1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
"""Soft-mutation operator and associated tools"""
import inspect
import json
import numpy as np
from ase.data import covalent_radii
from ase.neighborlist import NeighborList
from ase.ga.offspring_creator import OffspringCreator
from ase.ga.utilities import atoms_too_close, gather_atoms_by_tag
from scipy.spatial.distance import cdist
class TagFilter:
"""Filter which constrains same-tag atoms to behave
like internally rigid moieties.
"""
def __init__(self, atoms):
self.atoms = atoms
gather_atoms_by_tag(self.atoms)
self.tags = self.atoms.get_tags()
self.unique_tags = np.unique(self.tags)
self.n = len(self.unique_tags)
def get_positions(self):
all_pos = self.atoms.get_positions()
cop_pos = np.zeros((self.n, 3))
for i in range(self.n):
indices = np.where(self.tags == self.unique_tags[i])
cop_pos[i] = np.average(all_pos[indices], axis=0)
return cop_pos
def set_positions(self, positions, **kwargs):
cop_pos = self.get_positions()
all_pos = self.atoms.get_positions()
assert np.all(np.shape(positions) == np.shape(cop_pos))
for i in range(self.n):
indices = np.where(self.tags == self.unique_tags[i])
shift = positions[i] - cop_pos[i]
all_pos[indices] += shift
self.atoms.set_positions(all_pos, **kwargs)
def get_forces(self, *args, **kwargs):
f = self.atoms.get_forces()
forces = np.zeros((self.n, 3))
for i in range(self.n):
indices = np.where(self.tags == self.unique_tags[i])
forces[i] = np.sum(f[indices], axis=0)
return forces
def get_masses(self):
m = self.atoms.get_masses()
masses = np.zeros(self.n)
for i in range(self.n):
indices = np.where(self.tags == self.unique_tags[i])
masses[i] = np.sum(m[indices])
return masses
def __len__(self):
return self.n
class PairwiseHarmonicPotential:
"""Parent class for interatomic potentials of the type
E(r_ij) = 0.5 * k_ij * (r_ij - r0_ij) ** 2
"""
def __init__(self, atoms, rcut=10.):
self.atoms = atoms
self.pos0 = atoms.get_positions()
self.rcut = rcut
# build neighborlist
nat = len(self.atoms)
self.nl = NeighborList([self.rcut / 2.] * nat, skin=0., bothways=True,
self_interaction=False)
self.nl.update(self.atoms)
self.calculate_force_constants()
def calculate_force_constants(self):
msg = 'Child class needs to define a calculate_force_constants() ' \
'method which computes the force constants and stores them ' \
'in self.force_constants (as a list which contains, for every ' \
'atom, a list of the atom\'s force constants with its neighbors.'
raise NotImplementedError(msg)
def get_forces(self, atoms):
pos = atoms.get_positions()
cell = atoms.get_cell()
forces = np.zeros_like(pos)
for i, p in enumerate(pos):
indices, offsets = self.nl.get_neighbors(i)
p = pos[indices] + np.dot(offsets, cell)
r = cdist(p, [pos[i]])
v = (p - pos[i]) / r
p0 = self.pos0[indices] + np.dot(offsets, cell)
r0 = cdist(p0, [self.pos0[i]])
dr = r - r0
forces[i] = np.dot(self.force_constants[i].T, dr * v)
return forces
def get_number_of_valence_electrons(Z):
"""Return the number of valence electrons for the element with
atomic number Z, simply based on its periodic table group.
"""
groups = [[], [1, 3, 11, 19, 37, 55, 87], [2, 4, 12, 20, 38, 56, 88],
[21, 39, 57, 89]]
for i in range(9):
groups.append(i + np.array([22, 40, 72, 104]))
for i in range(6):
groups.append(i + np.array([5, 13, 31, 49, 81, 113]))
for i, group in enumerate(groups):
if Z in group:
nval = i if i < 13 else i - 10
break
else:
raise ValueError('Z=%d not included in this dataset.' % Z)
return nval
class BondElectroNegativityModel(PairwiseHarmonicPotential):
"""Pairwise harmonic potential where the force constants are
determined using the "bond electronegativity" model, see:
* `Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632`__
__ https://dx.doi.org/10.1016/j.cpc.2010.06.007
* `Lyakhov, Oganov, Phys. Rev. B 84 (2011) 092103`__
__ https://dx.doi.org/10.1103/PhysRevB.84.092103
"""
def calculate_force_constants(self):
cell = self.atoms.get_cell()
pos = self.atoms.get_positions()
num = self.atoms.get_atomic_numbers()
nat = len(self.atoms)
nl = self.nl
# computing the force constants
s_norms = []
valence_states = []
r_cov = []
for i in range(nat):
indices, offsets = nl.get_neighbors(i)
p = pos[indices] + np.dot(offsets, cell)
r = cdist(p, [pos[i]])
r_ci = covalent_radii[num[i]]
s = 0.
for j, index in enumerate(indices):
d = r[j] - r_ci - covalent_radii[num[index]]
s += np.exp(-d / 0.37)
s_norms.append(s)
valence_states.append(get_number_of_valence_electrons(num[i]))
r_cov.append(r_ci)
self.force_constants = []
for i in range(nat):
indices, offsets = nl.get_neighbors(i)
p = pos[indices] + np.dot(offsets, cell)
r = cdist(p, [pos[i]])[:, 0]
fc = []
for j, ii in enumerate(indices):
d = r[j] - r_cov[i] - r_cov[ii]
chi_ik = 0.481 * valence_states[i] / (r_cov[i] + 0.5 * d)
chi_jk = 0.481 * valence_states[ii] / (r_cov[ii] + 0.5 * d)
cn_ik = s_norms[i] / np.exp(-d / 0.37)
cn_jk = s_norms[ii] / np.exp(-d / 0.37)
fc.append(np.sqrt(chi_ik * chi_jk / (cn_ik * cn_jk)))
self.force_constants.append(np.array(fc))
class SoftMutation(OffspringCreator):
"""Mutates the structure by displacing it along the lowest
(nonzero) frequency modes found by vibrational analysis, as in:
`Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632`__
__ https://dx.doi.org/10.1016/j.cpc.2010.06.007
As in the reference above, the next-lowest mode is used if the
structure has already been softmutated along the current-lowest
mode. This mutation hence acts in a deterministic way, in contrast
to most other genetic operators.
If you find this implementation useful in your work,
please consider citing:
`Van den Bossche, Gronbeck, Hammer, J. Chem. Theory Comput. 14 (2018)`__
__ https://dx.doi.org/10.1021/acs.jctc.8b00039
in addition to the paper mentioned above.
Parameters:
blmin: dict
The closest allowed interatomic distances on the form:
{(Z, Z*): dist, ...}, where Z and Z* are atomic numbers.
bounds: list
Lower and upper limits (in Angstrom) for the largest
atomic displacement in the structure. For a given mode,
the algorithm starts at zero amplitude and increases
it until either blmin is violated or the largest
displacement exceeds the provided upper bound).
If the largest displacement in the resulting structure
is lower than the provided lower bound, the mutant is
considered too similar to the parent and None is
returned.
calculator: ASE calculator object
The calculator to be used in the vibrational
analysis. The default is to use a calculator
based on pairwise harmonic potentials with force
constants from the "bond electronegativity"
model described in the reference above.
Any calculator with a working :func:`get_forces()`
method will work.
rcut: float
Cutoff radius in Angstrom for the pairwise harmonic
potentials.
used_modes_file: str or None
Name of json dump file where previously used
modes will be stored (and read). If None,
no such file will be used. Default is to use
the filename 'used_modes.json'.
use_tags: boolean
Whether to use the atomic tags to preserve molecular identity.
"""
def __init__(self, blmin, bounds=[0.5, 2.0],
calculator=BondElectroNegativityModel, rcut=10.,
used_modes_file='used_modes.json', use_tags=False,
verbose=False):
OffspringCreator.__init__(self, verbose)
self.blmin = blmin
self.bounds = bounds
self.calc = calculator
self.rcut = rcut
self.used_modes_file = used_modes_file
self.use_tags = use_tags
self.descriptor = 'SoftMutation'
self.used_modes = {}
if self.used_modes_file is not None:
try:
self.read_used_modes(self.used_modes_file)
except IOError:
# file doesn't exist (yet)
pass
def _get_hessian(self, atoms, dx):
"""Returns the Hessian matrix d2E/dxi/dxj using a first-order
central difference scheme with displacements dx.
"""
N = len(atoms)
pos = atoms.get_positions()
hessian = np.zeros((3 * N, 3 * N))
for i in range(3 * N):
row = np.zeros(3 * N)
for direction in [-1, 1]:
disp = np.zeros(3)
disp[i % 3] = direction * dx
pos_disp = np.copy(pos)
pos_disp[i // 3] += disp
atoms.set_positions(pos_disp)
f = atoms.get_forces()
row += -1 * direction * f.flatten()
row /= (2. * dx)
hessian[i] = row
hessian += np.copy(hessian).T
hessian *= 0.5
atoms.set_positions(pos)
return hessian
def _calculate_normal_modes(self, atoms, dx=0.02, massweighing=False):
"""Performs the vibrational analysis."""
hessian = self._get_hessian(atoms, dx)
if massweighing:
m = np.array([np.repeat(atoms.get_masses()**-0.5, 3)])
hessian *= (m * m.T)
eigvals, eigvecs = np.linalg.eigh(hessian)
modes = {eigval: eigvecs[:, i] for i, eigval in enumerate(eigvals)}
return modes
def animate_mode(self, atoms, mode, nim=30, amplitude=1.0):
"""Returns an Atoms object showing an animation of the mode."""
pos = atoms.get_positions()
mode = mode.reshape(np.shape(pos))
animation = []
for i in range(nim):
newpos = pos + amplitude * mode * np.sin(i * 2 * np.pi / nim)
image = atoms.copy()
image.positions = newpos
animation.append(image)
return animation
def read_used_modes(self, filename):
"""Read used modes from json file."""
with open(filename, 'r') as fd:
modes = json.load(fd)
self.used_modes = {int(k): modes[k] for k in modes}
return
def write_used_modes(self, filename):
"""Dump used modes to json file."""
with open(filename, 'w') as fd:
json.dump(self.used_modes, fd)
return
def get_new_individual(self, parents):
f = parents[0]
indi = self.mutate(f)
if indi is None:
return indi, 'mutation: soft'
indi = self.initialize_individual(f, indi)
indi.info['data']['parents'] = [f.info['confid']]
return self.finalize_individual(indi), 'mutation: soft'
def mutate(self, atoms):
"""Does the actual mutation."""
a = atoms.copy()
if inspect.isclass(self.calc):
assert issubclass(self.calc, PairwiseHarmonicPotential)
calc = self.calc(atoms, rcut=self.rcut)
else:
calc = self.calc
a.calc = calc
if self.use_tags:
a = TagFilter(a)
pos = a.get_positions()
modes = self._calculate_normal_modes(a)
# Select the mode along which we want to move the atoms;
# The first 3 translational modes as well as previously
# applied modes are discarded.
keys = np.array(sorted(modes))
index = 3
confid = atoms.info['confid']
if confid in self.used_modes:
while index in self.used_modes[confid]:
index += 1
self.used_modes[confid].append(index)
else:
self.used_modes[confid] = [index]
if self.used_modes_file is not None:
self.write_used_modes(self.used_modes_file)
key = keys[index]
mode = modes[key].reshape(np.shape(pos))
# Find a suitable amplitude for translation along the mode;
# at every trial amplitude both positive and negative
# directions are tried.
mutant = atoms.copy()
amplitude = 0.
increment = 0.1
direction = 1
largest_norm = np.max(np.apply_along_axis(np.linalg.norm, 1, mode))
def expand(atoms, positions):
if isinstance(atoms, TagFilter):
a.set_positions(positions)
return a.atoms.get_positions()
else:
return positions
while amplitude * largest_norm < self.bounds[1]:
pos_new = pos + direction * amplitude * mode
pos_new = expand(a, pos_new)
mutant.set_positions(pos_new)
mutant.wrap()
too_close = atoms_too_close(mutant, self.blmin,
use_tags=self.use_tags)
if too_close:
amplitude -= increment
pos_new = pos + direction * amplitude * mode
pos_new = expand(a, pos_new)
mutant.set_positions(pos_new)
mutant.wrap()
break
if direction == 1:
direction = -1
else:
direction = 1
amplitude += increment
if amplitude * largest_norm < self.bounds[0]:
mutant = None
return mutant
|