File: dosdata.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (486 lines) | stat: -rw-r--r-- 19,081 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# Refactor of DOS-like data objects
# towards replacing ase.dft.dos and ase.dft.pdos
from abc import ABCMeta, abstractmethod
import warnings
from typing import Any, Dict, Sequence, Tuple, TypeVar, Union

import numpy as np
from ase.utils.plotting import SimplePlottingAxes

# This import is for the benefit of type-checking / mypy
if False:
    import matplotlib.axes

# For now we will be strict about Info and say it has to be str->str. Perhaps
# later we will allow other types that have reliable comparison operations.
Info = Dict[str, str]


class DOSData(metaclass=ABCMeta):
    """Abstract base class for a single series of DOS-like data

    Only the 'info' is a mutable attribute; DOS data is set at init"""
    def __init__(self,
                 info: Info = None) -> None:
        if info is None:
            self.info = {}
        elif isinstance(info, dict):
            self.info = info
        else:
            raise TypeError("Info must be a dict or None")

    @abstractmethod
    def get_energies(self) -> Sequence[float]:
        """Get energy data stored in this object"""

    @abstractmethod
    def get_weights(self) -> Sequence[float]:
        """Get DOS weights stored in this object"""

    @abstractmethod
    def copy(self) -> 'DOSData':
        """Returns a copy in which info dict can be safely mutated"""

    def _sample(self,
                energies: Sequence[float],
                width: float = 0.1,
                smearing: str = 'Gauss') -> np.ndarray:
        """Sample the DOS data at chosen points, with broadening

        Note that no correction is made here for the sampling bin width; total
        intensity will vary with sampling density.

        Args:
            energies: energy values for sampling
            width: Width of broadening kernel
            smearing: selection of broadening kernel (only "Gauss" is currently
                supported)

        Returns:
            Weights sampled from a broadened DOS at values corresponding to x
        """

        self._check_positive_width(width)
        weights_grid = np.zeros(len(energies), float)
        weights = self.get_weights()
        energies = np.asarray(energies, float)

        for i, raw_energy in enumerate(self.get_energies()):
            delta = self._delta(energies, raw_energy, width, smearing=smearing)
            weights_grid += weights[i] * delta
        return weights_grid

    def _almost_equals(self, other: Any) -> bool:
        """Compare with another DOSData for testing purposes"""
        if not isinstance(other, type(self)):
            return False
        if self.info != other.info:
            return False
        if not np.allclose(self.get_weights(), other.get_weights()):
            return False
        return np.allclose(self.get_energies(), other.get_energies())

    @staticmethod
    def _delta(x: np.ndarray,
               x0: float,
               width: float,
               smearing: str = 'Gauss') -> np.ndarray:
        """Return a delta-function centered at 'x0'.

        This function is used with numpy broadcasting; if x is a row and x0 is
        a column vector, the returned data will be a 2D array with each row
        corresponding to a different delta center.
        """
        if smearing.lower() == 'gauss':
            x1 = -0.5 * ((x - x0) / width)**2
            return np.exp(x1) / (np.sqrt(2 * np.pi) * width)
        else:
            msg = 'Requested smearing type not recognized. Got {}'.format(
                smearing)
            raise ValueError(msg)

    @staticmethod
    def _check_positive_width(width):
        if width <= 0.0:
            msg = 'Cannot add 0 or negative width smearing'
            raise ValueError(msg)

    def sample_grid(self,
                    npts: int,
                    xmin: float = None,
                    xmax: float = None,
                    padding: float = 3,
                    width: float = 0.1,
                    smearing: str = 'Gauss',
                    ) -> 'GridDOSData':
        """Sample the DOS data on an evenly-spaced energy grid

        Args:
            npts: Number of sampled points
            xmin: Minimum sampled x value; if unspecified, a default is chosen
            xmax: Maximum sampled x value; if unspecified, a default is chosen
            padding: If xmin/xmax is unspecified, default value will be padded
                by padding * width to avoid cutting off peaks.
            width: Width of broadening kernel
            smearing: selection of broadening kernel (only 'Gauss' is
                implemented)

        Returns:
            (energy values, sampled DOS)
        """

        if xmin is None:
            xmin = min(self.get_energies()) - (padding * width)
        if xmax is None:
            xmax = max(self.get_energies()) + (padding * width)
        energies_grid = np.linspace(xmin, xmax, npts)
        weights_grid = self._sample(energies_grid, width=width,
                                    smearing=smearing)

        return GridDOSData(energies_grid, weights_grid, info=self.info.copy())

    def plot(self,
             npts: int = 1000,
             xmin: float = None,
             xmax: float = None,
             width: float = 0.1,
             smearing: str = 'Gauss',
             ax: 'matplotlib.axes.Axes' = None,
             show: bool = False,
             filename: str = None,
             mplargs: dict = None) -> 'matplotlib.axes.Axes':
        """Simple 1-D plot of DOS data, resampled onto a grid

        If the special key 'label' is present in self.info, this will be set
        as the label for the plotted line (unless overruled in mplargs). The
        label is only seen if a legend is added to the plot (i.e. by calling
        ``ax.legend()``).

        Args:
            npts, xmin, xmax: output data range, as passed to self.sample_grid
            width: Width of broadening kernel for self.sample_grid()
            smearing: selection of broadening kernel for self.sample_grid()
            ax: existing Matplotlib axes object. If not provided, a new figure
                with one set of axes will be created using Pyplot
            show: show the figure on-screen
            filename: if a path is given, save the figure to this file
            mplargs: additional arguments to pass to matplotlib plot command
                (e.g. {'linewidth': 2} for a thicker line).


        Returns:
            Plotting axes. If "ax" was set, this is the same object.
        """

        if mplargs is None:
            mplargs = {}
        if 'label' not in mplargs:
            mplargs.update({'label': self.label_from_info(self.info)})

        return self.sample_grid(npts, xmin=xmin, xmax=xmax,
                                width=width,
                                smearing=smearing
                                ).plot(ax=ax, xmin=xmin, xmax=xmax,
                                       show=show, filename=filename,
                                       mplargs=mplargs)

    @staticmethod
    def label_from_info(info: Dict[str, str]):
        """Generate an automatic legend label from info dict"""
        if 'label' in info:
            return info['label']
        else:
            return '; '.join(map(lambda x: '{}: {}'.format(x[0], x[1]),
                                 info.items()))


class GeneralDOSData(DOSData):
    """Base class for a single series of DOS-like data

    Only the 'info' is a mutable attribute; DOS data is set at init

    This is the base class for DOSData objects that accept/set seperate
    "energies" and "weights" sequences of equal length at init.

    """
    def __init__(self,
                 energies: Union[Sequence[float], np.ndarray],
                 weights: Union[Sequence[float], np.ndarray],
                 info: Info = None) -> None:
        super().__init__(info=info)

        n_entries = len(energies)
        if len(weights) != n_entries:
            raise ValueError("Energies and weights must be the same length")

        # Internally store the data as a np array with two rows; energy, weight
        self._data = np.empty((2, n_entries), dtype=float, order='C')
        self._data[0, :] = energies
        self._data[1, :] = weights

    def get_energies(self) -> np.ndarray:
        return self._data[0, :].copy()

    def get_weights(self) -> np.ndarray:
        return self._data[1, :].copy()

    D = TypeVar('D', bound='GeneralDOSData')

    def copy(self: D) -> D:  # noqa F821
        return type(self)(self.get_energies(), self.get_weights(),
                          info=self.info.copy())


class RawDOSData(GeneralDOSData):
    """A collection of weighted delta functions which sum to form a DOS

    This is an appropriate data container for density-of-states (DOS) or
    spectral data where the energy data values not form a known regular
    grid. The data may be plotted or resampled for further analysis using the
    sample_grid() and plot() methods. Multiple weights at the same
    energy value will *only* be combined in output data, and data stored in
    RawDOSData is never resampled. A plot_deltas() function is also provided
    which plots the raw data.

    Metadata may be stored in the info dict, in which keys and values must be
    strings. This data is used for selecting and combining multiple DOSData
    objects in a DOSCollection object.

    When RawDOSData objects are combined with the addition operator::

      big_dos = raw_dos_1 + raw_dos_2

    the energy and weights data is *concatenated* (i.e. combined without
    sorting or replacement) and the new info dictionary consists of the
    *intersection* of the inputs: only key-value pairs that were common to both
    of the input objects will be retained in the new combined object. For
    example::

      (RawDOSData([x1], [y1], info={'symbol': 'O', 'index': '1'})
       + RawDOSData([x2], [y2], info={'symbol': 'O', 'index': '2'}))

    will yield the equivalent of::

      RawDOSData([x1, x2], [y1, y2], info={'symbol': 'O'})

    """

    def __add__(self, other: 'RawDOSData') -> 'RawDOSData':
        if not isinstance(other, RawDOSData):
            raise TypeError("RawDOSData can only be combined with other "
                            "RawDOSData objects")

        # Take intersection of metadata (i.e. only common entries are retained)
        new_info = dict(set(self.info.items()) & set(other.info.items()))

        # Concatenate the energy/weight data
        new_data = np.concatenate((self._data, other._data), axis=1)

        new_object = RawDOSData([], [], info=new_info)
        new_object._data = new_data

        return new_object

    def plot_deltas(self,
                    ax: 'matplotlib.axes.Axes' = None,
                    show: bool = False,
                    filename: str = None,
                    mplargs: dict = None) -> 'matplotlib.axes.Axes':
        """Simple plot of sparse DOS data as a set of delta functions

        Items at the same x-value can overlap and will not be summed together

        Args:
            ax: existing Matplotlib axes object. If not provided, a new figure
                with one set of axes will be created using Pyplot
            show: show the figure on-screen
            filename: if a path is given, save the figure to this file
            mplargs: additional arguments to pass to matplotlib Axes.vlines
                command (e.g. {'linewidth': 2} for a thicker line).

        Returns:
            Plotting axes. If "ax" was set, this is the same object.
        """

        if mplargs is None:
            mplargs = {}

        with SimplePlottingAxes(ax=ax, show=show, filename=filename) as ax:
            ax.vlines(self.get_energies(), 0, self.get_weights(), **mplargs)

        return ax


class GridDOSData(GeneralDOSData):
    """A collection of regularly-sampled data which represents a DOS

    This is an appropriate data container for density-of-states (DOS) or
    spectral data where the intensity values form a regular grid. This
    is generally the result of sampling or integrating into discrete
    bins, rather than a collection of unique states. The data may be
    plotted or resampled for further analysis using the sample_grid()
    and plot() methods.

    Metadata may be stored in the info dict, in which keys and values must be
    strings. This data is used for selecting and combining multiple DOSData
    objects in a DOSCollection object.

    When RawDOSData objects are combined with the addition operator::

      big_dos = raw_dos_1 + raw_dos_2

    the weights data is *summed* (requiring a consistent energy grid) and the
    new info dictionary consists of the *intersection* of the inputs: only
    key-value pairs that were common to both of the input objects will be
    retained in the new combined object. For example::

      (GridDOSData([0.1, 0.2, 0.3], [y1, y2, y3],
                   info={'symbol': 'O', 'index': '1'})
       + GridDOSData([0.1, 0.2, 0.3], [y4, y5, y6],
                     info={'symbol': 'O', 'index': '2'}))

    will yield the equivalent of::

      GridDOSData([0.1, 0.2, 0.3], [y1+y4, y2+y5, y3+y6], info={'symbol': 'O'})

    """
    def __init__(self,
                 energies: Sequence[float],
                 weights: Sequence[float],
                 info: Info = None) -> None:
        n_entries = len(energies)
        if not np.allclose(energies,
                           np.linspace(energies[0], energies[-1], n_entries)):
            raise ValueError("Energies must be an evenly-spaced 1-D grid")

        if len(weights) != n_entries:
            raise ValueError("Energies and weights must be the same length")

        super().__init__(energies, weights, info=info)
        self.sigma_cutoff = 3

    def _check_spacing(self, width) -> float:
        current_spacing = self._data[0, 1] - self._data[0, 0]
        if width < (2 * current_spacing):
            warnings.warn(
                "The broadening width is small compared to the original "
                "sampling density. The results are unlikely to be smooth.")
        return current_spacing

    def _sample(self,
                energies: Sequence[float],
                width: float = 0.1,
                smearing: str = 'Gauss') -> np.ndarray:
        current_spacing = self._check_spacing(width)
        return super()._sample(energies=energies,
                               width=width, smearing=smearing
                               ) * current_spacing

    def __add__(self, other: 'GridDOSData') -> 'GridDOSData':
        # This method uses direct access to the mutable energy and weights data
        # (self._data) to avoid redundant copying operations. The __init__
        # method of GridDOSData will write this to a new array, so on this
        # occasion it is safe to pass references to the mutable data.

        if not isinstance(other, GridDOSData):
            raise TypeError("GridDOSData can only be combined with other "
                            "GridDOSData objects")
        if len(self._data[0, :]) != len(other.get_energies()):
            raise ValueError("Cannot add GridDOSData objects with different-"
                             "length energy grids.")

        if not np.allclose(self._data[0, :], other.get_energies()):
            raise ValueError("Cannot add GridDOSData objects with different "
                             "energy grids.")

        # Take intersection of metadata (i.e. only common entries are retained)
        new_info = dict(set(self.info.items()) & set(other.info.items()))

        # Concatenate the energy/weight data
        new_weights = self._data[1, :] + other.get_weights()

        new_object = GridDOSData(self._data[0, :], new_weights,
                                 info=new_info)
        return new_object

    @staticmethod
    def _interpret_smearing_args(npts: int,
                                 width: float = None,
                                 default_npts: int = 1000,
                                 default_width: float = 0.1
                                 ) -> Tuple[int, Union[float, None]]:
        """Figure out what the user intended: resample if width provided"""
        if width is not None:
            if npts:
                return (npts, float(width))
            else:
                return (default_npts, float(width))
        else:
            if npts:
                return (npts, default_width)
            else:
                return (0, None)

    def plot(self,
             npts: int = 0,
             xmin: float = None,
             xmax: float = None,
             width: float = None,
             smearing: str = 'Gauss',
             ax: 'matplotlib.axes.Axes' = None,
             show: bool = False,
             filename: str = None,
             mplargs: dict = None) -> 'matplotlib.axes.Axes':
        """Simple 1-D plot of DOS data

        Data will be resampled onto a grid with `npts` points unless `npts` is
        set to zero, in which case:

        - no resampling takes place
        - `width` and `smearing` are ignored
        - `xmin` and `xmax` affect the axis limits of the plot, not the
          underlying data.

        If the special key 'label' is present in self.info, this will be set
        as the label for the plotted line (unless overruled in mplargs). The
        label is only seen if a legend is added to the plot (i.e. by calling
        ``ax.legend()``).

        Args:
            npts, xmin, xmax: output data range, as passed to self.sample_grid
            width: Width of broadening kernel, passed to self.sample_grid().
                If no npts was set but width is set, npts will be set to 1000.
            smearing: selection of broadening kernel for self.sample_grid()
            ax: existing Matplotlib axes object. If not provided, a new figure
                with one set of axes will be created using Pyplot
            show: show the figure on-screen
            filename: if a path is given, save the figure to this file
            mplargs: additional arguments to pass to matplotlib plot command
                (e.g. {'linewidth': 2} for a thicker line).

        Returns:
            Plotting axes. If "ax" was set, this is the same object.
        """

        npts, width = self._interpret_smearing_args(npts, width)

        if mplargs is None:
            mplargs = {}
        if 'label' not in mplargs:
            mplargs.update({'label': self.label_from_info(self.info)})

        if npts:
            assert isinstance(width, float)
            dos = self.sample_grid(npts, xmin=xmin,
                                   xmax=xmax, width=width,
                                   smearing=smearing)
        else:
            dos = self

        energies, intensity = dos.get_energies(), dos.get_weights()

        with SimplePlottingAxes(ax=ax, show=show, filename=filename) as ax:
            ax.plot(energies, intensity, **mplargs)
            ax.set_xlim(left=xmin, right=xmax)

        return ax