File: nwreader.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (647 lines) | stat: -rw-r--r-- 23,176 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import re
from collections import OrderedDict
import numpy as np

from ase import Atoms
from ase.units import Hartree, Bohr
from ase.calculators.singlepoint import (SinglePointDFTCalculator,
                                         SinglePointKPoint)
from .parser import _define_pattern

# Note to the reader of this code: Here and below we use the function
# _define_pattern from parser.py in this same directory to compile
# regular expressions. These compiled expressions are stored along with
# an example string that the expression should match in a list that
# is used during tests (test/nwchem/nwchem_parser.py) to ensure that
# the regular expressions are still working correctly.

# Matches the beginning of a GTO calculation
_gauss_block = _define_pattern(
    r'^[\s]+NWChem (?:SCF|DFT) Module\n$',
    "                                 NWChem SCF Module\n",
)


# Matches the beginning of a plane wave calculation
_pw_block = _define_pattern(
    r'^[\s]+\*[\s]+NWPW (?:PSPW|BAND|PAW|Band Structure) Calculation'
    r'[\s]+\*[\s]*\n$',
    "          *               NWPW PSPW Calculation              *\n",
)


# Top-level parser
def read_nwchem_out(fobj, index=-1):
    """Splits an NWChem output file into chunks corresponding to
    individual single point calculations."""
    lines = fobj.readlines()

    if index == slice(-1, None, None):
        for line in lines:
            if _gauss_block.match(line):
                return [parse_gto_chunk(''.join(lines))]
            if _pw_block.match(line):
                return [parse_pw_chunk(''.join(lines))]
        else:
            raise ValueError('This does not appear to be a valid NWChem '
                             'output file.')

    # First, find each SCF block
    group = []
    atomslist = []
    header = True
    lastgroup = []
    lastparser = None
    parser = None
    for line in lines:
        group.append(line)
        if _gauss_block.match(line):
            next_parser = parse_gto_chunk
        elif _pw_block.match(line):
            next_parser = parse_pw_chunk
        else:
            continue

        if header:
            header = False
        else:
            atoms = parser(''.join(group))
            if atoms is None and parser is lastparser:
                atoms = parser(''.join(lastgroup + group))
                if atoms is not None:
                    atomslist[-1] = atoms
                    lastgroup += group
            else:
                atomslist.append(atoms)
                lastgroup = group
                lastparser = parser
            group = []
        parser = next_parser
    else:
        if not header:
            atoms = parser(''.join(group))
            if atoms is not None:
                atomslist.append(atoms)

    return atomslist[index]


# Matches a geometry block and returns the geometry specification lines
_geom = _define_pattern(
    r'\n[ \t]+Geometry \"[ \t\S]+\" -> \"[ \t\S]*\"[ \t]*\n'
    r'^[ \t-]+\n'
    r'(?:^[ \t\S]*\n){3}'
    r'^[ \t]+No\.[ \t]+Tag[ \t]+Charge[ \t]+X[ \t]+Y[ \t]+Z\n'
    r'^[ \t-]+\n'
    r'((?:^(?:[ \t]+[\S]+){6}[ \t]*\n)+)',
    """\

                             Geometry "geometry" -> ""
                             -------------------------

 Output coordinates in angstroms (scale by  1.889725989 to convert to a.u.)

  No.       Tag          Charge          X              Y              Z
 ---- ---------------- ---------- -------------- -------------- --------------
    1 C                    6.0000     0.00000000     0.00000000     0.00000000
    2 H                    1.0000     0.62911800     0.62911800     0.62911800
    3 H                    1.0000    -0.62911800    -0.62911800     0.62911800
    4 H                    1.0000     0.62911800    -0.62911800    -0.62911800
""", re.M)

# Unit cell parser
_cell_block = _define_pattern(r'^[ \t]+Lattice Parameters[ \t]*\n'
                              r'^(?:[ \t\S]*\n){4}'
                              r'((?:^(?:[ \t]+[\S]+){5}\n){3})',
                              """\
      Lattice Parameters
      ------------------

      lattice vectors in angstroms (scale by  1.889725989 to convert to a.u.)

      a1=<   4.000   0.000   0.000 >
      a2=<   0.000   5.526   0.000 >
      a3=<   0.000   0.000   4.596 >
      a=       4.000 b=      5.526 c=       4.596
      alpha=  90.000 beta=  90.000 gamma=  90.000
      omega=   101.6
""", re.M)


# Parses the geometry and returns the corresponding Atoms object
def _parse_geomblock(chunk):
    geomblocks = _geom.findall(chunk)
    if not geomblocks:
        return None
    geomblock = geomblocks[-1].strip().split('\n')
    natoms = len(geomblock)
    symbols = []
    pos = np.zeros((natoms, 3))
    for i, line in enumerate(geomblock):
        line = line.strip().split()
        symbols.append(line[1])
        pos[i] = [float(x) for x in line[3:6]]

    cellblocks = _cell_block.findall(chunk)
    if cellblocks:
        cellblock = cellblocks[-1].strip().split('\n')
        cell = np.zeros((3, 3))
        for i, line in enumerate(cellblock):
            line = line.strip().split()
            cell[i] = [float(x) for x in line[1:4]]
    else:
        cell = None
    return Atoms(symbols, positions=pos, cell=cell)


# GTO-specific parser stuff

# Matches gradient block from a GTO calculation
_gto_grad = _define_pattern(
    r'^[ \t]+[\S]+[ \t]+ENERGY GRADIENTS[ \t]*[\n]+'
    r'^[ \t]+atom[ \t]+coordinates[ \t]+gradient[ \t]*\n'
    r'^(?:[ \t]+x[ \t]+y[ \t]+z){2}[ \t]*\n'
    r'((?:^(?:[ \t]+[\S]+){8}\n)+)[ \t]*\n',
    """\
                         UHF ENERGY GRADIENTS

    atom               coordinates                        gradient
                 x          y          z           x          y          z
   1 C       0.293457  -0.293457   0.293457   -0.000083   0.000083  -0.000083
   2 H       1.125380   1.355351   1.125380    0.000086   0.000089   0.000086
   3 H      -1.355351  -1.125380   1.125380   -0.000089  -0.000086   0.000086
   4 H       1.125380  -1.125380  -1.355351    0.000086  -0.000086  -0.000089
 
""", re.M)

# Energy parsers for a variety of different GTO calculations
_e_gto = OrderedDict()
_e_gto['tce'] = _define_pattern(
    r'^[\s]+[\S]+[\s]+total energy \/ hartree[\s]+'
    r'=[\s]+([\S]+)[\s]*\n',
    " CCD total energy / hartree       "
    "=       -75.715332545665888\n", re.M,
)
_e_gto['ccsd'] = _define_pattern(
    r'^[\s]+Total CCSD energy:[\s]+([\S]+)[\s]*\n',
    " Total CCSD energy:            -75.716168566598569\n",
    re.M,
)
_e_gto['tddft'] = _define_pattern(
    r'^[\s]+Excited state energy =[\s]+([\S]+)[\s]*\n',
    "     Excited state energy =    -75.130134499965\n",
    re.M,
)
_e_gto['mp2'] = _define_pattern(
    r'^[\s]+Total MP2 energy[\s]+([\S]+)[\s]*\n',
    "          Total MP2 energy           -75.708800087578\n",
    re.M,
)
_e_gto['mf'] = _define_pattern(
    r'^[\s]+Total (?:DFT|SCF) energy =[\s]+([\S]+)[\s]*\n',
    "         Total SCF energy =    -75.585555997789\n",
    re.M,
)


# GTO parser
def parse_gto_chunk(chunk):
    atoms = None
    forces = None
    energy = None
    dipole = None
    quadrupole = None
    for theory, pattern in _e_gto.items():
        matches = pattern.findall(chunk)
        if matches:
            energy = float(matches[-1].replace('D', 'E')) * Hartree
            break

    gradblocks = _gto_grad.findall(chunk)
    if gradblocks:
        gradblock = gradblocks[-1].strip().split('\n')
        natoms = len(gradblock)
        symbols = []
        pos = np.zeros((natoms, 3))
        forces = np.zeros((natoms, 3))
        for i, line in enumerate(gradblock):
            line = line.strip().split()
            symbols.append(line[1])
            pos[i] = [float(x) for x in line[2:5]]
            forces[i] = [-float(x) for x in line[5:8]]
        pos *= Bohr
        forces *= Hartree / Bohr
        atoms = Atoms(symbols, positions=pos)

    dipole, quadrupole = _get_multipole(chunk)

    kpts = _get_gto_kpts(chunk)

    if atoms is None:
        atoms = _parse_geomblock(chunk)

    if atoms is None:
        return

    # SinglePointDFTCalculator doesn't support quadrupole moment currently
    calc = SinglePointDFTCalculator(atoms=atoms,
                                    energy=energy,
                                    free_energy=energy,  # XXX Is this right?
                                    forces=forces,
                                    dipole=dipole,
                                    # quadrupole=quadrupole,
                                    )
    calc.kpts = kpts
    atoms.calc = calc
    return atoms


# Extracts dipole and quadrupole moment for a GTO calculation
_multipole = _define_pattern(
    r'^[ \t]+Multipole analysis of the density[ \t\S]*\n'
    r'^[ \t-]+\n\n^[ \t\S]+\n^[ \t-]+\n'
    r'((?:(?:(?:[ \t]+[\S]+){7,8}\n)|[ \t]*\n){12})',
    """\
     Multipole analysis of the density
     ---------------------------------

     L   x y z        total         alpha         beta         nuclear
     -   - - -        -----         -----         ----         -------
     0   0 0 0     -0.000000     -5.000000     -5.000000     10.000000

     1   1 0 0      0.000000      0.000000      0.000000      0.000000
     1   0 1 0     -0.000001     -0.000017     -0.000017      0.000034
     1   0 0 1     -0.902084     -0.559881     -0.559881      0.217679

     2   2 0 0     -5.142958     -2.571479     -2.571479      0.000000
     2   1 1 0     -0.000000     -0.000000     -0.000000      0.000000
     2   1 0 1      0.000000      0.000000      0.000000      0.000000
     2   0 2 0     -3.153324     -3.807308     -3.807308      4.461291
     2   0 1 1      0.000001     -0.000009     -0.000009      0.000020
     2   0 0 2     -4.384288     -3.296205     -3.296205      2.208122
""", re.M)


# Parses the dipole and quadrupole moment from a GTO calculation
def _get_multipole(chunk):
    matches = _multipole.findall(chunk)
    if not matches:
        return None, None
    # This pulls the 5th column out of the multipole moments block;
    # this column contains the actual moments.
    moments = [float(x.split()[4]) for x in matches[-1].split('\n') if x]
    dipole = np.array(moments[1:4]) * Bohr
    quadrupole = np.zeros(9)
    quadrupole[[0, 1, 2, 4, 5, 8]] = [moments[4:]]
    quadrupole[[3, 6, 7]] = quadrupole[[1, 2, 5]]
    return dipole, quadrupole.reshape((3, 3)) * Bohr**2


# MO eigenvalue and occupancy parser for GTO calculations
_eval_block = _define_pattern(
        r'^[ \t]+[\S]+ Final (?:Alpha |Beta )?Molecular Orbital Analysis[ \t]*'
        r'\n^[ \t-]+\n\n'
        r'(?:^[ \t]+Vector [ \t\S]+\n(?:^[ \t\S]+\n){3}'
        r'(?:^(?:(?:[ \t]+[\S]+){5}){1,2}[ \t]*\n)+\n)+',
        """\
                       ROHF Final Molecular Orbital Analysis
                       -------------------------------------

 Vector    1  Occ=2.000000D+00  E=-2.043101D+01
              MO Center=  1.1D-20,  1.5D-18,  1.2D-01, r^2= 1.5D-02
   Bfn.  Coefficient  Atom+Function         Bfn.  Coefficient  Atom+Function  
  ----- ------------  ---------------      ----- ------------  ---------------
     1      0.983233  1 O  s          

 Vector    2  Occ=2.000000D+00  E=-1.324439D+00
              MO Center= -2.1D-18, -8.6D-17, -7.1D-02, r^2= 5.1D-01
   Bfn.  Coefficient  Atom+Function         Bfn.  Coefficient  Atom+Function  
  ----- ------------  ---------------      ----- ------------  ---------------
     6      0.708998  1 O  s                  1     -0.229426  1 O  s          
     2      0.217752  1 O  s          
     """, re.M)  # noqa: W291


# Parses the eigenvalues and occupations from a GTO calculation
def _get_gto_kpts(chunk):
    eval_blocks = _eval_block.findall(chunk)
    if not eval_blocks:
        return []
    kpts = []
    kpt = _get_gto_evals(eval_blocks[-1])
    if kpt.s == 1:
        kpts.append(_get_gto_evals(eval_blocks[-2]))
    kpts.append(kpt)
    return kpts


# Extracts MO eigenvalue and occupancy for a GTO calculation
_extract_vector = _define_pattern(
    r'^[ \t]+Vector[ \t]+([\S])+[ \t]+Occ=([\S]+)[ \t]+E=[ \t]*([\S]+)[ \t]*\n',
    " Vector    1  Occ=2.000000D+00  E=-2.043101D+01\n", re.M,
)


# Extracts the eigenvalues and occupations from a GTO calculation
def _get_gto_evals(chunk):
    spin = 1 if re.match(r'[ \t\S]+Beta', chunk) else 0
    data = []
    for vector in _extract_vector.finditer(chunk):
        data.append([float(x.replace('D', 'E')) for x in vector.groups()[1:]])
    data = np.array(data)
    occ = data[:, 0]
    energies = data[:, 1] * Hartree

    return SinglePointKPoint(1., spin, 0, energies, occ)


# Plane wave specific parsing stuff

# Matches the gradient block from a plane wave calculation
_nwpw_grad = _define_pattern(
    r'^[ \t]+[=]+[ \t]+Ion Gradients[ \t]+[=]+[ \t]*\n'
    r'^[ \t]+Ion Forces:[ \t]*\n'
    r'((?:^(?:[ \t]+[\S]+){7}\n)+)',
    """\
          =============  Ion Gradients =================
 Ion Forces:
        1 O    (   -0.000012    0.000027   -0.005199 )
        2 H    (    0.000047   -0.013082    0.020790 )
        3 H    (    0.000047    0.012863    0.020786 )
        C.O.M. (   -0.000000   -0.000000   -0.000000 )
          ===============================================
""", re.M)

# Matches the gradient block from a PAW calculation
_paw_grad = _define_pattern(
    r'^[ \t]+[=]+[ \t]+Ion Gradients[ \t]+[=]+[ \t]*\n'
    r'^[ \t]+Ion Positions:[ \t]*\n'
    r'((?:^(?:[ \t]+[\S]+){7}\n)+)'
    r'^[ \t]+Ion Forces:[ \t]*\n'
    r'((?:^(?:[ \t]+[\S]+){7}\n)+)',
    """\
          =============  Ion Gradients =================
 Ion Positions:
        1 O    (   -3.77945   -5.22176   -3.77945 )
        2 H    (   -3.77945   -3.77945    3.77945 )
        3 H    (   -3.77945    3.77945    3.77945 )
 Ion Forces:
        1 O    (   -0.00001   -0.00000    0.00081 )
        2 H    (    0.00005   -0.00026   -0.00322 )
        3 H    (    0.00005    0.00030   -0.00322 )
        C.O.M. (   -0.00000   -0.00000   -0.00000 )
          ===============================================
""", re.M)

# Energy parser for plane wave calculations
_nwpw_energy = _define_pattern(
    r'^[\s]+Total (?:PSPW|BAND|PAW) energy'
    r'[\s]+:[\s]+([\S]+)[\s]*\n',
    " Total PSPW energy     :  -0.1709317826E+02\n",
    re.M,
)

# Parser for the fermi energy in a plane wave calculation
_fermi_energy = _define_pattern(
    r'^[ \t]+Fermi energy =[ \t]+([\S]+) \([ \t]+[\S]+[ \t]*\n',
    "  Fermi energy =    -0.5585062E-01 (  -1.520eV)\n", re.M,
)


# Plane wave parser
def parse_pw_chunk(chunk):
    atoms = _parse_geomblock(chunk)
    if atoms is None:
        return

    energy = None
    efermi = None
    forces = None
    stress = None

    matches = _nwpw_energy.findall(chunk)
    if matches:
        energy = float(matches[-1].replace('D', 'E')) * Hartree

    matches = _fermi_energy.findall(chunk)
    if matches:
        efermi = float(matches[-1].replace('D', 'E')) * Hartree

    gradblocks = _nwpw_grad.findall(chunk)
    if not gradblocks:
        gradblocks = _paw_grad.findall(chunk)
    if gradblocks:
        gradblock = gradblocks[-1].strip().split('\n')
        natoms = len(gradblock)
        symbols = []
        forces = np.zeros((natoms, 3))
        for i, line in enumerate(gradblock):
            line = line.strip().split()
            symbols.append(line[1])
            forces[i] = [float(x) for x in line[3:6]]
        forces *= Hartree / Bohr

    if atoms.cell:
        stress = _get_stress(chunk, atoms.cell)

    ibz_kpts, kpts = _get_pw_kpts(chunk)

    # NWChem does not calculate an energy extrapolated to the 0K limit,
    # so right now, energy and free_energy will be the same.
    calc = SinglePointDFTCalculator(atoms=atoms,
                                    energy=energy,
                                    efermi=efermi,
                                    free_energy=energy,
                                    forces=forces,
                                    stress=stress,
                                    ibzkpts=ibz_kpts)
    calc.kpts = kpts
    atoms.calc = calc
    return atoms


# Extracts stress tensor from a plane wave calculation
_stress = _define_pattern(
    r'[ \t]+[=]+[ \t]+(?:total gradient|E all FD)[ \t]+[=]+[ \t]*\n'
    r'^[ \t]+S =((?:(?:[ \t]+[\S]+){5}\n){3})[ \t=]+\n',
    """\
          ============= total gradient ==============
      S =  (   -0.22668    0.27174    0.19134 )
           (    0.23150   -0.26760    0.23226 )
           (    0.19090    0.27206   -0.22700 )
          ===================================================
""", re.M)


# Extract stress tensor from a plane wave calculation
def _get_stress(chunk, cell):
    stress_blocks = _stress.findall(chunk)
    if not stress_blocks:
        return None
    stress_block = stress_blocks[-1]
    stress = np.zeros((3, 3))
    for i, row in enumerate(stress_block.strip().split('\n')):
        stress[i] = [float(x) for x in row.split()[1:4]]
    stress = (stress @ cell) * Hartree / Bohr / cell.volume
    stress = 0.5 * (stress + stress.T)
    # convert from 3x3 array to Voigt form
    return stress.ravel()[[0, 4, 8, 5, 2, 1]]


# MO/band eigenvalue and occupancy parser for plane wave calculations
_nwpw_eval_block = _define_pattern(
        r'(?:(?:^[ \t]+Brillouin zone point:[ \t]+[\S]+[ \t]*\n'
        r'(?:[ \t\S]*\n){3,4})?'
        r'^[ \t]+(?:virtual )?orbital energies:\n'
        r'(?:^(?:(?:[ \t]+[\S]+){3,4}){1,2}[ \t]*\n)+\n{,3})+',
        """\
 Brillouin zone point:      1
    weight=  0.074074
    k     =<   0.333   0.333   0.333> . <b1,b2,b3> 
          =<   0.307   0.307   0.307>

 orbital energies:
     0.3919370E+00 (  10.665eV) occ=1.000
     0.3908827E+00 (  10.637eV) occ=1.000     0.4155535E+00 (  11.308eV) occ=1.000
     0.3607689E+00 (   9.817eV) occ=1.000     0.3827820E+00 (  10.416eV) occ=1.000
     0.3544000E+00 (   9.644eV) occ=1.000     0.3782641E+00 (  10.293eV) occ=1.000
     0.3531137E+00 (   9.609eV) occ=1.000     0.3778819E+00 (  10.283eV) occ=1.000
     0.2596367E+00 (   7.065eV) occ=1.000     0.2820723E+00 (   7.676eV) occ=1.000

 Brillouin zone point:      2
    weight=  0.074074
    k     =<  -0.000   0.333   0.333> . <b1,b2,b3> 
          =<   0.614   0.000   0.000>

 orbital energies:
     0.3967132E+00 (  10.795eV) occ=1.000
     0.3920006E+00 (  10.667eV) occ=1.000     0.4197952E+00 (  11.423eV) occ=1.000
     0.3912442E+00 (  10.646eV) occ=1.000     0.4125086E+00 (  11.225eV) occ=1.000
     0.3910472E+00 (  10.641eV) occ=1.000     0.4124238E+00 (  11.223eV) occ=1.000
     0.3153977E+00 (   8.582eV) occ=1.000     0.3379797E+00 (   9.197eV) occ=1.000
     0.2801606E+00 (   7.624eV) occ=1.000     0.3052478E+00 (   8.306eV) occ=1.000
""", re.M)  # noqa: E501, W291

# Parser for kpoint weights for a plane wave calculation
_kpt_weight = _define_pattern(
    r'^[ \t]+Brillouin zone point:[ \t]+([\S]+)[ \t]*\n'
    r'^[ \t]+weight=[ \t]+([\S]+)[ \t]*\n',
    """\
 Brillouin zone point:      1
    weight=  0.074074  
""", re.M)  # noqa: W291


# Parse eigenvalues and occupancies from a plane wave calculation
def _get_pw_kpts(chunk):
    eval_blocks = []
    for block in _nwpw_eval_block.findall(chunk):
        if 'pathlength' not in block:
            eval_blocks.append(block)
    if not eval_blocks:
        return []
    if 'virtual' in eval_blocks[-1]:
        occ_block = eval_blocks[-2]
        virt_block = eval_blocks[-1]
    else:
        occ_block = eval_blocks[-1]
        virt_block = ''
    kpts = NWChemKpts()
    _extract_pw_kpts(occ_block, kpts, 1.)
    _extract_pw_kpts(virt_block, kpts, 0.)
    for match in _kpt_weight.finditer(occ_block):
        index, weight = match.groups()
        kpts.set_weight(index, float(weight))
    return kpts.to_ibz_kpts(), kpts.to_singlepointkpts()


# Helper class for keeping track of kpoints and converting to
# SinglePointKPoint objects.
class NWChemKpts:
    def __init__(self):
        self.data = dict()
        self.ibz_kpts = dict()
        self.weights = dict()

    def add_ibz_kpt(self, index, raw_kpt):
        kpt = np.array([float(x.strip('>')) for x in raw_kpt.split()[1:4]])
        self.ibz_kpts[index] = kpt

    def add_eval(self, index, spin, energy, occ):
        if index not in self.data:
            self.data[index] = dict()
        if spin not in self.data[index]:
            self.data[index][spin] = []
        self.data[index][spin].append((energy, occ))

    def set_weight(self, index, weight):
        self.weights[index] = weight

    def to_ibz_kpts(self):
        if not self.ibz_kpts:
            return np.array([[0., 0., 0.]])
        sorted_kpts = sorted(list(self.ibz_kpts.items()), key=lambda x: x[0])
        return np.array(list(zip(*sorted_kpts))[1])

    def to_singlepointkpts(self):
        kpts = []
        for i, (index, spins) in enumerate(self.data.items()):
            weight = self.weights[index]
            for spin, (_, data) in enumerate(spins.items()):
                energies, occs = np.array(sorted(data, key=lambda x: x[0])).T
                kpts.append(SinglePointKPoint(weight, spin, i, energies, occs))
        return kpts


# Extracts MO/band data from a pattern matched by _nwpw_eval_block above
_kpt = _define_pattern(
    r'^[ \t]+Brillouin zone point:[ \t]+([\S]+)[ \t]*\n'
    r'^[ \t]+weight=[ \t]+([\S])+[ \t]*\n'
    r'^[ \t]+k[ \t]+([ \t\S]+)\n'
    r'(?:^[ \t\S]*\n){1,2}'
    r'^[ \t]+(?:virtual )?orbital energies:\n'
    r'((?:^(?:(?:[ \t]+[\S]+){3,4}){1,2}[ \t]*\n)+)',
    """\
 Brillouin zone point:      1
    weight=  0.074074
    k     =<   0.333   0.333   0.333> . <b1,b2,b3> 
          =<   0.307   0.307   0.307>

 orbital energies:
     0.3919370E+00 (  10.665eV) occ=1.000
     0.3908827E+00 (  10.637eV) occ=1.000     0.4155535E+00 (  11.308eV) occ=1.000
     0.3607689E+00 (   9.817eV) occ=1.000     0.3827820E+00 (  10.416eV) occ=1.000
     0.3544000E+00 (   9.644eV) occ=1.000     0.3782641E+00 (  10.293eV) occ=1.000
     0.3531137E+00 (   9.609eV) occ=1.000     0.3778819E+00 (  10.283eV) occ=1.000
     0.2596367E+00 (   7.065eV) occ=1.000     0.2820723E+00 (   7.676eV) occ=1.000
""", re.M)  # noqa: E501, W291


# Extracts kpoints from a plane wave calculation
def _extract_pw_kpts(chunk, kpts, default_occ):
    for match in _kpt.finditer(chunk):
        point, weight, raw_kpt, orbitals = match.groups()
        index = int(point) - 1
        for line in orbitals.split('\n'):
            tokens = line.strip().split()
            if not tokens:
                continue
            ntokens = len(tokens)
            a_e = float(tokens[0]) * Hartree
            if ntokens % 3 == 0:
                a_o = default_occ
            else:
                a_o = float(tokens[3].split('=')[1])
            kpts.add_eval(index, 0, a_e, a_o)

            if ntokens <= 4:
                continue
            if ntokens == 6:
                b_e = float(tokens[3]) * Hartree
                b_o = default_occ
            elif ntokens == 8:
                b_e = float(tokens[4]) * Hartree
                b_o = float(tokens[7].split('=')[1])
            kpts.add_eval(index, 1, b_e, b_o)
        kpts.set_weight(index, float(weight))
        kpts.add_ibz_kpt(index, raw_kpt)