1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
import os
import atexit
import functools
import pickle
import sys
import time
import warnings
import numpy as np
def get_txt(txt, rank):
if hasattr(txt, 'write'):
# Note: User-supplied object might write to files from many ranks.
return txt
elif rank == 0:
if txt is None:
return open(os.devnull, 'w')
elif txt == '-':
return sys.stdout
else:
return open(txt, 'w', 1)
else:
return open(os.devnull, 'w')
def paropen(name, mode='r', buffering=-1, encoding=None, comm=None):
"""MPI-safe version of open function.
In read mode, the file is opened on all nodes. In write and
append mode, the file is opened on the master only, and /dev/null
is opened on all other nodes.
"""
if comm is None:
comm = world
if comm.rank > 0 and mode[0] != 'r':
name = os.devnull
return open(name, mode, buffering, encoding)
def parprint(*args, **kwargs):
"""MPI-safe print - prints only from master. """
if world.rank == 0:
print(*args, **kwargs)
class DummyMPI:
rank = 0
size = 1
def _returnval(self, a, root=-1):
# MPI interface works either on numbers, in which case a number is
# returned, or on arrays, in-place.
if np.isscalar(a):
return a
if hasattr(a, '__array__'):
a = a.__array__()
assert isinstance(a, np.ndarray)
return None
def sum(self, a, root=-1):
return self._returnval(a)
def product(self, a, root=-1):
return self._returnval(a)
def broadcast(self, a, root):
assert root == 0
return self._returnval(a)
def barrier(self):
pass
class MPI:
"""Wrapper for MPI world object.
Decides at runtime (after all imports) which one to use:
* MPI4Py
* GPAW
* a dummy implementation for serial runs
"""
def __init__(self):
self.comm = None
def __getattr__(self, name):
if self.comm is None:
self.comm = _get_comm()
return getattr(self.comm, name)
def _get_comm():
"""Get the correct MPI world object."""
if 'mpi4py' in sys.modules:
return MPI4PY()
if '_gpaw' in sys.modules:
import _gpaw
if hasattr(_gpaw, 'Communicator'):
return _gpaw.Communicator()
if '_asap' in sys.modules:
import _asap
if hasattr(_asap, 'Communicator'):
return _asap.Communicator()
return DummyMPI()
class MPI4PY:
def __init__(self, mpi4py_comm=None):
if mpi4py_comm is None:
from mpi4py import MPI
mpi4py_comm = MPI.COMM_WORLD
self.comm = mpi4py_comm
@property
def rank(self):
return self.comm.rank
@property
def size(self):
return self.comm.size
def _returnval(self, a, b):
"""Behave correctly when working on scalars/arrays.
Either input is an array and we in-place write b (output from
mpi4py) back into a, or input is a scalar and we return the
corresponding output scalar."""
if np.isscalar(a):
assert np.isscalar(b)
return b
else:
assert not np.isscalar(b)
a[:] = b
return None
def sum(self, a, root=-1):
if root == -1:
b = self.comm.allreduce(a)
else:
b = self.comm.reduce(a, root)
return self._returnval(a, b)
def split(self, split_size=None):
"""Divide the communicator."""
# color - subgroup id
# key - new subgroup rank
if not split_size:
split_size = self.size
color = int(self.rank // (self.size / split_size))
key = int(self.rank % (self.size / split_size))
comm = self.comm.Split(color, key)
return MPI4PY(comm)
def barrier(self):
self.comm.barrier()
def abort(self, code):
self.comm.Abort(code)
def broadcast(self, a, root):
b = self.comm.bcast(a, root=root)
if self.rank == root:
if np.isscalar(a):
return a
return
return self._returnval(a, b)
world = None
# Check for special MPI-enabled Python interpreters:
if '_gpaw' in sys.builtin_module_names:
# http://wiki.fysik.dtu.dk/gpaw
import _gpaw
world = _gpaw.Communicator()
elif '_asap' in sys.builtin_module_names:
# Modern version of Asap
# http://wiki.fysik.dtu.dk/asap
# We cannot import asap3.mpi here, as that creates an import deadlock
import _asap
world = _asap.Communicator()
# Check if MPI implementation has been imported already:
elif '_gpaw' in sys.modules:
# Same thing as above but for the module version
import _gpaw
try:
world = _gpaw.Communicator()
except AttributeError:
pass
elif '_asap' in sys.modules:
import _asap
try:
world = _asap.Communicator()
except AttributeError:
pass
elif 'mpi4py' in sys.modules:
world = MPI4PY()
if world is None:
world = MPI()
def barrier():
world.barrier()
def broadcast(obj, root=0, comm=world):
"""Broadcast a Python object across an MPI communicator and return it."""
if comm.rank == root:
string = pickle.dumps(obj, pickle.HIGHEST_PROTOCOL)
n = np.array([len(string)], int)
else:
string = None
n = np.empty(1, int)
comm.broadcast(n, root)
if comm.rank == root:
string = np.frombuffer(string, np.int8)
else:
string = np.zeros(n, np.int8)
comm.broadcast(string, root)
if comm.rank == root:
return obj
else:
return pickle.loads(string.tobytes())
def parallel_function(func):
"""Decorator for broadcasting from master to slaves using MPI.
Disable by passing parallel=False to the function. For a method,
you can also disable the parallel behavior by giving the instance
a self.serial = True.
"""
@functools.wraps(func)
def new_func(*args, **kwargs):
if (world.size == 1 or
args and getattr(args[0], 'serial', False) or
not kwargs.pop('parallel', True)):
# Disable:
return func(*args, **kwargs)
ex = None
result = None
if world.rank == 0:
try:
result = func(*args, **kwargs)
except Exception as x:
ex = x
ex, result = broadcast((ex, result))
if ex is not None:
raise ex
return result
return new_func
def parallel_generator(generator):
"""Decorator for broadcasting yields from master to slaves using MPI.
Disable by passing parallel=False to the function. For a method,
you can also disable the parallel behavior by giving the instance
a self.serial = True.
"""
@functools.wraps(generator)
def new_generator(*args, **kwargs):
if (world.size == 1 or
args and getattr(args[0], 'serial', False) or
not kwargs.pop('parallel', True)):
# Disable:
for result in generator(*args, **kwargs):
yield result
return
if world.rank == 0:
try:
for result in generator(*args, **kwargs):
broadcast((None, result))
yield result
except Exception as ex:
broadcast((ex, None))
raise ex
broadcast((None, None))
else:
ex2, result = broadcast((None, None))
if ex2 is not None:
raise ex2
while result is not None:
yield result
ex2, result = broadcast((None, None))
if ex2 is not None:
raise ex2
return new_generator
def register_parallel_cleanup_function():
"""Call MPI_Abort if python crashes.
This will terminate the processes on the other nodes."""
if world.size == 1:
return
def cleanup(sys=sys, time=time, world=world):
error = getattr(sys, 'last_type', None)
if error:
sys.stdout.flush()
sys.stderr.write(('ASE CLEANUP (node %d): %s occurred. ' +
'Calling MPI_Abort!\n') % (world.rank, error))
sys.stderr.flush()
# Give other nodes a moment to crash by themselves (perhaps
# producing helpful error messages):
time.sleep(3)
world.abort(42)
atexit.register(cleanup)
def distribute_cpus(size, comm):
"""Distribute cpus to tasks and calculators.
Input:
size: number of nodes per calculator
comm: total communicator object
Output:
communicator for this rank, number of calculators, index for this rank
"""
assert size <= comm.size
assert comm.size % size == 0
tasks_rank = comm.rank // size
r0 = tasks_rank * size
ranks = np.arange(r0, r0 + size)
mycomm = comm.new_communicator(ranks)
return mycomm, comm.size // size, tasks_rank
class ParallelModuleWrapper:
def __getattr__(self, name):
if name == 'rank' or name == 'size':
warnings.warn('ase.parallel.{name} has been deprecated. '
'Please use ase.parallel.world.{name} instead.'
.format(name=name),
FutureWarning)
return getattr(world, name)
return getattr(_parallel, name)
_parallel = sys.modules['ase.parallel']
sys.modules['ase.parallel'] = ParallelModuleWrapper() # type: ignore
|