1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
|
import sys
import threading
import warnings
from abc import ABC, abstractmethod
import time
import numpy as np
from scipy.interpolate import CubicSpline
from scipy.integrate import cumtrapz
import ase.parallel
from ase.build import minimize_rotation_and_translation
from ase.calculators.calculator import Calculator
from ase.calculators.singlepoint import SinglePointCalculator
from ase.optimize import MDMin
from ase.optimize.optimize import Optimizer
from ase.optimize.sciopt import OptimizerConvergenceError
from ase.geometry import find_mic
from ase.utils import lazyproperty, deprecated
from ase.utils.forcecurve import fit_images
from ase.optimize.precon import Precon, PreconImages
from ase.optimize.ode import ode12r
class Spring:
def __init__(self, atoms1, atoms2, energy1, energy2, k):
self.atoms1 = atoms1
self.atoms2 = atoms2
self.energy1 = energy1
self.energy2 = energy2
self.k = k
def _find_mic(self):
pos1 = self.atoms1.get_positions()
pos2 = self.atoms2.get_positions()
# XXX If we want variable cells we will need to edit this.
mic, _ = find_mic(pos2 - pos1, self.atoms1.cell, self.atoms1.pbc)
return mic
@lazyproperty
def t(self):
return self._find_mic()
@lazyproperty
def nt(self):
return np.linalg.norm(self.t)
class NEBState:
def __init__(self, neb, images, energies):
self.neb = neb
self.images = images
self.energies = energies
def spring(self, i):
return Spring(self.images[i], self.images[i + 1],
self.energies[i], self.energies[i + 1],
self.neb.k[i])
@lazyproperty
def imax(self):
return 1 + np.argsort(self.energies[1:-1])[-1]
@property
def emax(self):
return self.energies[self.imax]
@lazyproperty
def eqlength(self):
images = self.images
beeline = (images[self.neb.nimages - 1].get_positions() -
images[0].get_positions())
beelinelength = np.linalg.norm(beeline)
return beelinelength / (self.neb.nimages - 1)
@lazyproperty
def nimages(self):
return len(self.images)
@property
def precon(self):
return self.neb.precon
class NEBMethod(ABC):
def __init__(self, neb):
self.neb = neb
@abstractmethod
def get_tangent(self, state, spring1, spring2, i):
...
@abstractmethod
def add_image_force(self, state, tangential_force, tangent, imgforce,
spring1, spring2, i):
...
def adjust_positions(self, positions):
return positions
class ImprovedTangentMethod(NEBMethod):
"""
Tangent estimates are improved according to Eqs. 8-11 in paper I.
Tangents are weighted at extrema to ensure smooth transitions between
the positive and negative tangents.
"""
def get_tangent(self, state, spring1, spring2, i):
energies = state.energies
if energies[i + 1] > energies[i] > energies[i - 1]:
tangent = spring2.t.copy()
elif energies[i + 1] < energies[i] < energies[i - 1]:
tangent = spring1.t.copy()
else:
deltavmax = max(abs(energies[i + 1] - energies[i]),
abs(energies[i - 1] - energies[i]))
deltavmin = min(abs(energies[i + 1] - energies[i]),
abs(energies[i - 1] - energies[i]))
if energies[i + 1] > energies[i - 1]:
tangent = spring2.t * deltavmax + spring1.t * deltavmin
else:
tangent = spring2.t * deltavmin + spring1.t * deltavmax
# Normalize the tangent vector
tangent /= np.linalg.norm(tangent)
return tangent
def add_image_force(self, state, tangential_force, tangent, imgforce,
spring1, spring2, i):
imgforce -= tangential_force * tangent
# Improved parallel spring force (formula 12 of paper I)
imgforce += (spring2.nt * spring2.k - spring1.nt * spring1.k) * tangent
class ASENEBMethod(NEBMethod):
"""
Standard NEB implementation in ASE. The tangent of each image is
estimated from the spring closest to the saddle point in each
spring pair.
"""
def get_tangent(self, state, spring1, spring2, i):
imax = self.neb.imax
if i < imax:
tangent = spring2.t
elif i > imax:
tangent = spring1.t
else:
tangent = spring1.t + spring2.t
return tangent
def add_image_force(self, state, tangential_force, tangent, imgforce,
spring1, spring2, i):
tangent_mag = np.vdot(tangent, tangent) # Magnitude for normalizing
factor = tangent / tangent_mag
imgforce -= tangential_force * factor
imgforce -= np.vdot(
spring1.t * spring1.k -
spring2.t * spring2.k, tangent) * factor
class FullSpringMethod(NEBMethod):
"""
Elastic band method. The full spring force is included.
"""
def get_tangent(self, state, spring1, spring2, i):
# Tangents are bisections of spring-directions
# (formula C8 of paper III)
tangent = spring1.t / spring1.nt + spring2.t / spring2.nt
tangent /= np.linalg.norm(tangent)
return tangent
def add_image_force(self, state, tangential_force, tangent, imgforce,
spring1, spring2, i):
imgforce -= tangential_force * tangent
energies = state.energies
# Spring forces
# Eqs. C1, C5, C6 and C7 in paper III)
f1 = -(spring1.nt -
state.eqlength) * spring1.t / spring1.nt * spring1.k
f2 = (spring2.nt - state.eqlength) * spring2.t / spring2.nt * spring2.k
if self.neb.climb and abs(i - self.neb.imax) == 1:
deltavmax = max(abs(energies[i + 1] - energies[i]),
abs(energies[i - 1] - energies[i]))
deltavmin = min(abs(energies[i + 1] - energies[i]),
abs(energies[i - 1] - energies[i]))
imgforce += (f1 + f2) * deltavmin / deltavmax
else:
imgforce += f1 + f2
class BaseSplineMethod(NEBMethod):
"""
Base class for SplineNEB and String methods
Can optionally be preconditioned, as described in the following article:
S. Makri, C. Ortner and J. R. Kermode, J. Chem. Phys.
150, 094109 (2019)
https://dx.doi.org/10.1063/1.5064465
"""
def __init__(self, neb):
NEBMethod.__init__(self, neb)
def get_tangent(self, state, spring1, spring2, i):
return state.precon.get_tangent(i)
def add_image_force(self, state, tangential_force, tangent, imgforce,
spring1, spring2, i):
# project out tangential component (Eqs 6 and 7 in Paper IV)
imgforce -= tangential_force * tangent
class SplineMethod(BaseSplineMethod):
"""
NEB using spline interpolation, plus optional preconditioning
"""
def add_image_force(self, state, tangential_force, tangent, imgforce,
spring1, spring2, i):
super().add_image_force(state, tangential_force,
tangent, imgforce, spring1, spring2, i)
eta = state.precon.get_spring_force(i, spring1.k, spring2.k, tangent)
imgforce += eta
class StringMethod(BaseSplineMethod):
"""
String method using spline interpolation, plus optional preconditioning
"""
def adjust_positions(self, positions):
# fit cubic spline to positions, reinterpolate to equispace images
# note this uses the preconditioned distance metric.
fit = self.neb.spline_fit(positions)
new_s = np.linspace(0.0, 1.0, self.neb.nimages)
new_positions = fit.x(new_s[1:-1]).reshape(-1, 3)
return new_positions
def get_neb_method(neb, method):
if method == 'eb':
return FullSpringMethod(neb)
elif method == 'aseneb':
return ASENEBMethod(neb)
elif method == 'improvedtangent':
return ImprovedTangentMethod(neb)
elif method == 'spline':
return SplineMethod(neb)
elif method == 'string':
return StringMethod(neb)
else:
raise ValueError(f'Bad method: {method}')
class BaseNEB:
def __init__(self, images, k=0.1, climb=False, parallel=False,
remove_rotation_and_translation=False, world=None,
method='aseneb', allow_shared_calculator=False, precon=None):
self.images = images
self.climb = climb
self.parallel = parallel
self.allow_shared_calculator = allow_shared_calculator
for img in images:
if len(img) != self.natoms:
raise ValueError('Images have different numbers of atoms')
if np.any(img.pbc != images[0].pbc):
raise ValueError('Images have different boundary conditions')
if np.any(img.get_atomic_numbers() !=
images[0].get_atomic_numbers()):
raise ValueError('Images have atoms in different orders')
if np.any(np.abs(img.get_cell() - images[0].get_cell()) > 1e-8):
raise NotImplementedError("Variable cell NEB is not "
"implemented yet")
self.emax = np.nan
self.remove_rotation_and_translation = remove_rotation_and_translation
if method in ['aseneb', 'eb', 'improvedtangent', 'spline', 'string']:
self.method = method
else:
raise NotImplementedError(method)
if precon is not None and method not in ['spline', 'string']:
raise NotImplementedError(f'no precon implemented: {method}')
self.precon = precon
self.neb_method = get_neb_method(self, method)
if isinstance(k, (float, int)):
k = [k] * (self.nimages - 1)
self.k = list(k)
if world is None:
world = ase.parallel.world
self.world = world
if parallel:
if self.allow_shared_calculator:
raise RuntimeError(
"Cannot use shared calculators in parallel in NEB.")
self.real_forces = None # ndarray of shape (nimages, natom, 3)
self.energies = None # ndarray of shape (nimages,)
self.residuals = None # ndarray of shape (nimages,)
@property
def natoms(self):
return len(self.images[0])
@property
def nimages(self):
return len(self.images)
@staticmethod
def freeze_results_on_image(atoms: ase.Atoms,
**results_to_include):
atoms.calc = SinglePointCalculator(atoms=atoms, **results_to_include)
def interpolate(self, method='linear', mic=False, apply_constraint=None):
"""Interpolate the positions of the interior images between the
initial state (image 0) and final state (image -1).
method: str
Method by which to interpolate: 'linear' or 'idpp'.
linear provides a standard straight-line interpolation, while
idpp uses an image-dependent pair potential.
mic: bool
Use the minimum-image convention when interpolating.
apply_constraint: bool
Controls if the constraints attached to the images
are ignored or applied when setting the interpolated positions.
Default value is None, in this case the resulting constrained
positions (apply_constraint=True) are compared with unconstrained
positions (apply_constraint=False),
if the positions are not the same
the user is required to specify the desired behaviour
by setting up apply_constraint keyword argument to False or True.
"""
if self.remove_rotation_and_translation:
minimize_rotation_and_translation(self.images[0], self.images[-1])
interpolate(self.images, mic, apply_constraint=apply_constraint)
if method == 'idpp':
idpp_interpolate(images=self, traj=None, log=None, mic=mic)
@deprecated("Please use NEB's interpolate(method='idpp') method or "
"directly call the idpp_interpolate function from ase.neb")
def idpp_interpolate(self, traj='idpp.traj', log='idpp.log', fmax=0.1,
optimizer=MDMin, mic=False, steps=100):
idpp_interpolate(self, traj=traj, log=log, fmax=fmax,
optimizer=optimizer, mic=mic, steps=steps)
def get_positions(self):
positions = np.empty(((self.nimages - 2) * self.natoms, 3))
n1 = 0
for image in self.images[1:-1]:
n2 = n1 + self.natoms
positions[n1:n2] = image.get_positions()
n1 = n2
return positions
def set_positions(self, positions, adjust_positions=True):
if adjust_positions:
# optional reparameterisation step: some NEB methods need to adjust
# positions e.g. string method does this to equispace the images)
positions = self.neb_method.adjust_positions(positions)
n1 = 0
for image in self.images[1:-1]:
n2 = n1 + self.natoms
image.set_positions(positions[n1:n2])
n1 = n2
def get_forces(self):
"""Evaluate and return the forces."""
images = self.images
if not self.allow_shared_calculator:
calculators = [image.calc for image in images
if image.calc is not None]
if len(set(calculators)) != len(calculators):
msg = ('One or more NEB images share the same calculator. '
'Each image must have its own calculator. '
'You may wish to use the ase.neb.SingleCalculatorNEB '
'class instead, although using separate calculators '
'is recommended.')
raise ValueError(msg)
forces = np.empty(((self.nimages - 2), self.natoms, 3))
energies = np.empty(self.nimages)
if self.remove_rotation_and_translation:
for i in range(1, self.nimages):
minimize_rotation_and_translation(images[i - 1], images[i])
if self.method != 'aseneb':
energies[0] = images[0].get_potential_energy()
energies[-1] = images[-1].get_potential_energy()
if not self.parallel:
# Do all images - one at a time:
for i in range(1, self.nimages - 1):
energies[i] = images[i].get_potential_energy()
forces[i - 1] = images[i].get_forces()
elif self.world.size == 1:
def run(image, energies, forces):
energies[:] = image.get_potential_energy()
forces[:] = image.get_forces()
threads = [threading.Thread(target=run,
args=(images[i],
energies[i:i + 1],
forces[i - 1:i]))
for i in range(1, self.nimages - 1)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
else:
# Parallelize over images:
i = self.world.rank * (self.nimages - 2) // self.world.size + 1
try:
energies[i] = images[i].get_potential_energy()
forces[i - 1] = images[i].get_forces()
except Exception:
# Make sure other images also fail:
error = self.world.sum(1.0)
raise
else:
error = self.world.sum(0.0)
if error:
raise RuntimeError('Parallel NEB failed!')
for i in range(1, self.nimages - 1):
root = (i - 1) * self.world.size // (self.nimages - 2)
self.world.broadcast(energies[i:i + 1], root)
self.world.broadcast(forces[i - 1], root)
# if this is the first force call, we need to build the preconditioners
if (self.precon is None or isinstance(self.precon, str) or
isinstance(self.precon, Precon)):
self.precon = PreconImages(self.precon, images)
# apply preconditioners to transform forces
# for the default IdentityPrecon this does not change their values
precon_forces = self.precon.apply(forces, index=slice(1, -1))
# Save for later use in iterimages:
self.energies = energies
self.real_forces = np.zeros((self.nimages, self.natoms, 3))
self.real_forces[1:-1] = forces
state = NEBState(self, images, energies)
# Can we get rid of self.energies, self.imax, self.emax etc.?
self.imax = state.imax
self.emax = state.emax
spring1 = state.spring(0)
self.residuals = []
for i in range(1, self.nimages - 1):
spring2 = state.spring(i)
tangent = self.neb_method.get_tangent(state, spring1, spring2, i)
# Get overlap between full PES-derived force and tangent
tangential_force = np.vdot(forces[i - 1], tangent)
# from now on we use the preconditioned forces (equal for precon=ID)
imgforce = precon_forces[i - 1]
if i == self.imax and self.climb:
"""The climbing image, imax, is not affected by the spring
forces. This image feels the full PES-derived force,
but the tangential component is inverted:
see Eq. 5 in paper II."""
if self.method == 'aseneb':
tangent_mag = np.vdot(tangent, tangent) # For normalizing
imgforce -= 2 * tangential_force / tangent_mag * tangent
else:
imgforce -= 2 * tangential_force * tangent
else:
self.neb_method.add_image_force(state, tangential_force,
tangent, imgforce, spring1,
spring2, i)
# compute the residual - with ID precon, this is just max force
residual = self.precon.get_residual(i, imgforce)
self.residuals.append(residual)
spring1 = spring2
return precon_forces.reshape((-1, 3))
def get_residual(self):
"""Return residual force along the band.
Typically this the maximum force component on any image. For
non-trivial preconditioners, the appropriate preconditioned norm
is used to compute the residual.
"""
if self.residuals is None:
raise RuntimeError("get_residual() called before get_forces()")
return np.max(self.residuals)
def get_potential_energy(self, force_consistent=False):
"""Return the maximum potential energy along the band.
Note that the force_consistent keyword is ignored and is only
present for compatibility with ase.Atoms.get_potential_energy."""
return self.emax
def set_calculators(self, calculators):
"""Set new calculators to the images.
Parameters
----------
calculators : Calculator / list(Calculator)
calculator(s) to attach to images
- single calculator, only if allow_shared_calculator=True
list of calculators if length:
- length nimages, set to all images
- length nimages-2, set to non-end images only
"""
if not isinstance(calculators, list):
if self.allow_shared_calculator:
calculators = [calculators] * self.nimages
else:
raise RuntimeError("Cannot set shared calculator to NEB "
"with allow_shared_calculator=False")
n = len(calculators)
if n == self.nimages:
for i in range(self.nimages):
self.images[i].calc = calculators[i]
elif n == self.nimages - 2:
for i in range(1, self.nimages - 1):
self.images[i].calc = calculators[i - 1]
else:
raise RuntimeError(
'len(calculators)=%d does not fit to len(images)=%d'
% (n, self.nimages))
def __len__(self):
# Corresponds to number of optimizable degrees of freedom, i.e.
# virtual atom count for the optimization algorithm.
return (self.nimages - 2) * self.natoms
def iterimages(self):
# Allows trajectory to convert NEB into several images
for i, atoms in enumerate(self.images):
if i == 0 or i == self.nimages - 1:
yield atoms
else:
atoms = atoms.copy()
self.freeze_results_on_image(
atoms, energy=self.energies[i],
forces=self.real_forces[i])
yield atoms
def spline_fit(self, positions=None, norm='precon'):
"""
Fit a cubic spline to this NEB
Args:
norm (str, optional): Norm to use: 'precon' (default) or 'euclidean'
Returns:
fit: ase.precon.precon.SplineFit instance
"""
if norm == 'precon':
if self.precon is None or isinstance(self.precon, str):
self.precon = PreconImages(self.precon, self.images)
precon = self.precon
# if this is the first call, we need to build the preconditioners
elif norm == 'euclidean':
precon = PreconImages('ID', self.images)
else:
raise ValueError(f'unsupported norm {norm}')
return precon.spline_fit(positions)
def integrate_forces(self, spline_points=1000, bc_type='not-a-knot'):
"""Use spline fit to integrate forces along MEP to approximate
energy differences using the virtual work approach.
Args:
spline_points (int, optional): Number of points. Defaults to 1000.
bc_type (str, optional): Boundary conditions, default 'not-a-knot'.
Returns:
s: reaction coordinate in range [0, 1], with `spline_points` entries
E: result of integrating forces, on the same grid as `s`.
F: projected forces along MEP
"""
# note we use standard Euclidean rather than preconditioned norm
# to compute the virtual work
fit = self.spline_fit(norm='euclidean')
forces = np.array([image.get_forces().reshape(-1)
for image in self.images])
f = CubicSpline(fit.s, forces, bc_type=bc_type)
s = np.linspace(0.0, 1.0, spline_points, endpoint=True)
dE = f(s) * fit.dx_ds(s)
F = dE.sum(axis=1)
E = -cumtrapz(F, s, initial=0.0)
return s, E, F
class DyNEB(BaseNEB):
def __init__(self, images, k=0.1, fmax=0.05, climb=False, parallel=False,
remove_rotation_and_translation=False, world=None,
dynamic_relaxation=True, scale_fmax=0., method='aseneb',
allow_shared_calculator=False, precon=None):
"""
Subclass of NEB that allows for scaled and dynamic optimizations of
images. This method, which only works in series, does not perform
force calls on images that are below the convergence criterion.
The convergence criteria can be scaled with a displacement metric
to focus the optimization on the saddle point region.
'Scaled and Dynamic Optimizations of Nudged Elastic Bands',
P. Lindgren, G. Kastlunger and A. A. Peterson,
J. Chem. Theory Comput. 15, 11, 5787-5793 (2019).
dynamic_relaxation: bool
True skips images with forces below the convergence criterion.
This is updated after each force call; if a previously converged
image goes out of tolerance (due to spring adjustments between
the image and its neighbors), it will be optimized again.
False reverts to the default NEB implementation.
fmax: float
Must be identical to the fmax of the optimizer.
scale_fmax: float
Scale convergence criteria along band based on the distance between
an image and the image with the highest potential energy. This
keyword determines how rapidly the convergence criteria are scaled.
"""
super().__init__(
images, k=k, climb=climb, parallel=parallel,
remove_rotation_and_translation=remove_rotation_and_translation,
world=world, method=method,
allow_shared_calculator=allow_shared_calculator, precon=precon)
self.fmax = fmax
self.dynamic_relaxation = dynamic_relaxation
self.scale_fmax = scale_fmax
if not self.dynamic_relaxation and self.scale_fmax:
msg = ('Scaled convergence criteria only implemented in series '
'with dynamic relaxation.')
raise ValueError(msg)
def set_positions(self, positions):
if not self.dynamic_relaxation:
return super().set_positions(positions)
n1 = 0
for i, image in enumerate(self.images[1:-1]):
if self.parallel:
msg = ('Dynamic relaxation does not work efficiently '
'when parallelizing over images. Try AutoNEB '
'routine for freezing images in parallel.')
raise ValueError(msg)
else:
forces_dyn = self._fmax_all(self.images)
if forces_dyn[i] < self.fmax:
n1 += self.natoms
else:
n2 = n1 + self.natoms
image.set_positions(positions[n1:n2])
n1 = n2
def _fmax_all(self, images):
"""Store maximum force acting on each image in list. This is used in
the dynamic optimization routine in the set_positions() function."""
n = self.natoms
forces = self.get_forces()
fmax_images = [
np.sqrt((forces[n * i:n + n * i] ** 2).sum(axis=1)).max()
for i in range(self.nimages - 2)]
return fmax_images
def get_forces(self):
forces = super().get_forces()
if not self.dynamic_relaxation:
return forces
"""Get NEB forces and scale the convergence criteria to focus
optimization on saddle point region. The keyword scale_fmax
determines the rate of convergence scaling."""
n = self.natoms
for i in range(self.nimages - 2):
n1 = n * i
n2 = n1 + n
force = np.sqrt((forces[n1:n2] ** 2.).sum(axis=1)).max()
n_imax = (self.imax - 1) * n # Image with highest energy.
positions = self.get_positions()
pos_imax = positions[n_imax:n_imax + n]
"""Scale convergence criteria based on distance between an
image and the image with the highest potential energy."""
rel_pos = np.sqrt(((positions[n1:n2] - pos_imax) ** 2).sum())
if force < self.fmax * (1 + rel_pos * self.scale_fmax):
if i == self.imax - 1:
# Keep forces at saddle point for the log file.
pass
else:
# Set forces to zero before they are sent to optimizer.
forces[n1:n2, :] = 0
return forces
def _check_deprecation(keyword, kwargs):
if keyword in kwargs:
warnings.warn(f'Keyword {keyword} of NEB is deprecated. '
'Please use the DyNEB class instead for dynamic '
'relaxation', FutureWarning)
class NEB(DyNEB):
def __init__(self, images, k=0.1, climb=False, parallel=False,
remove_rotation_and_translation=False, world=None,
method='aseneb', allow_shared_calculator=False,
precon=None, **kwargs):
"""Nudged elastic band.
Paper I:
G. Henkelman and H. Jonsson, Chem. Phys, 113, 9978 (2000).
https://doi.org/10.1063/1.1323224
Paper II:
G. Henkelman, B. P. Uberuaga, and H. Jonsson, Chem. Phys,
113, 9901 (2000).
https://doi.org/10.1063/1.1329672
Paper III:
E. L. Kolsbjerg, M. N. Groves, and B. Hammer, J. Chem. Phys,
145, 094107 (2016)
https://doi.org/10.1063/1.4961868
Paper IV:
S. Makri, C. Ortner and J. R. Kermode, J. Chem. Phys.
150, 094109 (2019)
https://dx.doi.org/10.1063/1.5064465
images: list of Atoms objects
Images defining path from initial to final state.
k: float or list of floats
Spring constant(s) in eV/Ang. One number or one for each spring.
climb: bool
Use a climbing image (default is no climbing image).
parallel: bool
Distribute images over processors.
remove_rotation_and_translation: bool
TRUE actives NEB-TR for removing translation and
rotation during NEB. By default applied non-periodic
systems
method: string of method
Choice betweeen five methods:
* aseneb: standard ase NEB implementation
* improvedtangent: Paper I NEB implementation
* eb: Paper III full spring force implementation
* spline: Paper IV spline interpolation (supports precon)
* string: Paper IV string method (supports precon)
allow_shared_calculator: bool
Allow images to share the same calculator between them.
Incompatible with parallelisation over images.
precon: string, :class:`ase.optimize.precon.Precon` instance or list of
instances. If present, enable preconditioing as in Paper IV. This is
possible using the 'spline' or 'string' methods only.
Default is no preconditioning (precon=None), which is converted to
a list of :class:`ase.precon.precon.IdentityPrecon` instances.
"""
for keyword in 'dynamic_relaxation', 'fmax', 'scale_fmax':
_check_deprecation(keyword, kwargs)
defaults = dict(dynamic_relaxation=False,
fmax=0.05,
scale_fmax=0.0)
defaults.update(kwargs)
# Only reason for separating BaseNEB/NEB is that we are
# deprecating dynamic_relaxation.
#
# We can turn BaseNEB into NEB once we get rid of the
# deprecated variables.
#
# Then we can also move DyNEB into ase.dyneb without cyclic imports.
# We can do that in ase-3.22 or 3.23.
super().__init__(
images, k=k, climb=climb, parallel=parallel,
remove_rotation_and_translation=remove_rotation_and_translation,
world=world, method=method,
allow_shared_calculator=allow_shared_calculator,
precon=precon,
**defaults)
class NEBOptimizer(Optimizer):
"""
This optimizer applies an adaptive ODE solver to a NEB
Details of the adaptive ODE solver are described in paper IV
"""
def __init__(self,
neb,
restart=None, logfile='-', trajectory=None,
master=None,
append_trajectory=False,
method='ODE',
alpha=0.01,
verbose=0,
rtol=0.1,
C1=1e-2,
C2=2.0):
super().__init__(atoms=neb, restart=restart,
logfile=logfile, trajectory=trajectory,
master=master,
append_trajectory=append_trajectory,
force_consistent=False)
self.neb = neb
method = method.lower()
methods = ['ode', 'static', 'krylov']
if method not in methods:
raise ValueError(f'method must be one of {methods}')
self.method = method
self.alpha = alpha
self.verbose = verbose
self.rtol = rtol
self.C1 = C1
self.C2 = C2
def force_function(self, X):
positions = X.reshape((self.neb.nimages - 2) *
self.neb.natoms, 3)
self.neb.set_positions(positions)
forces = self.neb.get_forces().reshape(-1)
return forces
def get_residual(self, F=None, X=None):
return self.neb.get_residual()
def log(self):
fmax = self.get_residual()
T = time.localtime()
if self.logfile is not None:
name = f'{self.__class__.__name__}[{self.method}]'
if self.nsteps == 0:
args = (" " * len(name), "Step", "Time", "fmax")
msg = "%s %4s %8s %12s\n" % args
self.logfile.write(msg)
args = (name, self.nsteps, T[3], T[4], T[5], fmax)
msg = "%s: %3d %02d:%02d:%02d %12.4f\n" % args
self.logfile.write(msg)
self.logfile.flush()
def callback(self, X, F=None):
self.log()
self.call_observers()
self.nsteps += 1
def run_ode(self, fmax):
try:
ode12r(self.force_function,
self.neb.get_positions().reshape(-1),
fmax=fmax,
rtol=self.rtol,
C1=self.C1,
C2=self.C2,
steps=self.max_steps,
verbose=self.verbose,
callback=self.callback,
residual=self.get_residual)
return True
except OptimizerConvergenceError:
return False
def run_static(self, fmax):
X = self.neb.get_positions().reshape(-1)
for step in range(self.max_steps):
F = self.force_function(X)
if self.neb.get_residual() <= fmax:
return True
X += self.alpha * F
self.callback(X)
return False
def run(self, fmax=0.05, steps=None, method=None):
"""
Optimize images to obtain the minimum energy path
Parameters
----------
fmax - desired force tolerance
steps - maximum number of steps
"""
if steps:
self.max_steps = steps
if method is None:
method = self.method
if method == 'ode':
return self.run_ode(fmax)
elif method == 'static':
return self.run_static(fmax)
else:
raise ValueError(f'unknown method: {self.method}')
class IDPP(Calculator):
"""Image dependent pair potential.
See:
Improved initial guess for minimum energy path calculations.
Søren Smidstrup, Andreas Pedersen, Kurt Stokbro and Hannes Jónsson
Chem. Phys. 140, 214106 (2014)
"""
implemented_properties = ['energy', 'forces']
def __init__(self, target, mic):
Calculator.__init__(self)
self.target = target
self.mic = mic
def calculate(self, atoms, properties, system_changes):
Calculator.calculate(self, atoms, properties, system_changes)
P = atoms.get_positions()
d = []
D = []
for p in P:
Di = P - p
if self.mic:
Di, di = find_mic(Di, atoms.get_cell(), atoms.get_pbc())
else:
di = np.sqrt((Di ** 2).sum(1))
d.append(di)
D.append(Di)
d = np.array(d)
D = np.array(D)
dd = d - self.target
d.ravel()[::len(d) + 1] = 1 # avoid dividing by zero
d4 = d ** 4
e = 0.5 * (dd ** 2 / d4).sum()
f = -2 * ((dd * (1 - 2 * dd / d) / d ** 5)[..., np.newaxis] * D).sum(
0)
self.results = {'energy': e, 'forces': f}
@deprecated("SingleCalculatorNEB is deprecated. "
"Please use NEB(allow_shared_calculator=True) instead.")
class SingleCalculatorNEB(NEB):
def __init__(self, images, *args, **kwargs):
kwargs["allow_shared_calculator"] = True
super().__init__(images, *args, **kwargs)
def interpolate(images, mic=False, interpolate_cell=False,
use_scaled_coord=False, apply_constraint=None):
"""Given a list of images, linearly interpolate the positions of the
interior images.
mic: bool
Map movement into the unit cell by using the minimum image convention.
interpolate_cell: bool
Interpolate the three cell vectors linearly just like the atomic
positions. Not implemented for NEB calculations!
use_scaled_coord: bool
Use scaled/internal/fractional coordinates instead of real ones for the
interpolation. Not implemented for NEB calculations!
apply_constraint: bool
Controls if the constraints attached to the images
are ignored or applied when setting the interpolated positions.
Default value is None, in this case the resulting constrained positions
(apply_constraint=True) are compared with unconstrained positions
(apply_constraint=False), if the positions are not the same
the user is required to specify the desired behaviour
by setting up apply_constraint keyword argument to False or True.
"""
if use_scaled_coord:
pos1 = images[0].get_scaled_positions(wrap=mic)
pos2 = images[-1].get_scaled_positions(wrap=mic)
else:
pos1 = images[0].get_positions()
pos2 = images[-1].get_positions()
d = pos2 - pos1
if not use_scaled_coord and mic:
d = find_mic(d, images[0].get_cell(), images[0].pbc)[0]
d /= (len(images) - 1.0)
if interpolate_cell:
cell1 = images[0].get_cell()
cell2 = images[-1].get_cell()
cell_diff = cell2 - cell1
cell_diff /= (len(images) - 1.0)
for i in range(1, len(images) - 1):
# first the new cell, otherwise scaled positions are wrong
if interpolate_cell:
images[i].set_cell(cell1 + i * cell_diff)
new_pos = pos1 + i * d
if use_scaled_coord:
images[i].set_scaled_positions(new_pos)
else:
if apply_constraint is None:
unconstrained_image = images[i].copy()
unconstrained_image.set_positions(new_pos,
apply_constraint=False)
images[i].set_positions(new_pos, apply_constraint=True)
try:
np.testing.assert_allclose(unconstrained_image.positions,
images[i].positions)
except AssertionError:
raise RuntimeError(f"Constraint(s) in image number {i} \n"
f"affect the interpolation results.\n"
"Please specify if you want to \n"
"apply or ignore the constraints \n"
"during the interpolation \n"
"with apply_constraint argument.")
else:
images[i].set_positions(new_pos,
apply_constraint=apply_constraint)
def idpp_interpolate(images, traj='idpp.traj', log='idpp.log', fmax=0.1,
optimizer=MDMin, mic=False, steps=100):
"""Interpolate using the IDPP method. 'images' can either be a plain
list of images or an NEB object (containing a list of images)."""
if hasattr(images, 'interpolate'):
neb = images
else:
neb = NEB(images)
d1 = neb.images[0].get_all_distances(mic=mic)
d2 = neb.images[-1].get_all_distances(mic=mic)
d = (d2 - d1) / (neb.nimages - 1)
real_calcs = []
for i, image in enumerate(neb.images):
real_calcs.append(image.calc)
image.calc = IDPP(d1 + i * d, mic=mic)
with optimizer(neb, trajectory=traj, logfile=log) as opt:
opt.run(fmax=fmax, steps=steps)
for image, calc in zip(neb.images, real_calcs):
image.calc = calc
class NEBTools:
"""Class to make many of the common tools for NEB analysis available to
the user. Useful for scripting the output of many jobs. Initialize with
list of images which make up one or more band of the NEB relaxation."""
def __init__(self, images):
self.images = images
@deprecated('NEBTools.get_fit() is deprecated. '
'Please use ase.utils.forcecurve.fit_images(images).')
def get_fit(self):
return fit_images(self.images)
def get_barrier(self, fit=True, raw=False):
"""Returns the barrier estimate from the NEB, along with the
Delta E of the elementary reaction. If fit=True, the barrier is
estimated based on the interpolated fit to the images; if
fit=False, the barrier is taken as the maximum-energy image
without interpolation. Set raw=True to get the raw energy of the
transition state instead of the forward barrier."""
forcefit = fit_images(self.images)
energies = forcefit.energies
fit_energies = forcefit.fit_energies
dE = energies[-1] - energies[0]
if fit:
barrier = max(fit_energies)
else:
barrier = max(energies)
if raw:
barrier += self.images[0].get_potential_energy()
return barrier, dE
def get_fmax(self, **kwargs):
"""Returns fmax, as used by optimizers with NEB."""
neb = NEB(self.images, **kwargs)
forces = neb.get_forces()
return np.sqrt((forces ** 2).sum(axis=1).max())
def plot_band(self, ax=None):
"""Plots the NEB band on matplotlib axes object 'ax'. If ax=None
returns a new figure object."""
forcefit = fit_images(self.images)
ax = forcefit.plot(ax=ax)
return ax.figure
def plot_bands(self, constant_x=False, constant_y=False,
nimages=None, label='nebplots'):
"""Given a trajectory containing many steps of a NEB, makes
plots of each band in the series in a single PDF.
constant_x: bool
Use the same x limits on all plots.
constant_y: bool
Use the same y limits on all plots.
nimages: int
Number of images per band. Guessed if not supplied.
label: str
Name for the output file. .pdf will be appended.
"""
from matplotlib import pyplot
from matplotlib.backends.backend_pdf import PdfPages
if nimages is None:
nimages = self._guess_nimages()
nebsteps = len(self.images) // nimages
if constant_x or constant_y:
sys.stdout.write('Scaling axes.\n')
sys.stdout.flush()
# Plot all to one plot, then pull its x and y range.
fig, ax = pyplot.subplots()
for index in range(nebsteps):
images = self.images[index * nimages:(index + 1) * nimages]
NEBTools(images).plot_band(ax=ax)
xlim = ax.get_xlim()
ylim = ax.get_ylim()
pyplot.close(fig) # Reference counting "bug" in pyplot.
with PdfPages(label + '.pdf') as pdf:
for index in range(nebsteps):
sys.stdout.write('\rProcessing band {:10d} / {:10d}'
.format(index, nebsteps))
sys.stdout.flush()
fig, ax = pyplot.subplots()
images = self.images[index * nimages:(index + 1) * nimages]
NEBTools(images).plot_band(ax=ax)
if constant_x:
ax.set_xlim(xlim)
if constant_y:
ax.set_ylim(ylim)
pdf.savefig(fig)
pyplot.close(fig) # Reference counting "bug" in pyplot.
sys.stdout.write('\n')
def _guess_nimages(self):
"""Attempts to guess the number of images per band from
a trajectory, based solely on the repetition of the
potential energy of images. This should also work for symmetric
cases."""
e_first = self.images[0].get_potential_energy()
nimages = None
for index, image in enumerate(self.images[1:], start=1):
e = image.get_potential_energy()
if e == e_first:
# Need to check for symmetric case when e_first = e_last.
try:
e_next = self.images[index + 1].get_potential_energy()
except IndexError:
pass
else:
if e_next == e_first:
nimages = index + 1 # Symmetric
break
nimages = index # Normal
break
if nimages is None:
sys.stdout.write('Appears to be only one band in the images.\n')
return len(self.images)
# Sanity check that the energies of the last images line up too.
e_last = self.images[nimages - 1].get_potential_energy()
e_nextlast = self.images[2 * nimages - 1].get_potential_energy()
if not (e_last == e_nextlast):
raise RuntimeError('Could not guess number of images per band.')
sys.stdout.write('Number of images per band guessed to be {:d}.\n'
.format(nimages))
return nimages
class NEBtools(NEBTools):
@deprecated('NEBtools has been renamed; please use NEBTools.')
def __init__(self, images):
NEBTools.__init__(self, images)
@deprecated('Please use NEBTools.plot_band_from_fit.')
def plot_band_from_fit(s, E, Sfit, Efit, lines, ax=None):
NEBTools.plot_band_from_fit(s, E, Sfit, Efit, lines, ax=None)
def fit0(*args, **kwargs):
raise DeprecationWarning('fit0 is deprecated. Use `fit_raw` from '
'`ase.utils.forcecurve` instead.')
|