1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
"""Operators that work on slabs.
Allowed compositions are respected.
Identical indexing of the slabs are assumed for the cut-splice operator."""
from operator import itemgetter
from collections import Counter
from itertools import permutations
import numpy as np
from ase.ga.offspring_creator import OffspringCreator
from ase.ga.element_mutations import get_periodic_table_distance
from ase.utils import atoms_to_spglib_cell
try:
import spglib
except ImportError:
spglib = None
def permute2(atoms, rng=np.random):
i1 = rng.choice(range(len(atoms)))
sym1 = atoms[i1].symbol
i2 = rng.choice([a.index for a in atoms if a.symbol != sym1])
atoms[i1].symbol = atoms[i2].symbol
atoms[i2].symbol = sym1
def replace_element(atoms, element_out, element_in):
syms = np.array(atoms.get_chemical_symbols())
syms[syms == element_out] = element_in
atoms.set_chemical_symbols(syms)
def get_add_remove_lists(**kwargs):
to_add, to_rem = [], []
for s, amount in kwargs.items():
if amount > 0:
to_add.extend([s] * amount)
elif amount < 0:
to_rem.extend([s] * abs(amount))
return to_add, to_rem
def get_minority_element(atoms):
counter = Counter(atoms.get_chemical_symbols())
return sorted(counter.items(), key=itemgetter(1), reverse=False)[0][0]
def minority_element_segregate(atoms, layer_tag=1, rng=np.random):
"""Move the minority alloy element to the layer specified by the layer_tag,
Atoms object should contain atoms with the corresponding tag."""
sym = get_minority_element(atoms)
layer_indices = set([a.index for a in atoms if a.tag == layer_tag])
minority_indices = set([a.index for a in atoms if a.symbol == sym])
change_indices = minority_indices - layer_indices
in_layer_not_sym = list(layer_indices - minority_indices)
rng.shuffle(in_layer_not_sym)
if len(change_indices) > 0:
for i, ai in zip(change_indices, in_layer_not_sym):
atoms[i].symbol = atoms[ai].symbol
atoms[ai].symbol = sym
def same_layer_comp(atoms, rng=np.random):
unique_syms, comp = np.unique(sorted(atoms.get_chemical_symbols()),
return_counts=True)
l = get_layer_comps(atoms)
sym_dict = dict((s, int(np.array(c) / len(l)))
for s, c in zip(unique_syms, comp))
for la in l:
correct_by = sym_dict.copy()
lcomp = dict(
zip(*np.unique([atoms[i].symbol for i in la], return_counts=True)))
for s, num in lcomp.items():
correct_by[s] -= num
to_add, to_rem = get_add_remove_lists(**correct_by)
for add, rem in zip(to_add, to_rem):
ai = rng.choice([i for i in la if atoms[i].symbol == rem])
atoms[ai].symbol = add
def get_layer_comps(atoms, eps=1e-2):
lc = []
old_z = np.inf
for z, ind in sorted([(a.z, a.index) for a in atoms]):
if abs(old_z - z) < eps:
lc[-1].append(ind)
else:
lc.append([ind])
old_z = z
return lc
def get_ordered_composition(syms, pools=None):
if pools is None:
pool_index = dict((sym, 0) for sym in set(syms))
else:
pool_index = {}
for i, pool in enumerate(pools):
if isinstance(pool, str):
pool_index[pool] = i
else:
for sym in set(syms):
if sym in pool:
pool_index[sym] = i
syms = [(sym, pool_index[sym], c)
for sym, c in zip(*np.unique(syms, return_counts=True))]
unique_syms, pn, comp = zip(
*sorted(syms, key=lambda k: (k[1] - k[2], k[0])))
return (unique_syms, pn, comp)
def dummy_func(*args):
return
class SlabOperator(OffspringCreator):
def __init__(self, verbose=False, num_muts=1,
allowed_compositions=None,
distribution_correction_function=None,
element_pools=None,
rng=np.random):
OffspringCreator.__init__(self, verbose, num_muts=num_muts, rng=rng)
self.allowed_compositions = allowed_compositions
self.element_pools = element_pools
if distribution_correction_function is None:
self.dcf = dummy_func
else:
self.dcf = distribution_correction_function
# Number of different elements i.e. [2, 1] if len(element_pools) == 2
# then 2 different elements in pool 1 is allowed but only 1 from pool 2
def get_symbols_to_use(self, syms):
"""Get the symbols to use for the offspring candidate. The returned
list of symbols will respect self.allowed_compositions"""
if self.allowed_compositions is None:
return syms
unique_syms, counts = np.unique(syms, return_counts=True)
comp, unique_syms = zip(*sorted(zip(counts, unique_syms),
reverse=True))
for cc in self.allowed_compositions:
comp += (0,) * (len(cc) - len(comp))
if comp == tuple(sorted(cc)):
return syms
comp_diff = self.get_closest_composition_diff(comp)
to_add, to_rem = get_add_remove_lists(
**dict(zip(unique_syms, comp_diff)))
for add, rem in zip(to_add, to_rem):
tbc = [i for i in range(len(syms)) if syms[i] == rem]
ai = self.rng.choice(tbc)
syms[ai] = add
return syms
def get_add_remove_elements(self, syms):
if self.element_pools is None or self.allowed_compositions is None:
return [], []
unique_syms, pool_number, comp = get_ordered_composition(
syms, self.element_pools)
stay_comp, stay_syms = [], []
add_rem = {}
per_pool = len(self.allowed_compositions[0]) / len(self.element_pools)
pool_count = np.zeros(len(self.element_pools), dtype=int)
for pn, num, sym in zip(pool_number, comp, unique_syms):
pool_count[pn] += 1
if pool_count[pn] <= per_pool:
stay_comp.append(num)
stay_syms.append(sym)
else:
add_rem[sym] = -num
# collect elements from individual pools
diff = self.get_closest_composition_diff(stay_comp)
add_rem.update(dict((s, c) for s, c in zip(stay_syms, diff)))
return get_add_remove_lists(**add_rem)
def get_closest_composition_diff(self, c):
comp = np.array(c)
mindiff = 1e10
allowed_list = list(self.allowed_compositions)
self.rng.shuffle(allowed_list)
for ac in allowed_list:
diff = self.get_composition_diff(comp, ac)
numdiff = sum([abs(i) for i in diff])
if numdiff < mindiff:
mindiff = numdiff
ccdiff = diff
return ccdiff
def get_composition_diff(self, c1, c2):
difflen = len(c1) - len(c2)
if difflen > 0:
c2 += (0,) * difflen
return np.array(c2) - c1
def get_possible_mutations(self, a):
unique_syms, comp = np.unique(sorted(a.get_chemical_symbols()),
return_counts=True)
min_num = min([i for i in np.ravel(list(self.allowed_compositions))
if i > 0])
muts = set()
for i, n in enumerate(comp):
if n != 0:
muts.add((unique_syms[i], n))
if n % min_num >= 0:
for j in range(1, n // min_num):
muts.add((unique_syms[i], min_num * j))
return list(muts)
def get_all_element_mutations(self, a):
"""Get all possible mutations for the supplied atoms object given
the element pools."""
muts = []
symset = set(a.get_chemical_symbols())
for sym in symset:
for pool in self.element_pools:
if sym in pool:
muts.extend([(sym, s) for s in pool if s not in symset])
return muts
def finalize_individual(self, indi):
atoms_string = ''.join(indi.get_chemical_symbols())
indi.info['key_value_pairs']['atoms_string'] = atoms_string
return OffspringCreator.finalize_individual(self, indi)
class CutSpliceSlabCrossover(SlabOperator):
def __init__(self, allowed_compositions=None, element_pools=None,
verbose=False,
num_muts=1, tries=1000, min_ratio=0.25,
distribution_correction_function=None, rng=np.random):
SlabOperator.__init__(self, verbose, num_muts,
allowed_compositions,
distribution_correction_function,
element_pools=element_pools,
rng=rng)
self.tries = tries
self.min_ratio = min_ratio
self.descriptor = 'CutSpliceSlabCrossover'
def get_new_individual(self, parents):
f, m = parents
indi = self.initialize_individual(f, self.operate(f, m))
indi.info['data']['parents'] = [i.info['confid'] for i in parents]
parent_message = ': Parents {0} {1}'.format(f.info['confid'],
m.info['confid'])
return (self.finalize_individual(indi),
self.descriptor + parent_message)
def operate(self, f, m):
child = f.copy()
fp = f.positions
ma = np.max(fp.transpose(), axis=1)
mi = np.min(fp.transpose(), axis=1)
for _ in range(self.tries):
# Find center point of cut
rv = [self.rng.rand() for _ in range(3)] # random vector
midpoint = (ma - mi) * rv + mi
# Determine cut plane
theta = self.rng.rand() * 2 * np.pi # 0,2pi
phi = self.rng.rand() * np.pi # 0,pi
e = np.array((np.sin(phi) * np.cos(theta),
np.sin(theta) * np.sin(phi),
np.cos(phi)))
# Cut structures
d2fp = np.dot(fp - midpoint, e)
fpart = d2fp > 0
ratio = float(np.count_nonzero(fpart)) / len(f)
if ratio < self.min_ratio or ratio > 1 - self.min_ratio:
continue
syms = np.where(fpart, f.get_chemical_symbols(),
m.get_chemical_symbols())
dists2plane = abs(d2fp)
# Correct the composition
# What if only one element pool is represented in the offspring
to_add, to_rem = self.get_add_remove_elements(syms)
# Change elements closest to the cut plane
for add, rem in zip(to_add, to_rem):
tbc = [(dists2plane[i], i)
for i in range(len(syms)) if syms[i] == rem]
ai = sorted(tbc)[0][1]
syms[ai] = add
child.set_chemical_symbols(syms)
break
self.dcf(child)
return child
# Mutations: Random, MoveUp/Down/Left/Right, six or all elements
class RandomCompositionMutation(SlabOperator):
"""Change the current composition to another of the allowed compositions.
The allowed compositions should be input in the same order as the element pools,
for example:
element_pools = [['Au', 'Cu'], ['In', 'Bi']]
allowed_compositions = [(6, 2), (5, 3)]
means that there can be 5 or 6 Au and Cu, and 2 or 3 In and Bi.
"""
def __init__(self, verbose=False, num_muts=1, element_pools=None,
allowed_compositions=None,
distribution_correction_function=None, rng=np.random):
SlabOperator.__init__(self, verbose, num_muts,
allowed_compositions,
distribution_correction_function,
element_pools=element_pools,
rng=rng)
self.descriptor = 'RandomCompositionMutation'
def get_new_individual(self, parents):
f = parents[0]
parent_message = ': Parent {0}'.format(f.info['confid'])
if self.allowed_compositions is None:
if len(set(f.get_chemical_symbols())) == 1:
if self.element_pools is None:
# We cannot find another composition without knowledge of
# other allowed elements or compositions
return None, self.descriptor + parent_message
# Do the operation
indi = self.initialize_individual(f, self.operate(f))
indi.info['data']['parents'] = [i.info['confid'] for i in parents]
return (self.finalize_individual(indi),
self.descriptor + parent_message)
def operate(self, atoms):
allowed_comps = self.allowed_compositions
if allowed_comps is None:
n_elems = len(set(atoms.get_chemical_symbols()))
n_atoms = len(atoms)
allowed_comps = [c for c in permutations(range(1, n_atoms),
n_elems)
if sum(c) == n_atoms]
# Sorting the composition to have the same order as in element_pools
syms = atoms.get_chemical_symbols()
unique_syms, _, comp = get_ordered_composition(syms,
self.element_pools)
# Choose the composition to change to
for i, allowed in enumerate(allowed_comps):
if comp == tuple(allowed):
allowed_comps = np.delete(allowed_comps, i, axis=0)
break
chosen = self.rng.randint(len(allowed_comps))
comp_diff = self.get_composition_diff(comp, allowed_comps[chosen])
# Get difference from current composition
to_add, to_rem = get_add_remove_lists(
**dict(zip(unique_syms, comp_diff)))
# Correct current composition
syms = atoms.get_chemical_symbols()
for add, rem in zip(to_add, to_rem):
tbc = [i for i in range(len(syms)) if syms[i] == rem]
ai = self.rng.choice(tbc)
syms[ai] = add
atoms.set_chemical_symbols(syms)
self.dcf(atoms)
return atoms
class RandomElementMutation(SlabOperator):
def __init__(self, element_pools, verbose=False, num_muts=1,
allowed_compositions=None,
distribution_correction_function=None, rng=np.random):
SlabOperator.__init__(self, verbose, num_muts,
allowed_compositions,
distribution_correction_function,
element_pools=element_pools,
rng=rng)
self.descriptor = 'RandomElementMutation'
def get_new_individual(self, parents):
f = parents[0]
# Do the operation
indi = self.initialize_individual(f, self.operate(f))
indi.info['data']['parents'] = [i.info['confid'] for i in parents]
parent_message = ': Parent {0}'.format(f.info['confid'])
return (self.finalize_individual(indi),
self.descriptor + parent_message)
def operate(self, atoms):
poss_muts = self.get_all_element_mutations(atoms)
chosen = self.rng.randint(len(poss_muts))
replace_element(atoms, *poss_muts[chosen])
self.dcf(atoms)
return atoms
class NeighborhoodElementMutation(SlabOperator):
def __init__(self, element_pools, verbose=False, num_muts=1,
allowed_compositions=None,
distribution_correction_function=None, rng=np.random):
SlabOperator.__init__(self, verbose, num_muts,
allowed_compositions,
distribution_correction_function,
element_pools=element_pools,
rng=rng)
self.descriptor = 'NeighborhoodElementMutation'
def get_new_individual(self, parents):
f = parents[0]
indi = self.initialize_individual(f, f)
indi.info['data']['parents'] = [i.info['confid'] for i in parents]
indi = self.operate(indi)
parent_message = ': Parent {0}'.format(f.info['confid'])
return (self.finalize_individual(indi),
self.descriptor + parent_message)
def operate(self, atoms):
least_diff = 1e22
for mut in self.get_all_element_mutations(atoms):
dist = get_periodic_table_distance(*mut)
if dist < least_diff:
poss_muts = [mut]
least_diff = dist
elif dist == least_diff:
poss_muts.append(mut)
chosen = self.rng.randint(len(poss_muts))
replace_element(atoms, *poss_muts[chosen])
self.dcf(atoms)
return atoms
class SymmetrySlabPermutation(SlabOperator):
"""Permutes the atoms in the slab until it has a higher symmetry number."""
def __init__(self, verbose=False, num_muts=1, sym_goal=100, max_tries=50,
allowed_compositions=None,
distribution_correction_function=None, rng=np.random):
SlabOperator.__init__(self, verbose, num_muts,
allowed_compositions,
distribution_correction_function,
rng=rng)
if spglib is None:
print("SymmetrySlabPermutation needs spglib to function")
assert sym_goal >= 1
self.sym_goal = sym_goal
self.max_tries = max_tries
self.descriptor = 'SymmetrySlabPermutation'
def get_new_individual(self, parents):
f = parents[0]
# Permutation only makes sense if two different elements are present
if len(set(f.get_chemical_symbols())) == 1:
f = parents[1]
if len(set(f.get_chemical_symbols())) == 1:
return None, '{1} not possible in {0}'.format(f.info['confid'],
self.descriptor)
indi = self.initialize_individual(f, self.operate(f))
indi.info['data']['parents'] = [i.info['confid'] for i in parents]
parent_message = ': Parent {0}'.format(f.info['confid'])
return (self.finalize_individual(indi),
self.descriptor + parent_message)
def operate(self, atoms):
# Do the operation
sym_num = 1
sg = self.sym_goal
while sym_num < sg:
for _ in range(self.max_tries):
for _ in range(2):
permute2(atoms, rng=self.rng)
self.dcf(atoms)
sym_num = spglib.get_symmetry_dataset(
atoms_to_spglib_cell(atoms))['number']
if sym_num >= sg:
break
sg -= 1
return atoms
class RandomSlabPermutation(SlabOperator):
def __init__(self, verbose=False, num_muts=1,
allowed_compositions=None,
distribution_correction_function=None, rng=np.random):
SlabOperator.__init__(self, verbose, num_muts,
allowed_compositions,
distribution_correction_function,
rng=rng)
self.descriptor = 'RandomSlabPermutation'
def get_new_individual(self, parents):
f = parents[0]
# Permutation only makes sense if two different elements are present
if len(set(f.get_chemical_symbols())) == 1:
f = parents[1]
if len(set(f.get_chemical_symbols())) == 1:
return None, '{1} not possible in {0}'.format(f.info['confid'],
self.descriptor)
indi = self.initialize_individual(f, f)
indi.info['data']['parents'] = [i.info['confid'] for i in parents]
indi = self.operate(indi)
parent_message = ': Parent {0}'.format(f.info['confid'])
return (self.finalize_individual(indi),
self.descriptor + parent_message)
def operate(self, atoms):
# Do the operation
for _ in range(self.num_muts):
permute2(atoms, rng=self.rng)
self.dcf(atoms)
return atoms
|