1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
|
import re
from collections import OrderedDict
import numpy as np
from ase import Atoms
from ase.units import Hartree, Bohr
from ase.calculators.singlepoint import (SinglePointDFTCalculator,
SinglePointKPoint)
from .parser import _define_pattern
# Note to the reader of this code: Here and below we use the function
# _define_pattern from parser.py in this same directory to compile
# regular expressions. These compiled expressions are stored along with
# an example string that the expression should match in a list that
# is used during tests (test/nwchem/nwchem_parser.py) to ensure that
# the regular expressions are still working correctly.
# Matches the beginning of a GTO calculation
_gauss_block = _define_pattern(
r'^[\s]+NWChem (?:SCF|DFT) Module\n$',
" NWChem SCF Module\n",
)
# Matches the beginning of a plane wave calculation
_pw_block = _define_pattern(
r'^[\s]+\*[\s]+NWPW (?:PSPW|BAND|PAW|Band Structure) Calculation'
r'[\s]+\*[\s]*\n$',
" * NWPW PSPW Calculation *\n",
)
# Top-level parser
def read_nwchem_out(fobj, index=-1):
"""Splits an NWChem output file into chunks corresponding to
individual single point calculations."""
lines = fobj.readlines()
if index == slice(-1, None, None):
for line in lines:
if _gauss_block.match(line):
return [parse_gto_chunk(''.join(lines))]
if _pw_block.match(line):
return [parse_pw_chunk(''.join(lines))]
else:
raise ValueError('This does not appear to be a valid NWChem '
'output file.')
# First, find each SCF block
group = []
atomslist = []
header = True
lastgroup = []
lastparser = None
parser = None
for line in lines:
group.append(line)
if _gauss_block.match(line):
next_parser = parse_gto_chunk
elif _pw_block.match(line):
next_parser = parse_pw_chunk
else:
continue
if header:
header = False
else:
atoms = parser(''.join(group))
if atoms is None and parser is lastparser:
atoms = parser(''.join(lastgroup + group))
if atoms is not None:
atomslist[-1] = atoms
lastgroup += group
else:
atomslist.append(atoms)
lastgroup = group
lastparser = parser
group = []
parser = next_parser
else:
if not header:
atoms = parser(''.join(group))
if atoms is not None:
atomslist.append(atoms)
return atomslist[index]
# Matches a geometry block and returns the geometry specification lines
_geom = _define_pattern(
r'\n[ \t]+Geometry \"[ \t\S]+\" -> \"[ \t\S]*\"[ \t]*\n'
r'^[ \t-]+\n'
r'(?:^[ \t\S]*\n){3}'
r'^[ \t]+No\.[ \t]+Tag[ \t]+Charge[ \t]+X[ \t]+Y[ \t]+Z\n'
r'^[ \t-]+\n'
r'((?:^(?:[ \t]+[\S]+){6}[ \t]*\n)+)',
"""\
Geometry "geometry" -> ""
-------------------------
Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.)
No. Tag Charge X Y Z
---- ---------------- ---------- -------------- -------------- --------------
1 C 6.0000 0.00000000 0.00000000 0.00000000
2 H 1.0000 0.62911800 0.62911800 0.62911800
3 H 1.0000 -0.62911800 -0.62911800 0.62911800
4 H 1.0000 0.62911800 -0.62911800 -0.62911800
""", re.M)
# Unit cell parser
_cell_block = _define_pattern(r'^[ \t]+Lattice Parameters[ \t]*\n'
r'^(?:[ \t\S]*\n){4}'
r'((?:^(?:[ \t]+[\S]+){5}\n){3})',
"""\
Lattice Parameters
------------------
lattice vectors in angstroms (scale by 1.889725989 to convert to a.u.)
a1=< 4.000 0.000 0.000 >
a2=< 0.000 5.526 0.000 >
a3=< 0.000 0.000 4.596 >
a= 4.000 b= 5.526 c= 4.596
alpha= 90.000 beta= 90.000 gamma= 90.000
omega= 101.6
""", re.M)
# Parses the geometry and returns the corresponding Atoms object
def _parse_geomblock(chunk):
geomblocks = _geom.findall(chunk)
if not geomblocks:
return None
geomblock = geomblocks[-1].strip().split('\n')
natoms = len(geomblock)
symbols = []
pos = np.zeros((natoms, 3))
for i, line in enumerate(geomblock):
line = line.strip().split()
symbols.append(line[1])
pos[i] = [float(x) for x in line[3:6]]
cellblocks = _cell_block.findall(chunk)
if cellblocks:
cellblock = cellblocks[-1].strip().split('\n')
cell = np.zeros((3, 3))
for i, line in enumerate(cellblock):
line = line.strip().split()
cell[i] = [float(x) for x in line[1:4]]
else:
cell = None
return Atoms(symbols, positions=pos, cell=cell)
# GTO-specific parser stuff
# Matches gradient block from a GTO calculation
_gto_grad = _define_pattern(
r'^[ \t]+[\S]+[ \t]+ENERGY GRADIENTS[ \t]*[\n]+'
r'^[ \t]+atom[ \t]+coordinates[ \t]+gradient[ \t]*\n'
r'^(?:[ \t]+x[ \t]+y[ \t]+z){2}[ \t]*\n'
r'((?:^(?:[ \t]+[\S]+){8}\n)+)[ \t]*\n',
"""\
UHF ENERGY GRADIENTS
atom coordinates gradient
x y z x y z
1 C 0.293457 -0.293457 0.293457 -0.000083 0.000083 -0.000083
2 H 1.125380 1.355351 1.125380 0.000086 0.000089 0.000086
3 H -1.355351 -1.125380 1.125380 -0.000089 -0.000086 0.000086
4 H 1.125380 -1.125380 -1.355351 0.000086 -0.000086 -0.000089
""", re.M)
# Energy parsers for a variety of different GTO calculations
_e_gto = OrderedDict()
_e_gto['tce'] = _define_pattern(
r'^[\s]+[\S]+[\s]+total energy \/ hartree[\s]+'
r'=[\s]+([\S]+)[\s]*\n',
" CCD total energy / hartree "
"= -75.715332545665888\n", re.M,
)
_e_gto['ccsd'] = _define_pattern(
r'^[\s]+Total CCSD energy:[\s]+([\S]+)[\s]*\n',
" Total CCSD energy: -75.716168566598569\n",
re.M,
)
_e_gto['tddft'] = _define_pattern(
r'^[\s]+Excited state energy =[\s]+([\S]+)[\s]*\n',
" Excited state energy = -75.130134499965\n",
re.M,
)
_e_gto['mp2'] = _define_pattern(
r'^[\s]+Total MP2 energy[\s]+([\S]+)[\s]*\n',
" Total MP2 energy -75.708800087578\n",
re.M,
)
_e_gto['mf'] = _define_pattern(
r'^[\s]+Total (?:DFT|SCF) energy =[\s]+([\S]+)[\s]*\n',
" Total SCF energy = -75.585555997789\n",
re.M,
)
# GTO parser
def parse_gto_chunk(chunk):
atoms = None
forces = None
energy = None
dipole = None
quadrupole = None
for theory, pattern in _e_gto.items():
matches = pattern.findall(chunk)
if matches:
energy = float(matches[-1].replace('D', 'E')) * Hartree
break
gradblocks = _gto_grad.findall(chunk)
if gradblocks:
gradblock = gradblocks[-1].strip().split('\n')
natoms = len(gradblock)
symbols = []
pos = np.zeros((natoms, 3))
forces = np.zeros((natoms, 3))
for i, line in enumerate(gradblock):
line = line.strip().split()
symbols.append(line[1])
pos[i] = [float(x) for x in line[2:5]]
forces[i] = [-float(x) for x in line[5:8]]
pos *= Bohr
forces *= Hartree / Bohr
atoms = Atoms(symbols, positions=pos)
dipole, quadrupole = _get_multipole(chunk)
kpts = _get_gto_kpts(chunk)
if atoms is None:
atoms = _parse_geomblock(chunk)
if atoms is None:
return
# SinglePointDFTCalculator doesn't support quadrupole moment currently
calc = SinglePointDFTCalculator(atoms=atoms,
energy=energy,
free_energy=energy, # XXX Is this right?
forces=forces,
dipole=dipole,
# quadrupole=quadrupole,
)
calc.kpts = kpts
atoms.calc = calc
return atoms
# Extracts dipole and quadrupole moment for a GTO calculation
_multipole = _define_pattern(
r'^[ \t]+Multipole analysis of the density[ \t\S]*\n'
r'^[ \t-]+\n\n^[ \t\S]+\n^[ \t-]+\n'
r'((?:(?:(?:[ \t]+[\S]+){7,8}\n)|[ \t]*\n){12})',
"""\
Multipole analysis of the density
---------------------------------
L x y z total alpha beta nuclear
- - - - ----- ----- ---- -------
0 0 0 0 -0.000000 -5.000000 -5.000000 10.000000
1 1 0 0 0.000000 0.000000 0.000000 0.000000
1 0 1 0 -0.000001 -0.000017 -0.000017 0.000034
1 0 0 1 -0.902084 -0.559881 -0.559881 0.217679
2 2 0 0 -5.142958 -2.571479 -2.571479 0.000000
2 1 1 0 -0.000000 -0.000000 -0.000000 0.000000
2 1 0 1 0.000000 0.000000 0.000000 0.000000
2 0 2 0 -3.153324 -3.807308 -3.807308 4.461291
2 0 1 1 0.000001 -0.000009 -0.000009 0.000020
2 0 0 2 -4.384288 -3.296205 -3.296205 2.208122
""", re.M)
# Parses the dipole and quadrupole moment from a GTO calculation
def _get_multipole(chunk):
matches = _multipole.findall(chunk)
if not matches:
return None, None
# This pulls the 5th column out of the multipole moments block;
# this column contains the actual moments.
moments = [float(x.split()[4]) for x in matches[-1].split('\n') if x]
dipole = np.array(moments[1:4]) * Bohr
quadrupole = np.zeros(9)
quadrupole[[0, 1, 2, 4, 5, 8]] = [moments[4:]]
quadrupole[[3, 6, 7]] = quadrupole[[1, 2, 5]]
return dipole, quadrupole.reshape((3, 3)) * Bohr**2
# MO eigenvalue and occupancy parser for GTO calculations
_eval_block = _define_pattern(
r'^[ \t]+[\S]+ Final (?:Alpha |Beta )?Molecular Orbital Analysis[ \t]*'
r'\n^[ \t-]+\n\n'
r'(?:^[ \t]+Vector [ \t\S]+\n(?:^[ \t\S]+\n){3}'
r'(?:^(?:(?:[ \t]+[\S]+){5}){1,2}[ \t]*\n)+\n)+',
"""\
ROHF Final Molecular Orbital Analysis
-------------------------------------
Vector 1 Occ=2.000000D+00 E=-2.043101D+01
MO Center= 1.1D-20, 1.5D-18, 1.2D-01, r^2= 1.5D-02
Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function
----- ------------ --------------- ----- ------------ ---------------
1 0.983233 1 O s
Vector 2 Occ=2.000000D+00 E=-1.324439D+00
MO Center= -2.1D-18, -8.6D-17, -7.1D-02, r^2= 5.1D-01
Bfn. Coefficient Atom+Function Bfn. Coefficient Atom+Function
----- ------------ --------------- ----- ------------ ---------------
6 0.708998 1 O s 1 -0.229426 1 O s
2 0.217752 1 O s
""", re.M) # noqa: W291
# Parses the eigenvalues and occupations from a GTO calculation
def _get_gto_kpts(chunk):
eval_blocks = _eval_block.findall(chunk)
if not eval_blocks:
return []
kpts = []
kpt = _get_gto_evals(eval_blocks[-1])
if kpt.s == 1:
kpts.append(_get_gto_evals(eval_blocks[-2]))
kpts.append(kpt)
return kpts
# Extracts MO eigenvalue and occupancy for a GTO calculation
_extract_vector = _define_pattern(
r'^[ \t]+Vector[ \t]+([\S])+[ \t]+Occ=([\S]+)[ \t]+E=[ \t]*([\S]+)[ \t]*\n',
" Vector 1 Occ=2.000000D+00 E=-2.043101D+01\n", re.M,
)
# Extracts the eigenvalues and occupations from a GTO calculation
def _get_gto_evals(chunk):
spin = 1 if re.match(r'[ \t\S]+Beta', chunk) else 0
data = []
for vector in _extract_vector.finditer(chunk):
data.append([float(x.replace('D', 'E')) for x in vector.groups()[1:]])
data = np.array(data)
occ = data[:, 0]
energies = data[:, 1] * Hartree
return SinglePointKPoint(1., spin, 0, energies, occ)
# Plane wave specific parsing stuff
# Matches the gradient block from a plane wave calculation
_nwpw_grad = _define_pattern(
r'^[ \t]+[=]+[ \t]+Ion Gradients[ \t]+[=]+[ \t]*\n'
r'^[ \t]+Ion Forces:[ \t]*\n'
r'((?:^(?:[ \t]+[\S]+){7}\n)+)',
"""\
============= Ion Gradients =================
Ion Forces:
1 O ( -0.000012 0.000027 -0.005199 )
2 H ( 0.000047 -0.013082 0.020790 )
3 H ( 0.000047 0.012863 0.020786 )
C.O.M. ( -0.000000 -0.000000 -0.000000 )
===============================================
""", re.M)
# Matches the gradient block from a PAW calculation
_paw_grad = _define_pattern(
r'^[ \t]+[=]+[ \t]+Ion Gradients[ \t]+[=]+[ \t]*\n'
r'^[ \t]+Ion Positions:[ \t]*\n'
r'((?:^(?:[ \t]+[\S]+){7}\n)+)'
r'^[ \t]+Ion Forces:[ \t]*\n'
r'((?:^(?:[ \t]+[\S]+){7}\n)+)',
"""\
============= Ion Gradients =================
Ion Positions:
1 O ( -3.77945 -5.22176 -3.77945 )
2 H ( -3.77945 -3.77945 3.77945 )
3 H ( -3.77945 3.77945 3.77945 )
Ion Forces:
1 O ( -0.00001 -0.00000 0.00081 )
2 H ( 0.00005 -0.00026 -0.00322 )
3 H ( 0.00005 0.00030 -0.00322 )
C.O.M. ( -0.00000 -0.00000 -0.00000 )
===============================================
""", re.M)
# Energy parser for plane wave calculations
_nwpw_energy = _define_pattern(
r'^[\s]+Total (?:PSPW|BAND|PAW) energy'
r'[\s]+:[\s]+([\S]+)[\s]*\n',
" Total PSPW energy : -0.1709317826E+02\n",
re.M,
)
# Parser for the fermi energy in a plane wave calculation
_fermi_energy = _define_pattern(
r'^[ \t]+Fermi energy =[ \t]+([\S]+) \([ \t]+[\S]+[ \t]*\n',
" Fermi energy = -0.5585062E-01 ( -1.520eV)\n", re.M,
)
# Plane wave parser
def parse_pw_chunk(chunk):
atoms = _parse_geomblock(chunk)
if atoms is None:
return
energy = None
efermi = None
forces = None
stress = None
matches = _nwpw_energy.findall(chunk)
if matches:
energy = float(matches[-1].replace('D', 'E')) * Hartree
matches = _fermi_energy.findall(chunk)
if matches:
efermi = float(matches[-1].replace('D', 'E')) * Hartree
gradblocks = _nwpw_grad.findall(chunk)
if not gradblocks:
gradblocks = _paw_grad.findall(chunk)
if gradblocks:
gradblock = gradblocks[-1].strip().split('\n')
natoms = len(gradblock)
symbols = []
forces = np.zeros((natoms, 3))
for i, line in enumerate(gradblock):
line = line.strip().split()
symbols.append(line[1])
forces[i] = [float(x) for x in line[3:6]]
forces *= Hartree / Bohr
if atoms.cell:
stress = _get_stress(chunk, atoms.cell)
ibz_kpts, kpts = _get_pw_kpts(chunk)
# NWChem does not calculate an energy extrapolated to the 0K limit,
# so right now, energy and free_energy will be the same.
calc = SinglePointDFTCalculator(atoms=atoms,
energy=energy,
efermi=efermi,
free_energy=energy,
forces=forces,
stress=stress,
ibzkpts=ibz_kpts)
calc.kpts = kpts
atoms.calc = calc
return atoms
# Extracts stress tensor from a plane wave calculation
_stress = _define_pattern(
r'[ \t]+[=]+[ \t]+(?:total gradient|E all FD)[ \t]+[=]+[ \t]*\n'
r'^[ \t]+S =((?:(?:[ \t]+[\S]+){5}\n){3})[ \t=]+\n',
"""\
============= total gradient ==============
S = ( -0.22668 0.27174 0.19134 )
( 0.23150 -0.26760 0.23226 )
( 0.19090 0.27206 -0.22700 )
===================================================
""", re.M)
# Extract stress tensor from a plane wave calculation
def _get_stress(chunk, cell):
stress_blocks = _stress.findall(chunk)
if not stress_blocks:
return None
stress_block = stress_blocks[-1]
stress = np.zeros((3, 3))
for i, row in enumerate(stress_block.strip().split('\n')):
stress[i] = [float(x) for x in row.split()[1:4]]
stress = (stress @ cell) * Hartree / Bohr / cell.volume
stress = 0.5 * (stress + stress.T)
# convert from 3x3 array to Voigt form
return stress.ravel()[[0, 4, 8, 5, 2, 1]]
# MO/band eigenvalue and occupancy parser for plane wave calculations
_nwpw_eval_block = _define_pattern(
r'(?:(?:^[ \t]+Brillouin zone point:[ \t]+[\S]+[ \t]*\n'
r'(?:[ \t\S]*\n){3,4})?'
r'^[ \t]+(?:virtual )?orbital energies:\n'
r'(?:^(?:(?:[ \t]+[\S]+){3,4}){1,2}[ \t]*\n)+\n{,3})+',
"""\
Brillouin zone point: 1
weight= 0.074074
k =< 0.333 0.333 0.333> . <b1,b2,b3>
=< 0.307 0.307 0.307>
orbital energies:
0.3919370E+00 ( 10.665eV) occ=1.000
0.3908827E+00 ( 10.637eV) occ=1.000 0.4155535E+00 ( 11.308eV) occ=1.000
0.3607689E+00 ( 9.817eV) occ=1.000 0.3827820E+00 ( 10.416eV) occ=1.000
0.3544000E+00 ( 9.644eV) occ=1.000 0.3782641E+00 ( 10.293eV) occ=1.000
0.3531137E+00 ( 9.609eV) occ=1.000 0.3778819E+00 ( 10.283eV) occ=1.000
0.2596367E+00 ( 7.065eV) occ=1.000 0.2820723E+00 ( 7.676eV) occ=1.000
Brillouin zone point: 2
weight= 0.074074
k =< -0.000 0.333 0.333> . <b1,b2,b3>
=< 0.614 0.000 0.000>
orbital energies:
0.3967132E+00 ( 10.795eV) occ=1.000
0.3920006E+00 ( 10.667eV) occ=1.000 0.4197952E+00 ( 11.423eV) occ=1.000
0.3912442E+00 ( 10.646eV) occ=1.000 0.4125086E+00 ( 11.225eV) occ=1.000
0.3910472E+00 ( 10.641eV) occ=1.000 0.4124238E+00 ( 11.223eV) occ=1.000
0.3153977E+00 ( 8.582eV) occ=1.000 0.3379797E+00 ( 9.197eV) occ=1.000
0.2801606E+00 ( 7.624eV) occ=1.000 0.3052478E+00 ( 8.306eV) occ=1.000
""", re.M) # noqa: E501, W291
# Parser for kpoint weights for a plane wave calculation
_kpt_weight = _define_pattern(
r'^[ \t]+Brillouin zone point:[ \t]+([\S]+)[ \t]*\n'
r'^[ \t]+weight=[ \t]+([\S]+)[ \t]*\n',
"""\
Brillouin zone point: 1
weight= 0.074074
""", re.M) # noqa: W291
# Parse eigenvalues and occupancies from a plane wave calculation
def _get_pw_kpts(chunk):
eval_blocks = []
for block in _nwpw_eval_block.findall(chunk):
if 'pathlength' not in block:
eval_blocks.append(block)
if not eval_blocks:
return []
if 'virtual' in eval_blocks[-1]:
occ_block = eval_blocks[-2]
virt_block = eval_blocks[-1]
else:
occ_block = eval_blocks[-1]
virt_block = ''
kpts = NWChemKpts()
_extract_pw_kpts(occ_block, kpts, 1.)
_extract_pw_kpts(virt_block, kpts, 0.)
for match in _kpt_weight.finditer(occ_block):
index, weight = match.groups()
kpts.set_weight(index, float(weight))
return kpts.to_ibz_kpts(), kpts.to_singlepointkpts()
# Helper class for keeping track of kpoints and converting to
# SinglePointKPoint objects.
class NWChemKpts:
def __init__(self):
self.data = dict()
self.ibz_kpts = dict()
self.weights = dict()
def add_ibz_kpt(self, index, raw_kpt):
kpt = np.array([float(x.strip('>')) for x in raw_kpt.split()[1:4]])
self.ibz_kpts[index] = kpt
def add_eval(self, index, spin, energy, occ):
if index not in self.data:
self.data[index] = dict()
if spin not in self.data[index]:
self.data[index][spin] = []
self.data[index][spin].append((energy, occ))
def set_weight(self, index, weight):
self.weights[index] = weight
def to_ibz_kpts(self):
if not self.ibz_kpts:
return np.array([[0., 0., 0.]])
sorted_kpts = sorted(list(self.ibz_kpts.items()), key=lambda x: x[0])
return np.array(list(zip(*sorted_kpts))[1])
def to_singlepointkpts(self):
kpts = []
for i, (index, spins) in enumerate(self.data.items()):
weight = self.weights[index]
for spin, (_, data) in enumerate(spins.items()):
energies, occs = np.array(sorted(data, key=lambda x: x[0])).T
kpts.append(SinglePointKPoint(weight, spin, i, energies, occs))
return kpts
# Extracts MO/band data from a pattern matched by _nwpw_eval_block above
_kpt = _define_pattern(
r'^[ \t]+Brillouin zone point:[ \t]+([\S]+)[ \t]*\n'
r'^[ \t]+weight=[ \t]+([\S])+[ \t]*\n'
r'^[ \t]+k[ \t]+([ \t\S]+)\n'
r'(?:^[ \t\S]*\n){1,2}'
r'^[ \t]+(?:virtual )?orbital energies:\n'
r'((?:^(?:(?:[ \t]+[\S]+){3,4}){1,2}[ \t]*\n)+)',
"""\
Brillouin zone point: 1
weight= 0.074074
k =< 0.333 0.333 0.333> . <b1,b2,b3>
=< 0.307 0.307 0.307>
orbital energies:
0.3919370E+00 ( 10.665eV) occ=1.000
0.3908827E+00 ( 10.637eV) occ=1.000 0.4155535E+00 ( 11.308eV) occ=1.000
0.3607689E+00 ( 9.817eV) occ=1.000 0.3827820E+00 ( 10.416eV) occ=1.000
0.3544000E+00 ( 9.644eV) occ=1.000 0.3782641E+00 ( 10.293eV) occ=1.000
0.3531137E+00 ( 9.609eV) occ=1.000 0.3778819E+00 ( 10.283eV) occ=1.000
0.2596367E+00 ( 7.065eV) occ=1.000 0.2820723E+00 ( 7.676eV) occ=1.000
""", re.M) # noqa: E501, W291
# Extracts kpoints from a plane wave calculation
def _extract_pw_kpts(chunk, kpts, default_occ):
for match in _kpt.finditer(chunk):
point, weight, raw_kpt, orbitals = match.groups()
index = int(point) - 1
for line in orbitals.split('\n'):
tokens = line.strip().split()
if not tokens:
continue
ntokens = len(tokens)
a_e = float(tokens[0]) * Hartree
if ntokens % 3 == 0:
a_o = default_occ
else:
a_o = float(tokens[3].split('=')[1])
kpts.add_eval(index, 0, a_e, a_o)
if ntokens <= 4:
continue
if ntokens == 6:
b_e = float(tokens[3]) * Hartree
b_o = default_occ
elif ntokens == 8:
b_e = float(tokens[4]) * Hartree
b_o = float(tokens[7].split('=')[1])
kpts.add_eval(index, 1, b_e, b_o)
kpts.set_weight(index, float(weight))
kpts.add_ibz_kpt(index, raw_kpt)
|