1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
"""Various utility methods used troughout the GA."""
import os
import time
import math
import itertools
import numpy as np
from scipy.spatial.distance import cdist
from ase.io import write, read
from ase.geometry.cell import cell_to_cellpar
from ase.data import covalent_radii
from ase.ga import get_neighbor_list
def closest_distances_generator(atom_numbers, ratio_of_covalent_radii):
"""Generates the blmin dict used across the GA.
The distances are based on the covalent radii of the atoms.
"""
cr = covalent_radii
ratio = ratio_of_covalent_radii
blmin = dict()
for i in atom_numbers:
blmin[(i, i)] = cr[i] * 2 * ratio
for j in atom_numbers:
if i == j:
continue
if (i, j) in blmin.keys():
continue
blmin[(i, j)] = blmin[(j, i)] = ratio * (cr[i] + cr[j])
return blmin
def get_mic_distance(p1, p2, cell, pbc):
"""This method calculates the shortest distance between p1 and p2
through the cell boundaries defined by cell and pbc.
This method works for reasonable unit cells, but not for extremely
elongated ones.
"""
ct = cell.T
pos = np.array((p1, p2))
scaled = np.linalg.solve(ct, pos.T).T
for i in range(3):
if pbc[i]:
scaled[:, i] %= 1.0
scaled[:, i] %= 1.0
P = np.dot(scaled, cell)
pbc_directions = [[-1, 1] * int(direction) + [0] for direction in pbc]
translations = np.array(list(itertools.product(*pbc_directions))).T
p0r = np.tile(np.reshape(P[0, :], (3, 1)), (1, translations.shape[1]))
p1r = np.tile(np.reshape(P[1, :], (3, 1)), (1, translations.shape[1]))
dp_vec = p0r + np.dot(ct, translations)
d = np.min(np.power(p1r - dp_vec, 2).sum(axis=0))**0.5
return d
def db_call_with_error_tol(db_cursor, expression, args=[]):
"""In case the GA is used on older versions of networking
filesystems there might be some delays. For this reason
some extra error tolerance when calling the SQLite db is
employed.
"""
import sqlite3
i = 0
while i < 10:
try:
db_cursor.execute(expression, args)
return
except sqlite3.OperationalError as e:
print(e)
time.sleep(2.)
i += 1
raise sqlite3.OperationalError(
'Database still locked after 10 attempts (20 s)')
def save_trajectory(confid, trajectory, folder):
"""Saves traj files to the database folder.
This method should never be used directly,
but only through the DataConnection object.
"""
fname = os.path.join(folder, 'traj%05d.traj' % confid)
write(fname, trajectory)
return fname
def get_trajectory(fname):
"""Extra error tolerance when loading traj files."""
fname = str(fname)
try:
t = read(fname)
except IOError as e:
print('get_trajectory error ' + e)
return t
def gather_atoms_by_tag(atoms):
"""Translates same-tag atoms so that they lie 'together',
with distance vectors as in the minimum image convention."""
tags = atoms.get_tags()
pos = atoms.get_positions()
for tag in list(set(tags)):
indices = np.where(tags == tag)[0]
if len(indices) == 1:
continue
vectors = atoms.get_distances(indices[0], indices[1:],
mic=True, vector=True)
pos[indices[1:]] = pos[indices[0]] + vectors
atoms.set_positions(pos)
def atoms_too_close(atoms, bl, use_tags=False):
"""Checks if any atoms in a are too close, as defined by
the distances in the bl dictionary.
use_tags: whether to use the Atoms tags to disable distance
checking within a set of atoms with the same tag.
Note: if certain atoms are constrained and use_tags is True,
this method may return unexpected results in case the
contraints prevent same-tag atoms to be gathered together in
the minimum-image-convention. In such cases, one should
(1) release the relevant constraints,
(2) apply the gather_atoms_by_tag function, and
(3) re-apply the constraints, before using the
atoms_too_close function.
"""
a = atoms.copy()
if use_tags:
gather_atoms_by_tag(a)
pbc = a.get_pbc()
cell = a.get_cell()
num = a.get_atomic_numbers()
pos = a.get_positions()
tags = a.get_tags()
unique_types = sorted(list(set(num)))
neighbours = []
for i in range(3):
if pbc[i]:
neighbours.append([-1, 0, 1])
else:
neighbours.append([0])
for nx, ny, nz in itertools.product(*neighbours):
displacement = np.dot(cell.T, np.array([nx, ny, nz]).T)
pos_new = pos + displacement
distances = cdist(pos, pos_new)
if nx == 0 and ny == 0 and nz == 0:
if use_tags and len(a) > 1:
x = np.array([tags]).T
distances += 1e2 * (cdist(x, x) == 0)
else:
distances += 1e2 * np.identity(len(a))
iterator = itertools.combinations_with_replacement(unique_types, 2)
for type1, type2 in iterator:
x1 = np.where(num == type1)
x2 = np.where(num == type2)
if np.min(distances[x1].T[x2]) < bl[(type1, type2)]:
return True
return False
def atoms_too_close_two_sets(a, b, bl):
"""Checks if any atoms in a are too close to an atom in b,
as defined by the bl dictionary."""
pbc_a = a.get_pbc()
pbc_b = b.get_pbc()
cell_a = a.get_cell()
cell_b = a.get_cell()
assert np.allclose(pbc_a, pbc_b), (pbc_a, pbc_b)
assert np.allclose(cell_a, cell_b), (cell_a, cell_b)
pos_a = a.get_positions()
pos_b = b.get_positions()
num_a = a.get_atomic_numbers()
num_b = b.get_atomic_numbers()
unique_types = sorted(set(list(num_a) + list(num_b)))
neighbours = []
for i in range(3):
neighbours.append([-1, 0, 1] if pbc_a[i] else [0])
for nx, ny, nz in itertools.product(*neighbours):
displacement = np.dot(cell_a.T, np.array([nx, ny, nz]).T)
pos_b_disp = pos_b + displacement
distances = cdist(pos_a, pos_b_disp)
for type1 in unique_types:
if type1 not in num_a:
continue
x1 = np.where(num_a == type1)
for type2 in unique_types:
if type2 not in num_b:
continue
x2 = np.where(num_b == type2)
if np.min(distances[x1].T[x2]) < bl[(type1, type2)]:
return True
return False
def get_all_atom_types(slab, atom_numbers_to_optimize):
"""Utility method used to extract all unique atom types
from the atoms object slab and the list of atomic numbers
atom_numbers_to_optimize.
"""
from_slab = list(set(slab.numbers))
from_top = list(set(atom_numbers_to_optimize))
from_slab.extend(from_top)
return list(set(from_slab))
def get_distance_matrix(atoms, self_distance=1000):
"""NB: This function is way slower than atoms.get_all_distances()
Returns a numpy matrix with the distances between the atoms
in the supplied atoms object, with the indices of the matrix
corresponding to the indices in the atoms object.
The parameter self_distance will be put in the diagonal
elements ([i][i])
"""
dm = np.zeros([len(atoms), len(atoms)])
for i in range(len(atoms)):
dm[i][i] = self_distance
for j in range(i + 1, len(atoms)):
rij = atoms.get_distance(i, j)
dm[i][j] = rij
dm[j][i] = rij
return dm
def get_rdf(atoms, rmax, nbins, distance_matrix=None,
elements=None, no_dists=False):
"""Returns two numpy arrays; the radial distribution function
and the corresponding distances of the supplied atoms object.
If no_dists = True then only the first array is returned.
Note that the rdf is computed following the standard solid state
definition which uses the cell volume in the normalization.
This may or may not be appropriate in cases where one or more
directions is non-periodic.
Parameters:
rmax : float
The maximum distance that will contribute to the rdf.
The unit cell should be large enough so that it encloses a
sphere with radius rmax in the periodic directions.
nbins : int
Number of bins to divide the rdf into.
distance_matrix : numpy.array
An array of distances between atoms, typically
obtained by atoms.get_all_distances().
Default None meaning that it will be calculated.
elements : list or tuple
List of two atomic numbers. If elements is not None the partial
rdf for the supplied elements will be returned.
no_dists : bool
If True then the second array with rdf distances will not be returned
"""
# First check whether the cell is sufficiently large
cell = atoms.get_cell()
vol = atoms.get_volume()
pbc = atoms.get_pbc()
for i in range(3):
if pbc[i]:
axb = np.cross(cell[(i + 1) % 3, :], cell[(i + 2) % 3, :])
h = vol / np.linalg.norm(axb)
assert h > 2 * rmax, 'The cell is not large enough in ' \
'direction %d: %.3f < 2*rmax=%.3f' % (i, h, 2 * rmax)
dm = distance_matrix
if dm is None:
dm = atoms.get_all_distances(mic=True)
rdf = np.zeros(nbins + 1)
dr = float(rmax / nbins)
if elements is None:
# Coefficients to use for normalization
phi = len(atoms) / vol
norm = 2.0 * math.pi * dr * phi * len(atoms)
for i in range(len(atoms)):
for j in range(i + 1, len(atoms)):
rij = dm[i][j]
index = int(math.ceil(rij / dr))
if index <= nbins:
rdf[index] += 1
else:
i_indices = np.where(atoms.numbers == elements[0])[0]
phi = len(i_indices) / vol
norm = 4.0 * math.pi * dr * phi * len(atoms)
for i in i_indices:
for j in np.where(atoms.numbers == elements[1])[0]:
rij = dm[i][j]
index = int(math.ceil(rij / dr))
if index <= nbins:
rdf[index] += 1
dists = []
for i in range(1, nbins + 1):
rrr = (i - 0.5) * dr
dists.append(rrr)
# Normalize
rdf[i] /= (norm * ((rrr**2) + (dr**2) / 12.))
if no_dists:
return rdf[1:]
return rdf[1:], np.array(dists)
def get_nndist(atoms, distance_matrix):
"""Returns an estimate of the nearest neighbor bond distance
in the supplied atoms object given the supplied distance_matrix.
The estimate comes from the first peak in the radial distribution
function.
"""
rmax = 10. # No bonds longer than 10 angstrom expected
nbins = 200
rdf, dists = get_rdf(atoms, rmax, nbins, distance_matrix)
return dists[np.argmax(rdf)]
def get_nnmat(atoms, mic=False):
"""Calculate the nearest neighbor matrix as specified in
S. Lysgaard et al., Top. Catal., 2014, 57 (1-4), pp 33-39
Returns an array of average numbers of nearest neighbors
the order is determined by self.elements.
Example: self.elements = ["Cu", "Ni"]
get_nnmat returns a single list [Cu-Cu bonds/N(Cu),
Cu-Ni bonds/N(Cu), Ni-Cu bonds/N(Ni), Ni-Ni bonds/N(Ni)]
where N(element) is the number of atoms of the type element
in the atoms object.
The distance matrix can be quite costly to calculate every
time nnmat is required (and disk intensive if saved), thus
it makes sense to calculate nnmat along with e.g. the
potential energy and save it in atoms.info['data']['nnmat'].
"""
if 'data' in atoms.info and 'nnmat' in atoms.info['data']:
return atoms.info['data']['nnmat']
elements = sorted(set(atoms.get_chemical_symbols()))
nnmat = np.zeros((len(elements), len(elements)))
# dm = get_distance_matrix(atoms)
dm = atoms.get_all_distances(mic=mic)
nndist = get_nndist(atoms, dm) + 0.2
for i in range(len(atoms)):
row = [j for j in range(len(elements))
if atoms[i].symbol == elements[j]][0]
neighbors = [j for j in range(len(dm[i])) if dm[i][j] < nndist]
for n in neighbors:
column = [j for j in range(len(elements))
if atoms[n].symbol == elements[j]][0]
nnmat[row][column] += 1
# divide by the number of that type of atoms in the structure
for i, el in enumerate(elements):
nnmat[i] /= len([j for j in range(len(atoms))
if atoms[int(j)].symbol == el])
# makes a single list out of a list of lists
nnlist = np.reshape(nnmat, (len(nnmat)**2))
return nnlist
def get_nnmat_string(atoms, decimals=2, mic=False):
nnmat = get_nnmat(atoms, mic=mic)
s = '-'.join(['{1:2.{0}f}'.format(decimals, i)
for i in nnmat])
if len(nnmat) == 1:
return s + '-'
return s
def get_connections_index(atoms, max_conn=5, no_count_types=None):
"""This method returns a dictionary where each key value are a
specific number of neighbors and list of atoms indices with
that amount of neighbors respectively. The method utilizes the
neighbor list and hence inherit the restrictions for
neighbors. Option added to remove connections between
defined atom types.
Parameters
----------
atoms : Atoms object
The connections will be counted using this supplied Atoms object
max_conn : int
Any atom with more connections than this will be counted as
having max_conn connections.
Default 5
no_count_types : list or None
List of atomic numbers that should be excluded in the count.
Default None (meaning all atoms count).
"""
conn = get_neighbor_list(atoms)
if conn is None:
conn = get_neighborlist(atoms)
if no_count_types is None:
no_count_types = []
conn_index = {}
for i in range(len(atoms)):
if atoms[i].number not in no_count_types:
cconn = min(len(conn[i]), max_conn - 1)
if cconn not in conn_index:
conn_index[cconn] = []
conn_index[cconn].append(i)
return conn_index
def get_atoms_connections(atoms, max_conn=5, no_count_types=None):
"""This method returns a list of the numbers of atoms
with X number of neighbors. The method utilizes the
neighbor list and hence inherit the restrictions for
neighbors. Option added to remove connections between
defined atom types.
"""
conn_index = get_connections_index(atoms, max_conn=max_conn,
no_count_types=no_count_types)
no_of_conn = [0] * max_conn
for i in conn_index:
no_of_conn[i] += len(conn_index[i])
return no_of_conn
def get_angles_distribution(atoms, ang_grid=9):
"""Method to get the distribution of bond angles
in bins (default 9) with bonds defined from
the get_neighbor_list().
"""
conn = get_neighbor_list(atoms)
if conn is None:
conn = get_neighborlist(atoms)
bins = [0] * ang_grid
for atom in atoms:
for i in conn[atom.index]:
for j in conn[atom.index]:
if j != i:
a = atoms.get_angle(i, atom.index, j)
for k in range(ang_grid):
if (k + 1) * 180. / ang_grid > a > k * 180. / ang_grid:
bins[k] += 1
# Removing dobbelt counting
for i in range(ang_grid):
bins[i] /= 2.
return bins
def get_neighborlist(atoms, dx=0.2, no_count_types=None):
"""Method to get the a dict with list of neighboring
atoms defined as the two covalent radii + fixed distance.
Option added to remove neighbors between defined atom types.
"""
cell = atoms.get_cell()
pbc = atoms.get_pbc()
if no_count_types is None:
no_count_types = []
conn = {}
for atomi in atoms:
conn_this_atom = []
for atomj in atoms:
if atomi.index != atomj.index:
if atomi.number not in no_count_types:
if atomj.number not in no_count_types:
d = get_mic_distance(atomi.position,
atomj.position,
cell,
pbc)
cri = covalent_radii[atomi.number]
crj = covalent_radii[atomj.number]
d_max = crj + cri + dx
if d < d_max:
conn_this_atom.append(atomj.index)
conn[atomi.index] = conn_this_atom
return conn
def get_atoms_distribution(atoms, number_of_bins=5, max_distance=8,
center=None, no_count_types=None):
"""Method to get the distribution of atoms in the
structure in bins of distances from a defined
center. Option added to remove counting of
certain atom types.
"""
pbc = atoms.get_pbc()
cell = atoms.get_cell()
if center is None:
# Center used for the atom distribution if None is supplied!
cx = sum(cell[:, 0]) / 2.
cy = sum(cell[:, 1]) / 2.
cz = sum(cell[:, 2]) / 2.
center = (cx, cy, cz)
bins = [0] * number_of_bins
if no_count_types is None:
no_count_types = []
for atom in atoms:
if atom.number not in no_count_types:
d = get_mic_distance(atom.position, center, cell, pbc)
for k in range(number_of_bins - 1):
min_dis_cur_bin = k * max_distance / (number_of_bins - 1.)
max_dis_cur_bin = ((k + 1) * max_distance /
(number_of_bins - 1.))
if min_dis_cur_bin < d < max_dis_cur_bin:
bins[k] += 1
if d > max_distance:
bins[number_of_bins - 1] += 1
return bins
def get_rings(atoms, rings=[5, 6, 7]):
"""This method return a list of the number of atoms involved
in rings in the structures. It uses the neighbor
list hence inherit the restriction used for neighbors.
"""
conn = get_neighbor_list(atoms)
if conn is None:
conn = get_neighborlist(atoms)
no_of_loops = [0] * 8
for s1 in range(len(atoms)):
for s2 in conn[s1]:
v12 = [s1] + [s2]
for s3 in [s for s in conn[s2] if s not in v12]:
v13 = v12 + [s3]
if s1 in conn[s3]:
no_of_loops[3] += 1
for s4 in [s for s in conn[s3] if s not in v13]:
v14 = v13 + [s4]
if s1 in conn[s4]:
no_of_loops[4] += 1
for s5 in [s for s in conn[s4] if s not in v14]:
v15 = v14 + [s5]
if s1 in conn[s5]:
no_of_loops[5] += 1
for s6 in [s for s in conn[s5] if s not in v15]:
v16 = v15 + [s6]
if s1 in conn[s6]:
no_of_loops[6] += 1
for s7 in [s for s in conn[s6] if s not in v16]:
# v17 = v16 + [s7]
if s1 in conn[s7]:
no_of_loops[7] += 1
to_return = []
for ring in rings:
to_return.append(no_of_loops[ring])
return to_return
def get_cell_angles_lengths(cell):
"""Returns cell vectors lengths (a,b,c) as well as different
angles (alpha, beta, gamma, phi, chi, psi) (in radians).
"""
cellpar = cell_to_cellpar(cell)
cellpar[3:] *= np.pi / 180 # convert angles to radians
parnames = ['a', 'b', 'c', 'alpha', 'beta', 'gamma']
values = {n: p for n, p in zip(parnames, cellpar)}
volume = abs(np.linalg.det(cell))
for i, param in enumerate(['phi', 'chi', 'psi']):
ab = np.linalg.norm(
np.cross(cell[(i + 1) % 3, :], cell[(i + 2) % 3, :]))
c = np.linalg.norm(cell[i, :])
s = np.abs(volume / (ab * c))
if 1 + 1e-6 > s > 1:
s = 1.
values[param] = np.arcsin(s)
return values
class CellBounds:
"""Class for defining as well as checking limits on
cell vector lengths and angles.
Parameters:
bounds: dict
Any of the following keywords can be used, in
conjunction with a [low, high] list determining
the lower and upper bounds:
a, b, c:
Minimal and maximal lengths (in Angstrom)
for the 1st, 2nd and 3rd lattice vectors.
alpha, beta, gamma:
Minimal and maximal values (in degrees)
for the angles between the lattice vectors.
phi, chi, psi:
Minimal and maximal values (in degrees)
for the angles between each lattice vector
and the plane defined by the other two vectors.
Example:
>>> from ase.ga.utilities import CellBounds
>>> CellBounds(bounds={'phi': [20, 160],
... 'chi': [60, 120],
... 'psi': [20, 160],
... 'a': [2, 20], 'b': [2, 20], 'c': [2, 20]})
"""
def __init__(self, bounds={}):
self.bounds = {'alpha': [0, np.pi], 'beta': [0, np.pi],
'gamma': [0, np.pi], 'phi': [0, np.pi],
'chi': [0, np.pi], 'psi': [0, np.pi],
'a': [0, 1e6], 'b': [0, 1e6], 'c': [0, 1e6]}
for param, bound in bounds.items():
if param not in ['a', 'b', 'c']:
# Convert angle from degree to radians
bound = [b * np.pi / 180. for b in bound]
self.bounds[param] = bound
def is_within_bounds(self, cell):
values = get_cell_angles_lengths(cell)
verdict = True
for param, bound in self.bounds.items():
if not (bound[0] <= values[param] <= bound[1]):
verdict = False
return verdict
def get_rotation_matrix(u, t):
"""Returns the transformation matrix for rotation over
an angle t along an axis with direction u.
"""
ux, uy, uz = u
cost, sint = np.cos(t), np.sin(t)
rotmat = np.array([[(ux**2) * (1 - cost) + cost,
ux * uy * (1 - cost) - uz * sint,
ux * uz * (1 - cost) + uy * sint],
[ux * uy * (1 - cost) + uz * sint,
(uy**2) * (1 - cost) + cost,
uy * uz * (1 - cost) - ux * sint],
[ux * uz * (1 - cost) - uy * sint,
uy * uz * (1 - cost) + ux * sint,
(uz**2) * (1 - cost) + cost]])
return rotmat
|