:
if self.comparator.looks_like(a, c):
eq = True
break
if not eq:
self.pop.append(c)
self.all_cand = all_cand
def get_two_candidates(self):
""" Returns two candidates for pairing employing the
roulete wheel selection scheme described in
R.L. Johnston Dalton Transactions,
Vol. 22, No. 22. (2003), pp. 4193-4207
"""
if len(self.pop) < 2:
self.update()
if len(self.pop) < 2:
return None
# Use saved fitness
fit = self.current_fitness
fmax = max(fit)
c1 = self.pop[0]
c2 = self.pop[0]
while c1.info['confid'] == c2.info['confid']:
nnf = True
while nnf:
t = self.rng.randint(len(self.pop))
if fit[t] > self.rng.rand() * fmax:
c1 = self.pop[t]
nnf = False
nnf = True
while nnf:
t = self.rng.randint(len(self.pop))
if fit[t] > self.rng.rand() * fmax:
c2 = self.pop[t]
nnf = False
return (c1.copy(), c2.copy())
class MultiObjectivePopulation(RankFitnessPopulation):
""" Allows for assignment of fitness based on a set of two variables
such that fitness is ranked according to a Pareto-front of
non-dominated candidates.
Parameters
----------
abs_data: list
Set of key_value_pairs in atoms object for which fitness should
be assigned based on absolute value.
rank_data: list
Set of key_value_pairs in atoms object for which data should
be ranked in order to ascribe fitness.
variable_function: function
A function that takes as input an Atoms object and returns
the variable that differentiates the ranks. Only use if
data is ranked.
exp_function: boolean
If True use an exponential function for ranking the fitness.
If False use the same as in Population. Default True.
exp_prefactor: float
The prefactor used in the exponential fitness scaling function.
Default 0.5
"""
def __init__(self, data_connection, population_size,
variable_function=None, comparator=None, logfile=None,
use_extinct=False, abs_data=None, rank_data=None,
exp_function=True, exp_prefactor=0.5):
# The current fitness is set at each update of the population
self.current_fitness = None
if rank_data is None:
rank_data = []
self.rank_data = rank_data
if abs_data is None:
abs_data = []
self.abs_data = abs_data
RankFitnessPopulation.__init__(self, data_connection, population_size,
variable_function, comparator, logfile,
use_extinct, exp_function,
exp_prefactor)
def get_nonrank(self, nrcand, key=None):
""""Returns a list of fitness values."""
nrc_list = []
for nrc in nrcand:
nrc_list.append(nrc.info['key_value_pairs'][key])
return nrc_list
def __get_fitness__(self, candidates):
# There are no defaults set for the datasets to be
# used in this function, as such we test that the
# user has specified at least two here.
msg = "This is a multi-objective fitness function"
msg += " so there must be at least two datasets"
msg += " stated in the rank_data and abs_data variables"
assert len(self.rank_data) + len(self.abs_data) >= 2, msg
expf = self.exp_function
all_fitnesses = []
used = set()
for rd in self.rank_data:
used.add(rd)
# Build ranked fitness based on rd
all_fitnesses.append(self.get_rank(candidates, key=rd))
for d in self.abs_data:
if d not in used:
used.add(d)
# Build fitness based on d
all_fitnesses.append(self.get_nonrank(candidates, key=d))
# Set the initial order of the ranks, will need to
# be returned in this order at the end.
fordered = list(zip(range(len(all_fitnesses[0])), *all_fitnesses))
mvf_rank = -1 # Start multi variable rank at -1.
rec_vrc = [] # A record of already ranked candidates.
mvf_list = [] # A list for all candidate ranks.
# Sort by raw_score_1 in case this is different from
# the stored raw_score() variable that all_cands are
# sorted by.
fordered.sort(key=itemgetter(1), reverse=True)
# Niche candidates with equal or better raw_score to
# current candidate.
for a in fordered:
order, rest = a[0], a[1:]
if order not in rec_vrc:
pff = []
pff2 = []
rec_vrc.append(order)
pff.append((order, rest))
for b in fordered:
border, brest = b[0], b[1:]
if border not in rec_vrc:
if np.any(np.array(brest) >= np.array(rest)):
pff.append((border, brest))
# Remove any candidate from pff list that is dominated
# by another in the list.
for na in pff:
norder, nrest = na[0], na[1:]
dom = False
for nb in pff:
nborder, nbrest = nb[0], nb[1:]
if norder != nborder:
if np.all(np.array(nbrest) > np.array(nrest)):
dom = True
if not dom:
pff2.append((norder, nrest))
# Assign pareto rank from -1 to -N niches.
for ffa in pff2:
fforder, ffrest = ffa[0], ffa[1:]
rec_vrc.append(fforder)
mvf_list.append((fforder, mvf_rank, ffrest))
mvf_rank = mvf_rank - 1
# The original order is reformed
mvf_list.sort(key=itemgetter(0), reverse=False)
rfro = np.array(list(zip(*mvf_list))[1])
if not expf:
rmax = max(rfro)
rmin = min(rfro)
T = rmin - rmax
# If using obj_rank probability, must have non-zero T val.
# pop_size must be greater than number of permutations.
# We test for this here
msg = "Equal fitness for best and worst candidate in the "
msg += "population! Fitness scaling is impossible! "
msg += "Try with a larger population."
assert T != 0., msg
return 0.5 * (1. - np.tanh(2. * (rfro - rmax) / T - 1.))
else:
return self.exp_prefactor ** (-rfro - 1)
def __initialize_pop__(self):
# Get all relaxed candidates from the database
ue = self.use_extinct
all_cand = self.dc.get_all_relaxed_candidates(use_extinct=ue)
all_cand.sort(key=lambda x: get_raw_score(x), reverse=True)
if len(all_cand) > 0:
fitf = self.__get_fitness__(all_cand)
all_sorted = list(zip(fitf, all_cand))
all_sorted.sort(key=itemgetter(0), reverse=True)
sort_cand = []
for _, t2 in all_sorted:
sort_cand.append(t2)
all_sorted = sort_cand
# Fill up the population with the self.pop_size most stable
# unique candidates.
i = 0
while i < len(all_sorted) and len(self.pop) < self.pop_size:
c = all_sorted[i]
# Use variable_function to decide whether to run comparator
# if the function has been defined by the user. This does not
# need to be dependent on using the rank_data function.
if self.vf is not None:
c_vf = self.vf(c)
i += 1
eq = False
for a in self.pop:
if self.vf is not None:
a_vf = self.vf(a)
# Only run comparator if the variable_function
# (self.vf) returns the same. If it returns something
# different the candidates are inherently different.
# This is done to speed up.
if a_vf == c_vf:
if self.comparator.looks_like(a, c):
eq = True
break
else:
if self.comparator.looks_like(a, c):
eq = True
break
if not eq:
self.pop.append(c)
self.all_cand = all_cand
|