1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
|
"""
This module contains functionality for reading and writing an ASE
Atoms object in VASP POSCAR format.
"""
import re
import numpy as np
from ase import Atoms
from ase.utils import reader, writer
from ase.io.utils import ImageIterator
from ase.io import ParseError
from .vasp_parsers import vasp_outcar_parsers as vop
from pathlib import Path
__all__ = [
'read_vasp', 'read_vasp_out', 'iread_vasp_out', 'read_vasp_xdatcar',
'read_vasp_xml', 'write_vasp', 'write_vasp_xdatcar'
]
def get_atomtypes(fname):
"""Given a file name, get the atomic symbols.
The function can get this information from OUTCAR and POTCAR
format files. The files can also be compressed with gzip or
bzip2.
"""
fpath = Path(fname)
atomtypes = []
atomtypes_alt = []
if fpath.suffix == '.gz':
import gzip
opener = gzip.open
elif fpath.suffix == '.bz2':
import bz2
opener = bz2.BZ2File
else:
opener = open
with opener(fpath) as fd:
for line in fd:
if 'TITEL' in line:
atomtypes.append(line.split()[3].split('_')[0].split('.')[0])
elif 'POTCAR:' in line:
atomtypes_alt.append(line.split()[2].split('_')[0].split('.')[0])
if len(atomtypes) == 0 and len(atomtypes_alt) > 0:
# old VASP doesn't echo TITEL, but all versions print out species lines
# preceded by "POTCAR:", twice
if len(atomtypes_alt) % 2 != 0:
raise ParseError(f'Tried to get atom types from {len(atomtypes_alt)} "POTCAR": '
'lines in OUTCAR, but expected an even number')
atomtypes = atomtypes_alt[0:len(atomtypes_alt)//2]
return atomtypes
def atomtypes_outpot(posfname, numsyms):
"""Try to retrieve chemical symbols from OUTCAR or POTCAR
If getting atomtypes from the first line in POSCAR/CONTCAR fails, it might
be possible to find the data in OUTCAR or POTCAR, if these files exist.
posfname -- The filename of the POSCAR/CONTCAR file we're trying to read
numsyms -- The number of symbols we must find
"""
posfpath = Path(posfname)
# Check files with exactly same path except POTCAR/OUTCAR instead
# of POSCAR/CONTCAR.
fnames = [posfpath.with_name('POTCAR'),
posfpath.with_name('OUTCAR')]
# Try the same but with compressed files
fsc = []
for fnpath in fnames:
fsc.append(fnpath.parent / (fnpath.name + '.gz'))
fsc.append(fnpath.parent / (fnpath.name + '.bz2'))
for f in fsc:
fnames.append(f)
# Code used to try anything with POTCAR or OUTCAR in the name
# but this is no longer supported
tried = []
for fn in fnames:
if fn in posfpath.parent.iterdir():
tried.append(fn)
at = get_atomtypes(fn)
if len(at) == numsyms:
return at
raise ParseError('Could not determine chemical symbols. Tried files ' +
str(tried))
def get_atomtypes_from_formula(formula):
"""Return atom types from chemical formula (optionally prepended
with and underscore).
"""
from ase.symbols import string2symbols
symbols = string2symbols(formula.split('_')[0])
atomtypes = [symbols[0]]
for s in symbols[1:]:
if s != atomtypes[-1]:
atomtypes.append(s)
return atomtypes
@reader
def read_vasp(filename='CONTCAR'):
"""Import POSCAR/CONTCAR type file.
Reads unitcell, atom positions and constraints from the POSCAR/CONTCAR
file and tries to read atom types from POSCAR/CONTCAR header, if this fails
the atom types are read from OUTCAR or POTCAR file.
"""
from ase.constraints import FixAtoms, FixScaled
from ase.data import chemical_symbols
fd = filename
# The first line is in principle a comment line, however in VASP
# 4.x a common convention is to have it contain the atom symbols,
# eg. "Ag Ge" in the same order as later in the file (and POTCAR
# for the full vasp run). In the VASP 5.x format this information
# is found on the fifth line. Thus we save the first line and use
# it in case we later detect that we're reading a VASP 4.x format
# file.
line1 = fd.readline()
lattice_constant = float(fd.readline().split()[0])
# Now the lattice vectors
a = []
for ii in range(3):
s = fd.readline().split()
floatvect = float(s[0]), float(s[1]), float(s[2])
a.append(floatvect)
basis_vectors = np.array(a) * lattice_constant
# Number of atoms. Again this must be in the same order as
# in the first line
# or in the POTCAR or OUTCAR file
atom_symbols = []
numofatoms = fd.readline().split()
# Check whether we have a VASP 4.x or 5.x format file. If the
# format is 5.x, use the fifth line to provide information about
# the atomic symbols.
vasp5 = False
try:
int(numofatoms[0])
except ValueError:
vasp5 = True
atomtypes = numofatoms
numofatoms = fd.readline().split()
# check for comments in numofatoms line and get rid of them if necessary
commentcheck = np.array(['!' in s for s in numofatoms])
if commentcheck.any():
# only keep the elements up to the first including a '!':
numofatoms = numofatoms[:np.arange(len(numofatoms))[commentcheck][0]]
if not vasp5:
# Split the comment line (first in the file) into words and
# try to compose a list of chemical symbols
from ase.formula import Formula
atomtypes = []
for word in line1.split():
word_without_delims = re.sub(r"-|_|,|\.|=|[0-9]|^", "", word)
if len(word_without_delims) < 1:
continue
try:
atomtypes.extend(list(Formula(word_without_delims)))
except ValueError:
# print(atomtype, e, 'is comment')
pass
# Now the list of chemical symbols atomtypes must be formed.
# For example: atomtypes = ['Pd', 'C', 'O']
numsyms = len(numofatoms)
if len(atomtypes) < numsyms:
# First line in POSCAR/CONTCAR didn't contain enough symbols.
# Sometimes the first line in POSCAR/CONTCAR is of the form
# "CoP3_In-3.pos". Check for this case and extract atom types
if len(atomtypes) == 1 and '_' in atomtypes[0]:
atomtypes = get_atomtypes_from_formula(atomtypes[0])
else:
atomtypes = atomtypes_outpot(fd.name, numsyms)
else:
try:
for atype in atomtypes[:numsyms]:
if atype not in chemical_symbols:
raise KeyError
except KeyError:
atomtypes = atomtypes_outpot(fd.name, numsyms)
for i, num in enumerate(numofatoms):
numofatoms[i] = int(num)
[atom_symbols.append(atomtypes[i]) for na in range(numofatoms[i])]
# Check if Selective dynamics is switched on
sdyn = fd.readline()
selective_dynamics = sdyn[0].lower() == 's'
# Check if atom coordinates are cartesian or direct
if selective_dynamics:
ac_type = fd.readline()
else:
ac_type = sdyn
cartesian = ac_type[0].lower() == 'c' or ac_type[0].lower() == 'k'
tot_natoms = sum(numofatoms)
atoms_pos = np.empty((tot_natoms, 3))
if selective_dynamics:
selective_flags = np.empty((tot_natoms, 3), dtype=bool)
for atom in range(tot_natoms):
ac = fd.readline().split()
atoms_pos[atom] = (float(ac[0]), float(ac[1]), float(ac[2]))
if selective_dynamics:
curflag = []
for flag in ac[3:6]:
curflag.append(flag == 'F')
selective_flags[atom] = curflag
if cartesian:
atoms_pos *= lattice_constant
atoms = Atoms(symbols=atom_symbols, cell=basis_vectors, pbc=True)
if cartesian:
atoms.set_positions(atoms_pos)
else:
atoms.set_scaled_positions(atoms_pos)
if selective_dynamics:
constraints = []
indices = []
for ind, sflags in enumerate(selective_flags):
if sflags.any() and not sflags.all():
constraints.append(FixScaled(atoms.get_cell(), ind, sflags))
elif sflags.all():
indices.append(ind)
if indices:
constraints.append(FixAtoms(indices))
if constraints:
atoms.set_constraint(constraints)
return atoms
def iread_vasp_out(filename, index=-1):
"""Import OUTCAR type file, as a generator."""
it = ImageIterator(vop.outcarchunks)
return it(filename, index=index)
@reader
def read_vasp_out(filename='OUTCAR', index=-1):
"""Import OUTCAR type file.
Reads unitcell, atom positions, energies, and forces from the OUTCAR file
and attempts to read constraints (if any) from CONTCAR/POSCAR, if present.
"""
# "filename" is actually a file-descriptor thanks to @reader
g = iread_vasp_out(filename, index=index)
# Code borrowed from formats.py:read
if isinstance(index, (slice, str)):
# Return list of atoms
return list(g)
else:
# Return single atoms object
return next(g)
@reader
def read_vasp_xdatcar(filename='XDATCAR', index=-1):
"""Import XDATCAR file
Reads all positions from the XDATCAR and returns a list of
Atoms objects. Useful for viewing optimizations runs
from VASP5.x
Constraints ARE NOT stored in the XDATCAR, and as such, Atoms
objects retrieved from the XDATCAR will not have constraints set.
"""
fd = filename # @reader decorator ensures this is a file descriptor
images = list()
cell = np.eye(3)
atomic_formula = str()
while True:
comment_line = fd.readline()
if "Direct configuration=" not in comment_line:
try:
lattice_constant = float(fd.readline())
except Exception:
# XXX: When would this happen?
break
xx = [float(x) for x in fd.readline().split()]
yy = [float(y) for y in fd.readline().split()]
zz = [float(z) for z in fd.readline().split()]
cell = np.array([xx, yy, zz]) * lattice_constant
symbols = fd.readline().split()
numbers = [int(n) for n in fd.readline().split()]
total = sum(numbers)
atomic_formula = ''.join('{:s}{:d}'.format(sym, numbers[n])
for n, sym in enumerate(symbols))
fd.readline()
coords = [
np.array(fd.readline().split(), float) for ii in range(total)
]
image = Atoms(atomic_formula, cell=cell, pbc=True)
image.set_scaled_positions(np.array(coords))
images.append(image)
if not index:
return images
else:
return images[index]
def __get_xml_parameter(par):
"""An auxiliary function that enables convenient extraction of
parameter values from a vasprun.xml file with proper type
handling.
"""
def to_bool(b):
if b == 'T':
return True
else:
return False
to_type = {'int': int, 'logical': to_bool, 'string': str, 'float': float}
text = par.text
if text is None:
text = ''
# Float parameters do not have a 'type' attrib
var_type = to_type[par.attrib.get('type', 'float')]
try:
if par.tag == 'v':
return list(map(var_type, text.split()))
else:
return var_type(text.strip())
except ValueError:
# Vasp can sometimes write "*****" due to overflow
return None
def read_vasp_xml(filename='vasprun.xml', index=-1):
"""Parse vasprun.xml file.
Reads unit cell, atom positions, energies, forces, and constraints
from vasprun.xml file
"""
import xml.etree.ElementTree as ET
from ase.constraints import FixAtoms, FixScaled
from ase.calculators.singlepoint import (SinglePointDFTCalculator,
SinglePointKPoint)
from ase.units import GPa
from collections import OrderedDict
tree = ET.iterparse(filename, events=['start', 'end'])
atoms_init = None
calculation = []
ibz_kpts = None
kpt_weights = None
parameters = OrderedDict()
try:
for event, elem in tree:
if event == 'end':
if elem.tag == 'kpoints':
for subelem in elem.iter(tag='generation'):
kpts_params = OrderedDict()
parameters['kpoints_generation'] = kpts_params
for par in subelem.iter():
if par.tag in ['v', 'i']:
parname = par.attrib['name'].lower()
kpts_params[parname] = __get_xml_parameter(par)
kpts = elem.findall("varray[@name='kpointlist']/v")
ibz_kpts = np.zeros((len(kpts), 3))
for i, kpt in enumerate(kpts):
ibz_kpts[i] = [float(val) for val in kpt.text.split()]
kpt_weights = elem.findall('varray[@name="weights"]/v')
kpt_weights = [float(val.text) for val in kpt_weights]
elif elem.tag == 'parameters':
for par in elem.iter():
if par.tag in ['v', 'i']:
parname = par.attrib['name'].lower()
parameters[parname] = __get_xml_parameter(par)
elif elem.tag == 'atominfo':
species = []
for entry in elem.find("array[@name='atoms']/set"):
species.append(entry[0].text.strip())
natoms = len(species)
elif (elem.tag == 'structure'
and elem.attrib.get('name') == 'initialpos'):
cell_init = np.zeros((3, 3), dtype=float)
for i, v in enumerate(
elem.find("crystal/varray[@name='basis']")):
cell_init[i] = np.array(
[float(val) for val in v.text.split()])
scpos_init = np.zeros((natoms, 3), dtype=float)
for i, v in enumerate(
elem.find("varray[@name='positions']")):
scpos_init[i] = np.array(
[float(val) for val in v.text.split()])
constraints = []
fixed_indices = []
for i, entry in enumerate(
elem.findall("varray[@name='selective']/v")):
flags = (np.array(
entry.text.split() == np.array(['F', 'F', 'F'])))
if flags.all():
fixed_indices.append(i)
elif flags.any():
constraints.append(FixScaled(cell_init, i, flags))
if fixed_indices:
constraints.append(FixAtoms(fixed_indices))
atoms_init = Atoms(species,
cell=cell_init,
scaled_positions=scpos_init,
constraint=constraints,
pbc=True)
elif elem.tag == 'dipole':
dblock = elem.find('v[@name="dipole"]')
if dblock is not None:
dipole = np.array(
[float(val) for val in dblock.text.split()])
elif event == 'start' and elem.tag == 'calculation':
calculation.append(elem)
except ET.ParseError as parse_error:
if atoms_init is None:
raise parse_error
if calculation and calculation[-1].find("energy") is None:
calculation = calculation[:-1]
if not calculation:
yield atoms_init
if calculation:
if isinstance(index, int):
steps = [calculation[index]]
else:
steps = calculation[index]
else:
steps = []
for step in steps:
# Workaround for VASP bug, e_0_energy contains the wrong value
# in calculation/energy, but calculation/scstep/energy does not
# include classical VDW corrections. So, first calculate
# e_0_energy - e_fr_energy from calculation/scstep/energy, then
# apply that correction to e_fr_energy from calculation/energy.
lastscf = step.findall('scstep/energy')[-1]
dipoles = step.findall('scstep/dipole')
if dipoles:
lastdipole = dipoles[-1]
else:
lastdipole = None
de = (float(lastscf.find('i[@name="e_0_energy"]').text) -
float(lastscf.find('i[@name="e_fr_energy"]').text))
free_energy = float(step.find('energy/i[@name="e_fr_energy"]').text)
energy = free_energy + de
cell = np.zeros((3, 3), dtype=float)
for i, vector in enumerate(
step.find('structure/crystal/varray[@name="basis"]')):
cell[i] = np.array([float(val) for val in vector.text.split()])
scpos = np.zeros((natoms, 3), dtype=float)
for i, vector in enumerate(
step.find('structure/varray[@name="positions"]')):
scpos[i] = np.array([float(val) for val in vector.text.split()])
forces = None
fblocks = step.find('varray[@name="forces"]')
if fblocks is not None:
forces = np.zeros((natoms, 3), dtype=float)
for i, vector in enumerate(fblocks):
forces[i] = np.array(
[float(val) for val in vector.text.split()])
stress = None
sblocks = step.find('varray[@name="stress"]')
if sblocks is not None:
stress = np.zeros((3, 3), dtype=float)
for i, vector in enumerate(sblocks):
stress[i] = np.array(
[float(val) for val in vector.text.split()])
stress *= -0.1 * GPa
stress = stress.reshape(9)[[0, 4, 8, 5, 2, 1]]
dipole = None
if lastdipole is not None:
dblock = lastdipole.find('v[@name="dipole"]')
if dblock is not None:
dipole = np.zeros((1, 3), dtype=float)
dipole = np.array([float(val) for val in dblock.text.split()])
dblock = step.find('dipole/v[@name="dipole"]')
if dblock is not None:
dipole = np.zeros((1, 3), dtype=float)
dipole = np.array([float(val) for val in dblock.text.split()])
efermi = step.find('dos/i[@name="efermi"]')
if efermi is not None:
efermi = float(efermi.text)
kpoints = []
for ikpt in range(1, len(ibz_kpts) + 1):
kblocks = step.findall(
'eigenvalues/array/set/set/set[@comment="kpoint %d"]' % ikpt)
if kblocks is not None:
for spin, kpoint in enumerate(kblocks):
eigenvals = kpoint.findall('r')
eps_n = np.zeros(len(eigenvals))
f_n = np.zeros(len(eigenvals))
for j, val in enumerate(eigenvals):
val = val.text.split()
eps_n[j] = float(val[0])
f_n[j] = float(val[1])
if len(kblocks) == 1:
f_n *= 2
kpoints.append(
SinglePointKPoint(kpt_weights[ikpt - 1], spin, ikpt,
eps_n, f_n))
if len(kpoints) == 0:
kpoints = None
atoms = atoms_init.copy()
atoms.set_cell(cell)
atoms.set_scaled_positions(scpos)
atoms.calc = SinglePointDFTCalculator(atoms,
energy=energy,
forces=forces,
stress=stress,
free_energy=free_energy,
ibzkpts=ibz_kpts,
efermi=efermi,
dipole=dipole)
atoms.calc.name = 'vasp'
atoms.calc.kpts = kpoints
atoms.calc.parameters = parameters
yield atoms
@writer
def write_vasp_xdatcar(fd, images, label=None):
"""Write VASP MD trajectory (XDATCAR) file
Only Vasp 5 format is supported (for consistency with read_vasp_xdatcar)
Args:
fd (str, fp): Output file
images (iterable of Atoms): Atoms images to write. These must have
consistent atom order and lattice vectors - this will not be
checked.
label (str): Text for first line of file. If empty, default to list of
elements.
"""
images = iter(images)
image = next(images)
if not isinstance(image, Atoms):
raise TypeError("images should be a sequence of Atoms objects.")
symbol_count = _symbol_count_from_symbols(image.get_chemical_symbols())
if label is None:
label = ' '.join([s for s, _ in symbol_count])
fd.write(label + '\n')
# Not using lattice constants, set it to 1
fd.write(' 1\n')
# Lattice vectors; use first image
float_string = '{:11.6f}'
for row_i in range(3):
fd.write(' ')
fd.write(' '.join(float_string.format(x) for x in image.cell[row_i]))
fd.write('\n')
_write_symbol_count(fd, symbol_count)
_write_xdatcar_config(fd, image, index=1)
for i, image in enumerate(images):
# Index is off by 2: 1-indexed file vs 0-indexed Python;
# and we already wrote the first block.
_write_xdatcar_config(fd, image, i + 2)
def _write_xdatcar_config(fd, atoms, index):
"""Write a block of positions for XDATCAR file
Args:
fd (fd): writeable Python file descriptor
atoms (ase.Atoms): Atoms to write
index (int): configuration number written to block header
"""
fd.write("Direct configuration={:6d}\n".format(index))
float_string = '{:11.8f}'
scaled_positions = atoms.get_scaled_positions()
for row in scaled_positions:
fd.write(' ')
fd.write(' '.join([float_string.format(x) for x in row]))
fd.write('\n')
def _symbol_count_from_symbols(symbols):
"""Reduce list of chemical symbols into compact VASP notation
args:
symbols (iterable of str)
returns:
list of pairs [(el1, c1), (el2, c2), ...]
"""
sc = []
psym = symbols[0]
count = 0
for sym in symbols:
if sym != psym:
sc.append((psym, count))
psym = sym
count = 1
else:
count += 1
sc.append((psym, count))
return sc
def _write_symbol_count(fd, sc, vasp5=True):
"""Write the symbols and numbers block for POSCAR or XDATCAR
Args:
f (fd): Descriptor for writable file
sc (list of 2-tuple): list of paired elements and counts
vasp5 (bool): if False, omit symbols and only write counts
e.g. if sc is [(Sn, 4), (S, 6)] then write::
Sn S
4 6
"""
if vasp5:
for sym, _ in sc:
fd.write(' {:3s}'.format(sym))
fd.write('\n')
for _, count in sc:
fd.write(' {:3d}'.format(count))
fd.write('\n')
@writer
def write_vasp(filename,
atoms,
label=None,
direct=False,
sort=None,
symbol_count=None,
long_format=True,
vasp5=True,
ignore_constraints=False,
wrap=False):
"""Method to write VASP position (POSCAR/CONTCAR) files.
Writes label, scalefactor, unitcell, # of various kinds of atoms,
positions in cartesian or scaled coordinates (Direct), and constraints
to file. Cartesian coordinates is default and default label is the
atomic species, e.g. 'C N H Cu'.
"""
from ase.constraints import FixAtoms, FixScaled, FixedPlane, FixedLine
fd = filename # @writer decorator ensures this arg is a file descriptor
if isinstance(atoms, (list, tuple)):
if len(atoms) > 1:
raise RuntimeError('Don\'t know how to save more than ' +
'one image to VASP input')
else:
atoms = atoms[0]
# Check lattice vectors are finite
if np.any(atoms.cell.cellpar() == 0.):
raise RuntimeError(
'Lattice vectors must be finite and not coincident. '
'At least one lattice length or angle is zero.')
# Write atom positions in scaled or cartesian coordinates
if direct:
coord = atoms.get_scaled_positions(wrap=wrap)
else:
coord = atoms.get_positions(wrap=wrap)
constraints = atoms.constraints and not ignore_constraints
if constraints:
sflags = np.zeros((len(atoms), 3), dtype=bool)
for constr in atoms.constraints:
if isinstance(constr, FixScaled):
sflags[constr.a] = constr.mask
elif isinstance(constr, FixAtoms):
sflags[constr.index] = [True, True, True]
elif isinstance(constr, FixedPlane):
mask = np.all(np.abs(np.cross(constr.dir, atoms.cell)) < 1e-5,
axis=1)
if sum(mask) != 1:
raise RuntimeError(
'VASP requires that the direction of FixedPlane '
'constraints is parallel with one of the cell axis')
sflags[constr.a] = mask
elif isinstance(constr, FixedLine):
mask = np.all(np.abs(np.cross(constr.dir, atoms.cell)) < 1e-5,
axis=1)
if sum(mask) != 1:
raise RuntimeError(
'VASP requires that the direction of FixedLine '
'constraints is parallel with one of the cell axis')
sflags[constr.a] = ~mask
if sort:
ind = np.argsort(atoms.get_chemical_symbols())
symbols = np.array(atoms.get_chemical_symbols())[ind]
coord = coord[ind]
if constraints:
sflags = sflags[ind]
else:
symbols = atoms.get_chemical_symbols()
# Create a list sc of (symbol, count) pairs
if symbol_count:
sc = symbol_count
else:
sc = _symbol_count_from_symbols(symbols)
# Create the label
if label is None:
label = ''
for sym, c in sc:
label += '%2s ' % sym
fd.write(label + '\n')
# Write unitcell in real coordinates and adapt to VASP convention
# for unit cell
# ase Atoms doesn't store the lattice constant separately, so always
# write 1.0.
fd.write('%19.16f\n' % 1.0)
if long_format:
latt_form = ' %21.16f'
else:
latt_form = ' %11.6f'
for vec in atoms.get_cell():
fd.write(' ')
for el in vec:
fd.write(latt_form % el)
fd.write('\n')
# Write out symbols (if VASP 5.x) and counts of atoms
_write_symbol_count(fd, sc, vasp5=vasp5)
if constraints:
fd.write('Selective dynamics\n')
if direct:
fd.write('Direct\n')
else:
fd.write('Cartesian\n')
if long_format:
cform = ' %19.16f'
else:
cform = ' %9.6f'
for iatom, atom in enumerate(coord):
for dcoord in atom:
fd.write(cform % dcoord)
if constraints:
for flag in sflags[iatom]:
if flag:
s = 'F'
else:
s = 'T'
fd.write('%4s' % s)
fd.write('\n')
|