File: standardmutations.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (716 lines) | stat: -rw-r--r-- 24,346 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
"""A collection of mutations that can be used."""
import numpy as np
from math import cos, sin, pi
from ase.calculators.lammpslib import convert_cell
from ase.ga.utilities import (atoms_too_close,
                              atoms_too_close_two_sets,
                              gather_atoms_by_tag,
                              get_rotation_matrix)
from ase.ga.offspring_creator import OffspringCreator, CombinationMutation
from ase import Atoms


class RattleMutation(OffspringCreator):
    """An implementation of the rattle mutation as described in:

    R.L. Johnston Dalton Transactions, Vol. 22,
    No. 22. (2003), pp. 4193-4207

    Parameters:

    blmin: Dictionary defining the minimum distance between atoms
        after the rattle.

    n_top: Number of atoms optimized by the GA.

    rattle_strength: Strength with which the atoms are moved.

    rattle_prop: The probability with which each atom is rattled.

    test_dist_to_slab: whether to also make sure that the distances
        between the atoms and the slab satisfy the blmin.

    use_tags: if True, the atomic tags will be used to preserve
        molecular identity. Same-tag atoms will then be
        displaced collectively, so that the internal
        geometry is preserved.

    rng: Random number generator
        By default numpy.random.
    """
    def __init__(self, blmin, n_top, rattle_strength=0.8,
                 rattle_prop=0.4, test_dist_to_slab=True, use_tags=False,
                 verbose=False, rng=np.random):
        OffspringCreator.__init__(self, verbose, rng=rng)
        self.blmin = blmin
        self.n_top = n_top
        self.rattle_strength = rattle_strength
        self.rattle_prop = rattle_prop
        self.test_dist_to_slab = test_dist_to_slab
        self.use_tags = use_tags

        self.descriptor = 'RattleMutation'
        self.min_inputs = 1

    def get_new_individual(self, parents):
        f = parents[0]

        indi = self.mutate(f)
        if indi is None:
            return indi, 'mutation: rattle'

        indi = self.initialize_individual(f, indi)
        indi.info['data']['parents'] = [f.info['confid']]

        return self.finalize_individual(indi), 'mutation: rattle'

    def mutate(self, atoms):
        """Does the actual mutation."""
        N = len(atoms) if self.n_top is None else self.n_top
        slab = atoms[:len(atoms) - N]
        atoms = atoms[-N:]
        tags = atoms.get_tags() if self.use_tags else np.arange(N)
        pos_ref = atoms.get_positions()
        num = atoms.get_atomic_numbers()
        cell = atoms.get_cell()
        pbc = atoms.get_pbc()
        st = 2. * self.rattle_strength

        count = 0
        maxcount = 1000
        too_close = True
        while too_close and count < maxcount:
            count += 1
            pos = pos_ref.copy()
            ok = False
            for tag in np.unique(tags):
                select = np.where(tags == tag)
                if self.rng.rand() < self.rattle_prop:
                    ok = True
                    r = self.rng.rand(3)
                    pos[select] += st * (r - 0.5)

            if not ok:
                # Nothing got rattled
                continue

            top = Atoms(num, positions=pos, cell=cell, pbc=pbc, tags=tags)
            too_close = atoms_too_close(
                top, self.blmin, use_tags=self.use_tags)
            if not too_close and self.test_dist_to_slab:
                too_close = atoms_too_close_two_sets(top, slab, self.blmin)

        if count == maxcount:
            return None

        mutant = slab + top
        return mutant


class PermutationMutation(OffspringCreator):
    """Mutation that permutes a percentage of the atom types in the cluster.

    Parameters:

    n_top: Number of atoms optimized by the GA.

    probability: The probability with which an atom is permuted.

    test_dist_to_slab: whether to also make sure that the distances
        between the atoms and the slab satisfy the blmin.

    use_tags: if True, the atomic tags will be used to preserve
        molecular identity. Permutations will then happen
        at the molecular level, i.e. swapping the center-of-
        positions of two moieties while preserving their
        internal geometries.

    blmin: Dictionary defining the minimum distance between atoms
        after the permutation. If equal to None (the default),
        no such check is performed.

    rng: Random number generator
        By default numpy.random.
    """
    def __init__(self, n_top, probability=0.33, test_dist_to_slab=True,
                 use_tags=False, blmin=None, rng=np.random, verbose=False):
        OffspringCreator.__init__(self, verbose, rng=rng)
        self.n_top = n_top
        self.probability = probability
        self.test_dist_to_slab = test_dist_to_slab
        self.use_tags = use_tags
        self.blmin = blmin

        self.descriptor = 'PermutationMutation'
        self.min_inputs = 1

    def get_new_individual(self, parents):
        f = parents[0]

        indi = self.mutate(f)
        if indi is None:
            return indi, 'mutation: permutation'

        indi = self.initialize_individual(f, indi)
        indi.info['data']['parents'] = [f.info['confid']]

        return self.finalize_individual(indi), 'mutation: permutation'

    def mutate(self, atoms):
        """Does the actual mutation."""
        N = len(atoms) if self.n_top is None else self.n_top
        slab = atoms[:len(atoms) - N]
        atoms = atoms[-N:]
        if self.use_tags:
            gather_atoms_by_tag(atoms)
        tags = atoms.get_tags() if self.use_tags else np.arange(N)
        pos_ref = atoms.get_positions()
        num = atoms.get_atomic_numbers()
        cell = atoms.get_cell()
        pbc = atoms.get_pbc()
        symbols = atoms.get_chemical_symbols()

        unique_tags = np.unique(tags)
        n = len(unique_tags)
        swaps = int(np.ceil(n * self.probability / 2.))

        sym = []
        for tag in unique_tags:
            indices = np.where(tags == tag)[0]
            s = ''.join([symbols[j] for j in indices])
            sym.append(s)

        assert len(np.unique(sym)) > 1, \
            'Permutations with one atom (or molecule) type is not valid'

        count = 0
        maxcount = 1000
        too_close = True
        while too_close and count < maxcount:
            count += 1
            pos = pos_ref.copy()
            for _ in range(swaps):
                i = j = 0
                while sym[i] == sym[j]:
                    i = self.rng.randint(0, high=n)
                    j = self.rng.randint(0, high=n)
                ind1 = np.where(tags == i)
                ind2 = np.where(tags == j)
                cop1 = np.mean(pos[ind1], axis=0)
                cop2 = np.mean(pos[ind2], axis=0)
                pos[ind1] += cop2 - cop1
                pos[ind2] += cop1 - cop2

            top = Atoms(num, positions=pos, cell=cell, pbc=pbc, tags=tags)
            if self.blmin is None:
                too_close = False
            else:
                too_close = atoms_too_close(
                    top, self.blmin, use_tags=self.use_tags)
                if not too_close and self.test_dist_to_slab:
                    too_close = atoms_too_close_two_sets(top, slab, self.blmin)

        if count == maxcount:
            return None

        mutant = slab + top
        return mutant


class MirrorMutation(OffspringCreator):
    """A mirror mutation, as described in
    TO BE PUBLISHED.

    This mutation mirrors half of the cluster in a
    randomly oriented cutting plane discarding the other half.

    Parameters:

    blmin: Dictionary defining the minimum allowed
        distance between atoms.

    n_top: Number of atoms the GA optimizes.

    reflect: Defines if the mirrored half is also reflected
        perpendicular to the mirroring plane.

    rng: Random number generator
        By default numpy.random.
    """
    def __init__(self, blmin, n_top, reflect=False, rng=np.random,
                 verbose=False):
        OffspringCreator.__init__(self, verbose, rng=rng)
        self.blmin = blmin
        self.n_top = n_top
        self.reflect = reflect

        self.descriptor = 'MirrorMutation'
        self.min_inputs = 1

    def get_new_individual(self, parents):
        f = parents[0]

        indi = self.mutate(f)
        if indi is None:
            return indi, 'mutation: mirror'

        indi = self.initialize_individual(f, indi)
        indi.info['data']['parents'] = [f.info['confid']]

        return self.finalize_individual(indi), 'mutation: mirror'

    def mutate(self, atoms):
        """ Do the mutation of the atoms input. """
        reflect = self.reflect
        tc = True
        slab = atoms[0:len(atoms) - self.n_top]
        top = atoms[len(atoms) - self.n_top: len(atoms)]
        num = top.numbers
        unique_types = list(set(num))
        nu = dict()
        for u in unique_types:
            nu[u] = sum(num == u)

        n_tries = 1000
        counter = 0
        changed = False

        while tc and counter < n_tries:
            counter += 1
            cand = top.copy()
            pos = cand.get_positions()

            cm = np.average(top.get_positions(), axis=0)

            # first select a randomly oriented cutting plane
            theta = pi * self.rng.rand()
            phi = 2. * pi * self.rng.rand()
            n = (cos(phi) * sin(theta), sin(phi) * sin(theta), cos(theta))
            n = np.array(n)

            # Calculate all atoms signed distance to the cutting plane
            D = []
            for (i, p) in enumerate(pos):
                d = np.dot(p - cm, n)
                D.append((i, d))

            # Sort the atoms by their signed distance
            D.sort(key=lambda x: x[1])
            nu_taken = dict()

            # Select half of the atoms needed for a full cluster
            p_use = []
            n_use = []
            for (i, d) in D:
                if num[i] not in nu_taken.keys():
                    nu_taken[num[i]] = 0
                if nu_taken[num[i]] < nu[num[i]] / 2.:
                    p_use.append(pos[i])
                    n_use.append(num[i])
                    nu_taken[num[i]] += 1

            # calculate the mirrored position and add these.
            pn = []
            for p in p_use:
                pt = p - 2. * np.dot(p - cm, n) * n
                if reflect:
                    pt = -pt + 2 * cm + 2 * n * np.dot(pt - cm, n)
                pn.append(pt)

            n_use.extend(n_use)
            p_use.extend(pn)

            # In the case of an uneven number of
            # atoms we need to add one extra
            for n in nu.keys():
                if nu[n] % 2 == 0:
                    continue
                while sum(n_use == n) > nu[n]:
                    for i in range(int(len(n_use) / 2), len(n_use)):
                        if n_use[i] == n:
                            del p_use[i]
                            del n_use[i]
                            break
                assert sum(n_use == n) == nu[n]

            # Make sure we have the correct number of atoms
            # and rearrange the atoms so they are in the right order
            for i in range(len(n_use)):
                if num[i] == n_use[i]:
                    continue
                for j in range(i + 1, len(n_use)):
                    if n_use[j] == num[i]:
                        tn = n_use[i]
                        tp = p_use[i]
                        n_use[i] = n_use[j]
                        p_use[i] = p_use[j]
                        p_use[j] = tp
                        n_use[j] = tn

            # Finally we check that nothing is too close in the end product.
            cand = Atoms(num, p_use, cell=slab.get_cell(), pbc=slab.get_pbc())

            tc = atoms_too_close(cand, self.blmin)
            if tc:
                continue
            tc = atoms_too_close_two_sets(slab, cand, self.blmin)

            if not changed and counter > n_tries // 2:
                reflect = not reflect
                changed = True

            tot = slab + cand

        if counter == n_tries:
            return None
        return tot


class StrainMutation(OffspringCreator):
    """ Mutates a candidate by applying a randomly generated strain.

    For more information, see also:

      * `Glass, Oganov, Hansen, Comp. Phys. Comm. 175 (2006) 713-720`__

        __ https://doi.org/10.1016/j.cpc.2006.07.020

      * `Lonie, Zurek, Comp. Phys. Comm. 182 (2011) 372-387`__

        __ https://doi.org/10.1016/j.cpc.2010.07.048

    After initialization of the mutation, a scaling volume
    (to which each mutated structure is scaled before checking the
    constraints) is typically generated from the population,
    which is then also occasionally updated in the course of the
    GA run.

    Parameters:

    blmin: dict
        The closest allowed interatomic distances on the form:
        {(Z, Z*): dist, ...}, where Z and Z* are atomic numbers.

    cellbounds: ase.ga.utilities.CellBounds instance
        Describes limits on the cell shape, see
        :class:`~ase.ga.utilities.CellBounds`.

    stddev: float
        Standard deviation used in the generation of the
        strain matrix elements.

    number_of_variable_cell_vectors: int (default 3)
        The number of variable cell vectors (1, 2 or 3).
        To keep things simple, it is the 'first' vectors which
        will be treated as variable, i.e. the 'a' vector in the
        univariate case, the 'a' and 'b' vectors in the bivariate
        case, etc.

    use_tags: boolean
        Whether to use the atomic tags to preserve molecular identity.

    rng: Random number generator
        By default numpy.random.
    """
    def __init__(self, blmin, cellbounds=None, stddev=0.7,
                 number_of_variable_cell_vectors=3, use_tags=False,
                 rng=np.random, verbose=False):
        OffspringCreator.__init__(self, verbose, rng=rng)
        self.blmin = blmin
        self.cellbounds = cellbounds
        self.stddev = stddev
        self.number_of_variable_cell_vectors = number_of_variable_cell_vectors
        self.use_tags = use_tags

        self.scaling_volume = None
        self.descriptor = 'StrainMutation'
        self.min_inputs = 1

    def update_scaling_volume(self, population, w_adapt=0.5, n_adapt=0):
        """Function to initialize or update the scaling volume in a GA run.

        w_adapt: weight of the new vs the old scaling volume

        n_adapt: number of best candidates in the population that
                 are used to calculate the new scaling volume
        """
        if not n_adapt:
            # if not set, take best 20% of the population
            n_adapt = int(np.ceil(0.2 * len(population)))
        v_new = np.mean([a.get_volume() for a in population[:n_adapt]])

        if not self.scaling_volume:
            self.scaling_volume = v_new
        else:
            volumes = [self.scaling_volume, v_new]
            weights = [1 - w_adapt, w_adapt]
            self.scaling_volume = np.average(volumes, weights=weights)

    def get_new_individual(self, parents):
        f = parents[0]

        indi = self.mutate(f)
        if indi is None:
            return indi, 'mutation: strain'

        indi = self.initialize_individual(f, indi)
        indi.info['data']['parents'] = [f.info['confid']]

        return self.finalize_individual(indi), 'mutation: strain'

    def mutate(self, atoms):
        """ Does the actual mutation. """
        cell_ref = atoms.get_cell()
        pos_ref = atoms.get_positions()
        vol_ref = atoms.get_volume()

        if self.use_tags:
            tags = atoms.get_tags()
            gather_atoms_by_tag(atoms)
            pos = atoms.get_positions()

        mutant = atoms.copy()

        count = 0
        too_close = True
        maxcount = 1000
        while too_close and count < maxcount:
            count += 1

            # generating the strain matrix:
            strain = np.identity(3)
            for i in range(self.number_of_variable_cell_vectors):
                for j in range(i + 1):
                    r = self.rng.normal(loc=0., scale=self.stddev)
                    if i == j:
                        strain[i, j] += r
                    else:
                        epsilon = 0.5 * r
                        strain[i, j] += epsilon
                        strain[j, i] += epsilon

            # applying the strain:
            cell_new = np.dot(strain, cell_ref)

            # convert to lower triangular form
            cell_new = convert_cell(cell_new)[0].T

            # volume scaling:
            if self.number_of_variable_cell_vectors > 0:
                volume = abs(np.linalg.det(cell_new))
                if self.scaling_volume is None:
                    # The scaling_volume has not been set (yet),
                    # so we give it the same volume as the parent
                    scaling = vol_ref / volume
                else:
                    scaling = self.scaling_volume / volume
                scaling **= 1. / self.number_of_variable_cell_vectors
                cell_new[:self.number_of_variable_cell_vectors] *= scaling

            # check cell dimensions:
            if not self.cellbounds.is_within_bounds(cell_new):
                continue

            # ensure non-variable cell vectors are indeed unchanged
            for i in range(self.number_of_variable_cell_vectors, 3):
                assert np.allclose(cell_new[i], cell_ref[i])

            # apply the new unit cell and scale
            # the atomic positions accordingly
            mutant.set_cell(cell_ref, scale_atoms=False)

            if self.use_tags:
                transfo = np.linalg.solve(cell_ref, cell_new)
                for tag in np.unique(tags):
                    select = np.where(tags == tag)
                    cop = np.mean(pos[select], axis=0)
                    disp = np.dot(cop, transfo) - cop
                    mutant.positions[select] += disp
            else:
                mutant.set_positions(pos_ref)

            mutant.set_cell(cell_new, scale_atoms=not self.use_tags)
            mutant.wrap()

            # check the interatomic distances
            too_close = atoms_too_close(mutant, self.blmin,
                                        use_tags=self.use_tags)

        if count == maxcount:
            mutant = None

        return mutant


class PermuStrainMutation(CombinationMutation):
    """Combination of PermutationMutation and StrainMutation.

    For more information, see also:

      * `Lonie, Zurek, Comp. Phys. Comm. 182 (2011) 372-387`__

        __ https://doi.org/10.1016/j.cpc.2010.07.048

    Parameters:

    permutationmutation: OffspringCreator instance
        A mutation that permutes atom types.

    strainmutation: OffspringCreator instance
        A mutation that mutates by straining.
    """
    def __init__(self, permutationmutation, strainmutation, verbose=False):
        super(PermuStrainMutation, self).__init__(permutationmutation,
                                                  strainmutation,
                                                  verbose=verbose)
        self.descriptor = 'permustrain'


class RotationalMutation(OffspringCreator):
    """Mutates a candidate by applying random rotations
    to multi-atom moieties in the structure (atoms with
    the same tag are considered part of one such moiety).

    Only performs whole-molecule rotations, no internal
    rotations.

    For more information, see also:

      * `Zhu Q., Oganov A.R., Glass C.W., Stokes H.T,
        Acta Cryst. (2012), B68, 215-226.`__

        __ https://dx.doi.org/10.1107/S0108768112017466

    Parameters:

    blmin: dict
        The closest allowed interatomic distances on the form:
        {(Z, Z*): dist, ...}, where Z and Z* are atomic numbers.

    n_top: int or None
        The number of atoms to optimize (None = include all).

    fraction: float
        Fraction of the moieties to be rotated.

    tags: None or list of integers
        Specifies, respectively, whether all moieties or only those
        with matching tags are eligible for rotation.

    min_angle: float
        Minimal angle (in radians) for each rotation;
        should lie in the interval [0, pi].

    test_dist_to_slab: boolean
        Whether also the distances to the slab
        should be checked to satisfy the blmin.

    rng: Random number generator
        By default numpy.random.
    """
    def __init__(self, blmin, n_top=None, fraction=0.33, tags=None,
                 min_angle=1.57, test_dist_to_slab=True, rng=np.random,
                 verbose=False):
        OffspringCreator.__init__(self, verbose, rng=rng)
        self.blmin = blmin
        self.n_top = n_top
        self.fraction = fraction
        self.tags = tags
        self.min_angle = min_angle
        self.test_dist_to_slab = test_dist_to_slab
        self.descriptor = 'RotationalMutation'
        self.min_inputs = 1

    def get_new_individual(self, parents):
        f = parents[0]

        indi = self.mutate(f)
        if indi is None:
            return indi, 'mutation: rotational'

        indi = self.initialize_individual(f, indi)
        indi.info['data']['parents'] = [f.info['confid']]

        return self.finalize_individual(indi), 'mutation: rotational'

    def mutate(self, atoms):
        """Does the actual mutation."""
        N = len(atoms) if self.n_top is None else self.n_top
        slab = atoms[:len(atoms) - N]
        atoms = atoms[-N:]

        mutant = atoms.copy()
        gather_atoms_by_tag(mutant)
        pos = mutant.get_positions()
        tags = mutant.get_tags()
        eligible_tags = tags if self.tags is None else self.tags

        indices = {}
        for tag in np.unique(tags):
            hits = np.where(tags == tag)[0]
            if len(hits) > 1 and tag in eligible_tags:
                indices[tag] = hits

        n_rot = int(np.ceil(len(indices) * self.fraction))
        chosen_tags = self.rng.choice(list(indices.keys()), size=n_rot,
                                      replace=False)

        too_close = True
        count = 0
        maxcount = 10000
        while too_close and count < maxcount:
            newpos = np.copy(pos)
            for tag in chosen_tags:
                p = np.copy(newpos[indices[tag]])
                cop = np.mean(p, axis=0)

                if len(p) == 2:
                    line = (p[1] - p[0]) / np.linalg.norm(p[1] - p[0])
                    while True:
                        axis = self.rng.rand(3)
                        axis /= np.linalg.norm(axis)
                        a = np.arccos(np.dot(axis, line))
                        if np.pi / 4 < a < np.pi * 3 / 4:
                            break
                else:
                    axis = self.rng.rand(3)
                    axis /= np.linalg.norm(axis)

                angle = self.min_angle
                angle += 2 * (np.pi - self.min_angle) * self.rng.rand()

                m = get_rotation_matrix(axis, angle)
                newpos[indices[tag]] = np.dot(m, (p - cop).T).T + cop

            mutant.set_positions(newpos)
            mutant.wrap()
            too_close = atoms_too_close(mutant, self.blmin, use_tags=True)
            count += 1

            if not too_close and self.test_dist_to_slab:
                too_close = atoms_too_close_two_sets(slab, mutant, self.blmin)

        if count == maxcount:
            mutant = None
        else:
            mutant = slab + mutant

        return mutant


class RattleRotationalMutation(CombinationMutation):
    """Combination of RattleMutation and RotationalMutation.

    Parameters:

    rattlemutation: OffspringCreator instance
        A mutation that rattles atoms.

    rotationalmutation: OffspringCreator instance
        A mutation that rotates moieties.
    """
    def __init__(self, rattlemutation, rotationalmutation, verbose=False):
        super(RattleRotationalMutation, self).__init__(rattlemutation,
                                                       rotationalmutation,
                                                       verbose=verbose)
        self.descriptor = 'rattlerotational'