1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
import numpy as np
import ase # Annotations
from ase.utils import jsonable
from ase.calculators.calculator import PropertyNotImplementedError
def calculate_band_structure(atoms, path=None, scf_kwargs=None,
bs_kwargs=None, kpts_tol=1e-6, cell_tol=1e-6):
"""Calculate band structure.
The purpose of this function is to abstract a band structure calculation
so the workflow does not depend on the calculator.
First trigger SCF calculation if necessary, then set arguments
on the calculator for band structure calculation, then return
calculated band structure.
The difference from get_band_structure() is that the latter
expects the calculation to already have been done."""
if path is None:
path = atoms.cell.bandpath()
from ase.lattice import celldiff # Should this be a method on cell?
if any(path.cell.any(1) != atoms.pbc):
raise ValueError('The band path\'s cell, {}, does not match the '
'periodicity {} of the atoms'
.format(path.cell, atoms.pbc))
cell_err = celldiff(path.cell, atoms.cell.uncomplete(atoms.pbc))
if cell_err > cell_tol:
raise ValueError('Atoms and band path have different unit cells. '
'Please reduce atoms to standard form. '
'Cell lengths and angles are {} vs {}'
.format(atoms.cell.cellpar(), path.cell.cellpar()))
calc = atoms.calc
if calc is None:
raise ValueError('Atoms have no calculator')
if scf_kwargs is not None:
calc.set(**scf_kwargs)
# Proposed standard mechanism for calculators to advertise that they
# use the bandpath keyword to handle band structures rather than
# a double (SCF + BS) run.
use_bandpath_kw = getattr(calc, 'accepts_bandpath_keyword', False)
if use_bandpath_kw:
calc.set(bandpath=path)
atoms.get_potential_energy()
return calc.band_structure()
atoms.get_potential_energy()
if hasattr(calc, 'get_fermi_level'):
# What is the protocol for a calculator to tell whether
# it has fermi_energy?
eref = calc.get_fermi_level()
else:
eref = 0.0
if bs_kwargs is None:
bs_kwargs = {}
calc.set(kpts=path, **bs_kwargs)
calc.results.clear() # XXX get rid of me
# Calculators are too inconsistent here:
# * atoms.get_potential_energy() will fail when total energy is
# not in results after BS calculation (Espresso)
# * calc.calculate(atoms) doesn't ask for any quantity, so some
# calculators may not calculate anything at all
# * 'bandstructure' is not a recognized property we can ask for
try:
atoms.get_potential_energy()
except PropertyNotImplementedError:
pass
ibzkpts = calc.get_ibz_k_points()
kpts_err = np.abs(path.kpts - ibzkpts).max()
if kpts_err > kpts_tol:
raise RuntimeError('Kpoints of calculator differ from those '
'of the band path we just used; '
'err={} > tol={}'.format(kpts_err, kpts_tol))
bs = get_band_structure(atoms, path=path, reference=eref)
return bs
def get_band_structure(atoms=None, calc=None, path=None, reference=None):
"""Create band structure object from Atoms or calculator."""
# path and reference are used internally at the moment, but
# the exact implementation will probably change. WIP.
#
# XXX We throw away info about the bandpath when we create the calculator.
# If we have kept the bandpath, we can provide it as an argument here.
# It would be wise to check that the bandpath kpoints are the same as
# those stored in the calculator.
atoms = atoms if atoms is not None else calc.atoms
calc = calc if calc is not None else atoms.calc
kpts = calc.get_ibz_k_points()
energies = []
for s in range(calc.get_number_of_spins()):
energies.append([calc.get_eigenvalues(kpt=k, spin=s)
for k in range(len(kpts))])
energies = np.array(energies)
if path is None:
from ase.dft.kpoints import (BandPath, resolve_custom_points,
find_bandpath_kinks)
standard_path = atoms.cell.bandpath(npoints=0)
# Kpoints are already evaluated, we just need to put them into
# the path (whether they fit our idea of what the path is, or not).
#
# Depending on how the path was established, the kpoints might
# be valid high-symmetry points, but since there are multiple
# high-symmetry points of each type, they may not coincide
# with ours if the bandpath was generated by another code.
#
# Here we hack it so the BandPath has proper points even if they
# come from some weird source.
#
# This operation (manually hacking the bandpath) is liable to break.
# TODO: Make it available as a proper (documented) bandpath method.
kinks = find_bandpath_kinks(atoms.cell, kpts, eps=1e-5)
pathspec, special_points = resolve_custom_points(
kpts[kinks], standard_path.special_points, eps=1e-5)
path = BandPath(standard_path.cell,
kpts=kpts,
path=pathspec,
special_points=special_points)
# XXX If we *did* get the path, now would be a good time to check
# that it matches the cell! Although the path can only be passed
# because we internally want to not re-evaluate the Bravais
# lattice type. (We actually need an eps parameter, too.)
if reference is None:
# Fermi level should come from the GS calculation, not the BS one!
reference = calc.get_fermi_level()
if reference is None:
# Fermi level may not be available, e.g., with non-Fermi smearing.
# XXX Actually get_fermi_level() should raise an error when Fermi
# level wasn't available, so we should fix that.
reference = 0.0
return BandStructure(path=path,
energies=energies,
reference=reference)
class BandStructurePlot:
def __init__(self, bs):
self.bs = bs
self.ax = None
self.xcoords = None
self.show_legend = False
def plot(self, ax=None, spin=None, emin=-10, emax=5, filename=None,
show=False, ylabel=None, colors=None, label=None,
spin_labels=['spin up', 'spin down'], loc=None, **plotkwargs):
"""Plot band-structure.
spin: int or None
Spin channel. Default behaviour is to plot both spin up and down
for spin-polarized calculations.
emin,emax: float
Maximum energy above reference.
filename: str
Write image to a file.
ax: Axes
MatPlotLib Axes object. Will be created if not supplied.
show: bool
Show the image.
"""
if self.ax is None:
ax = self.prepare_plot(ax, emin, emax, ylabel)
if spin is None:
e_skn = self.bs.energies
else:
e_skn = self.bs.energies[spin, np.newaxis]
if colors is None:
if len(e_skn) == 1:
colors = 'g'
else:
colors = 'yb'
nspins = len(e_skn)
for spin, e_kn in enumerate(e_skn):
color = colors[spin]
kwargs = dict(color=color)
kwargs.update(plotkwargs)
if nspins == 2:
if label:
lbl = label + ' ' + spin_labels[spin]
else:
lbl = spin_labels[spin]
else:
lbl = label
ax.plot(self.xcoords, e_kn[:, 0], label=lbl, **kwargs)
for e_k in e_kn.T[1:]:
ax.plot(self.xcoords, e_k, **kwargs)
self.show_legend = label is not None or nspins == 2
self.finish_plot(filename, show, loc)
return ax
def plot_with_colors(self, ax=None, emin=-10, emax=5, filename=None,
show=False, energies=None, colors=None,
ylabel=None, clabel='$s_z$', cmin=-1.0, cmax=1.0,
sortcolors=False, loc=None, s=2):
"""Plot band-structure with colors."""
import matplotlib.pyplot as plt
if self.ax is None:
ax = self.prepare_plot(ax, emin, emax, ylabel)
shape = energies.shape
xcoords = np.vstack([self.xcoords] * shape[1])
if sortcolors:
perm = colors.argsort(axis=None)
energies = energies.ravel()[perm].reshape(shape)
colors = colors.ravel()[perm].reshape(shape)
xcoords = xcoords.ravel()[perm].reshape(shape)
for e_k, c_k, x_k in zip(energies, colors, xcoords):
things = ax.scatter(x_k, e_k, c=c_k, s=s,
vmin=cmin, vmax=cmax)
cbar = plt.colorbar(things)
cbar.set_label(clabel)
self.finish_plot(filename, show, loc)
return ax
def prepare_plot(self, ax=None, emin=-10, emax=5, ylabel=None):
import matplotlib.pyplot as plt
if ax is None:
ax = plt.figure().add_subplot(111)
def pretty(kpt):
if kpt == 'G':
kpt = r'$\Gamma$'
elif len(kpt) == 2:
kpt = kpt[0] + '$_' + kpt[1] + '$'
return kpt
self.xcoords, label_xcoords, orig_labels = self.bs.get_labels()
label_xcoords = list(label_xcoords)
labels = [pretty(name) for name in orig_labels]
i = 1
while i < len(labels):
if label_xcoords[i - 1] == label_xcoords[i]:
labels[i - 1] = labels[i - 1] + ',' + labels[i]
labels.pop(i)
label_xcoords.pop(i)
else:
i += 1
for x in label_xcoords[1:-1]:
ax.axvline(x, color='0.5')
ylabel = ylabel if ylabel is not None else 'energies [eV]'
ax.set_xticks(label_xcoords)
ax.set_xticklabels(labels)
ax.set_ylabel(ylabel)
ax.axhline(self.bs.reference, color='k', ls=':')
ax.axis(xmin=0, xmax=self.xcoords[-1], ymin=emin, ymax=emax)
self.ax = ax
return ax
def finish_plot(self, filename, show, loc):
import matplotlib.pyplot as plt
if self.show_legend:
leg = plt.legend(loc=loc)
leg.get_frame().set_alpha(1)
if filename:
plt.savefig(filename)
if show:
plt.show()
@jsonable('bandstructure')
class BandStructure:
"""A band structure consists of an array of eigenvalues and a bandpath.
BandStructure objects support JSON I/O.
"""
def __init__(self, path, energies, reference=0.0):
self._path = path
self._energies = np.asarray(energies)
assert self.energies.shape[0] in [1, 2] # spins x kpts x bands
assert self.energies.shape[1] == len(path.kpts)
assert np.isscalar(reference)
self._reference = reference
@property
def energies(self) -> np.ndarray:
"""The energies of this band structure.
This is a numpy array of shape (nspins, nkpoints, nbands)."""
return self._energies
@property
def path(self) -> 'ase.dft.kpoints.BandPath':
"""The :class:`~ase.dft.kpoints.BandPath` of this band structure."""
return self._path
@property
def reference(self) -> float:
"""The reference energy.
Semantics may vary; typically a Fermi energy or zero,
depending on how the band structure was created."""
return self._reference
def subtract_reference(self) -> 'BandStructure':
"""Return new band structure with reference energy subtracted."""
return BandStructure(self.path, self.energies - self.reference,
reference=0.0)
def todict(self):
return dict(path=self.path,
energies=self.energies,
reference=self.reference)
def get_labels(self, eps=1e-5):
""""See :func:`ase.dft.kpoints.labels_from_kpts`."""
return self.path.get_linear_kpoint_axis(eps=eps)
def plot(self, *args, **kwargs):
"""Plot this band structure."""
bsp = BandStructurePlot(self)
return bsp.plot(*args, **kwargs)
def __repr__(self):
return ('{}(path={!r}, energies=[{} values], reference={})'
.format(self.__class__.__name__, self.path,
'{}x{}x{}'.format(*self.energies.shape),
self.reference))
|