File: cfg.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (247 lines) | stat: -rw-r--r-- 8,411 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import numpy as np

import ase
from ase.data import chemical_symbols
from ase.utils import reader, writer


cfg_default_fields = np.array(['positions', 'momenta', 'numbers', 'magmoms'])


@writer
def write_cfg(fd, atoms):
    """Write atomic configuration to a CFG-file (native AtomEye format).
       See: http://mt.seas.upenn.edu/Archive/Graphics/A/
    """

    fd.write('Number of particles = %i\n' % len(atoms))
    fd.write('A = 1.0 Angstrom\n')
    cell = atoms.get_cell(complete=True)
    for i in range(3):
        for j in range(3):
            fd.write('H0(%1.1i,%1.1i) = %f A\n' % (i + 1, j + 1, cell[i, j]))

    entry_count = 3
    for x in atoms.arrays.keys():
        if x not in cfg_default_fields:
            if len(atoms.get_array(x).shape) == 1:
                entry_count += 1
            else:
                entry_count += atoms.get_array(x).shape[1]

    vels = atoms.get_velocities()
    if isinstance(vels, np.ndarray):
        entry_count += 3
    else:
        fd.write('.NO_VELOCITY.\n')

    fd.write('entry_count = %i\n' % entry_count)

    i = 0
    for name, aux in atoms.arrays.items():
        if name not in cfg_default_fields:
            if len(aux.shape) == 1:
                fd.write('auxiliary[%i] = %s [a.u.]\n' % (i, name))
                i += 1
            else:
                if aux.shape[1] == 3:
                    for j in range(3):
                        fd.write('auxiliary[%i] = %s_%s [a.u.]\n' %
                                 (i, name, chr(ord('x') + j)))
                        i += 1

                else:
                    for j in range(aux.shape[1]):
                        fd.write('auxiliary[%i] = %s_%1.1i [a.u.]\n' %
                                 (i, name, j))
                        i += 1

    # Distinct elements
    spos = atoms.get_scaled_positions()
    for i in atoms:
        el = i.symbol

        fd.write('%f\n' % ase.data.atomic_masses[chemical_symbols.index(el)])
        fd.write('%s\n' % el)

        x, y, z = spos[i.index, :]
        s = '%e %e %e ' % (x, y, z)

        if isinstance(vels, np.ndarray):
            vx, vy, vz = vels[i.index, :]
            s = s + ' %e %e %e ' % (vx, vy, vz)

        for name, aux in atoms.arrays.items():
            if name not in cfg_default_fields:
                if len(aux.shape) == 1:
                    s += ' %e' % aux[i.index]
                else:
                    s += (aux.shape[1] * ' %e') % tuple(aux[i.index].tolist())

        fd.write('%s\n' % s)


default_color = {
    'H': [0.800, 0.800, 0.800],
    'C': [0.350, 0.350, 0.350],
    'O': [0.800, 0.200, 0.200]}

default_radius = {'H': 0.435, 'C': 0.655, 'O': 0.730}


def write_clr(fd, atoms):
    """Write extra color and radius code to a CLR-file (for use with AtomEye).
       Hit F12 in AtomEye to use.
       See: http://mt.seas.upenn.edu/Archive/Graphics/A/
    """
    color = None
    radius = None
    if atoms.has('color'):
        color = atoms.get_array('color')
    if atoms.has('radius'):
        radius = atoms.get_array('radius')

    if color is None:
        color = np.zeros([len(atoms), 3], dtype=float)
        for a in atoms:
            color[a.index, :] = default_color[a.symbol]

    if radius is None:
        radius = np.zeros(len(atoms), dtype=float)
        for a in atoms:
            radius[a.index] = default_radius[a.symbol]

    radius.shape = (-1, 1)

    for c1, c2, c3, r in np.append(color, radius, axis=1):
        fd.write('%f %f %f %f\n' % (c1, c2, c3, r))


@reader
def read_cfg(fd):
    """Read atomic configuration from a CFG-file (native AtomEye format).
       See: http://mt.seas.upenn.edu/Archive/Graphics/A/
    """
    nat = None
    naux = 0
    aux = None
    auxstrs = None

    cell = np.zeros([3, 3])
    transform = np.eye(3)
    eta = np.zeros([3, 3])

    current_atom = 0
    current_symbol = None
    current_mass = None

    L = fd.readline()
    while L:
        L = L.strip()
        if len(L) != 0 and not L.startswith('#'):
            if L == '.NO_VELOCITY.':
                vels = None
                naux += 3
            else:
                s = L.split('=')
                if len(s) == 2:
                    key, value = s
                    key = key.strip()
                    value = [x.strip() for x in value.split()]
                    if key == 'Number of particles':
                        nat = int(value[0])
                        spos = np.zeros([nat, 3])
                        masses = np.zeros(nat)
                        syms = [''] * nat
                        vels = np.zeros([nat, 3])
                        if naux > 0:
                            aux = np.zeros([nat, naux])
                    elif key == 'A':
                        pass  # unit = float(value[0])
                    elif key == 'entry_count':
                        naux += int(value[0]) - 6
                        auxstrs = [''] * naux
                        if nat is not None:
                            aux = np.zeros([nat, naux])
                    elif key.startswith('H0('):
                        i, j = [int(x) for x in key[3:-1].split(',')]
                        cell[i - 1, j - 1] = float(value[0])
                    elif key.startswith('Transform('):
                        i, j = [int(x) for x in key[10:-1].split(',')]
                        transform[i - 1, j - 1] = float(value[0])
                    elif key.startswith('eta('):
                        i, j = [int(x) for x in key[4:-1].split(',')]
                        eta[i - 1, j - 1] = float(value[0])
                    elif key.startswith('auxiliary['):
                        i = int(key[10:-1])
                        auxstrs[i] = value[0]
                else:
                    # Everything else must be particle data.
                    # First check if current line contains an element mass or
                    # name. Then we have an extended XYZ format.
                    s = [x.strip() for x in L.split()]
                    if len(s) == 1:
                        if L in chemical_symbols:
                            current_symbol = L
                        else:
                            current_mass = float(L)
                    elif current_symbol is None and current_mass is None:
                        # Standard CFG format
                        masses[current_atom] = float(s[0])
                        syms[current_atom] = s[1]
                        spos[current_atom, :] = [float(x) for x in s[2:5]]
                        vels[current_atom, :] = [float(x) for x in s[5:8]]
                        current_atom += 1
                    elif (current_symbol is not None and
                          current_mass is not None):
                        # Extended CFG format
                        masses[current_atom] = current_mass
                        syms[current_atom] = current_symbol
                        props = [float(x) for x in s]
                        spos[current_atom, :] = props[0:3]
                        off = 3
                        if vels is not None:
                            off = 6
                            vels[current_atom, :] = props[3:6]
                        aux[current_atom, :] = props[off:]
                        current_atom += 1
        L = fd.readline()

    # Sanity check
    if current_atom != nat:
        raise RuntimeError('Number of atoms reported for CFG file (={0}) and '
                           'number of atoms actually read (={1}) differ.'
                           .format(nat, current_atom))

    if np.any(eta != 0):
        raise NotImplementedError('eta != 0 not yet implemented for CFG '
                                  'reader.')
    cell = np.dot(cell, transform)

    if vels is None:
        a = ase.Atoms(
            symbols=syms,
            masses=masses,
            scaled_positions=spos,
            cell=cell,
            pbc=True)
    else:
        a = ase.Atoms(
            symbols=syms,
            masses=masses,
            scaled_positions=spos,
            momenta=masses.reshape(-1, 1) * vels,
            cell=cell,
            pbc=True)

    i = 0
    while i < naux:
        auxstr = auxstrs[i]
        if auxstr[-2:] == '_x':
            a.set_array(auxstr[:-2], aux[:, i:i + 3])
            i += 3
        else:
            a.set_array(auxstr, aux[:, i])
            i += 1

    return a