1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
import numpy as np
import pytest
from ase.build import bulk
from ase.calculators.qmmm import ForceQMMM, RescaledCalculator
from ase.eos import EquationOfState
from ase.optimize import FIRE
from ase.neighborlist import neighbor_list
from ase.geometry import get_distances
@pytest.fixture
def mm_calc():
from ase.calculators.lj import LennardJones
bulk_at = bulk("Cu", cubic=True)
sigma = (bulk_at * 2).get_distance(0, 1) * (2. ** (-1. / 6))
return LennardJones(sigma=sigma, epsilon=0.05)
@pytest.fixture
def qm_calc():
from ase.calculators.emt import EMT
return EMT()
@pytest.fixture
def bulk_at():
bulk_at = bulk("Cu", cubic=True)
return bulk_at
@pytest.mark.slow
def test_qm_buffer_mask(qm_calc, mm_calc, bulk_at):
"""
test number of atoms in qm_buffer_mask for
spherical region in a fully periodic cell
also tests that "region" array returns the same mapping
"""
alat = bulk_at.cell[0, 0]
N_cell_geom = 10
at0 = bulk_at * N_cell_geom
r = at0.get_distances(0, np.arange(len(at0)), mic=True)
print("N_cell", N_cell_geom, 'N_MM', len(at0), "Size", N_cell_geom * alat)
qm_rc = 5.37 # cutoff for EMC()
for R_QM in [1.0e-3, # one atom in the center
alat / np.sqrt(2.0) + 1.0e-3, # should give 12 nearest
# neighbours + central atom
alat + 1.0e-3]: # should give 18 neighbours + central atom
at = at0.copy()
qm_mask = r < R_QM
qm_buffer_mask_ref = r < 2 * qm_rc + R_QM
# exclude atoms that are too far (in case of non spherical region)
# this is the old way to do it
_, r_qm_buffer = get_distances(at.positions[qm_buffer_mask_ref],
at.positions[qm_mask], at.cell, at.pbc)
updated_qm_buffer_mask = np.ones_like(at[qm_buffer_mask_ref])
for i, r_qm in enumerate(r_qm_buffer):
if r_qm.min() > 2 * qm_rc:
updated_qm_buffer_mask[i] = False
qm_buffer_mask_ref[qm_buffer_mask_ref] = updated_qm_buffer_mask
'''
print(f'R_QM {R_QM} N_QM {qm_mask.sum()}')
print(f'R_QM + buffer: {2 * qm_rc + R_QM:.2f}'
f' N_QM_buffer {qm_buffer_mask_ref.sum()}')
print(f' N_total: {len(at)}')
'''
qmmm = ForceQMMM(at, qm_mask, qm_calc, mm_calc, buffer_width=2 * qm_rc)
# build qm_buffer_mask and test it
qmmm.initialize_qm_buffer_mask(at)
# print(f' Calculator N_QM_buffer:'
# f' {qmmm.qm_buffer_mask.sum().sum()}')
assert qmmm.qm_buffer_mask.sum() == qm_buffer_mask_ref.sum()
# same test for qmmm.get_cluster()
qm_cluster = qmmm.get_qm_cluster(at)
assert len(qm_cluster) == qm_buffer_mask_ref.sum()
# test region mappings
region = qmmm.get_region_from_masks(at)
qm_mask_region = region == "QM"
assert qm_mask_region.sum() == qm_mask.sum()
buffer_mask_region = region == "buffer"
assert qm_mask_region.sum() + \
buffer_mask_region.sum() == qm_buffer_mask_ref.sum()
def compare_qm_cell_and_pbc(qm_calc, mm_calc, bulk_at,
test_size=4,
expected_pbc=np.array([True, True, True]),
buffer_width=5 * 3.61):
"""
test qm cell shape and choice of pbc:
make a non-periodic pdc in a direction
if qm_radius + buffer is larger than the original cell
keep the periodic cell otherwise i. e. if cell[i, i] > qm_radius + buffer
the scenario is controlled by the test_size used to create at0
as well as buffer_width.
If the size of the at0 is larger than the r_qm + buffer + vacuum
the cell stays periodic and the size is the same is original
otherwise cell is non-periodic and size is different.
"""
alat = bulk_at.cell[0, 0]
at0 = bulk_at * test_size
r = at0.get_distances(0, np.arange(len(at0)), mic=True)
# should give 12 nearest neighbours + atom in the center
R_QM = alat / np.sqrt(2.0) + 1.0e-3
qm_mask = r < R_QM
qmmm = ForceQMMM(at0, qm_mask, qm_calc, mm_calc,
buffer_width=buffer_width)
# equal to 1 alat
# build qm_buffer_mask to build the cell
qmmm.initialize_qm_buffer_mask(at0)
qm_cluster = qmmm.get_qm_cluster(at0)
# test if qm pbc match expected in qmmm.get_cluster()
assert all(qm_cluster.pbc == expected_pbc)
# test the cell size for qmmm.get_qm_cluster()
if not all(expected_pbc): # at least one F. avoid comparing empty arrays
assert not all(qm_cluster.cell.lengths()[~expected_pbc] ==
at0.cell.lengths()[~expected_pbc])
if any(expected_pbc): # at least one T. avoid comparing empty arrays
np.testing.assert_allclose(qm_cluster.cell.lengths()[expected_pbc],
at0.cell.lengths()[expected_pbc])
@pytest.mark.parametrize("kwargs",
[ # test the case of a cluster in
# a fully periodic cell:
# fist qm_radius + buffer > cell,
# thus should give a cluster with pbc=[T, T, T]
# (qm cluster is the same as the original cell)'''
{"test_size": 4,
"expected_pbc": np.array([True, True, True]),
"buffer_width": 5 * 3.61},
# test the case of a spherical
# cluster in a fully periodic cell:
# fist qm_radius + buffer < cell,
# thus should give a cluster with pbc=[F, F, F]
# (qm cluster cell must be DIFFERENT
# form the original cell)
{"test_size": 4,
"expected_pbc": np.array([False, False, False]),
"buffer_width": 3.61},
# testing the mixed scenario when the qm_cluster
# is periodic in one direction
# (relevant for dislocation or crack cells)
# (qm cluster cell must be the same as
# the original cell in periodic direction
# and DIFFERENT form the original cell
# in non periodic directions
# three tests for three different directions
{"test_size": [4, 4, 1],
"expected_pbc": np.array([False, False, True]),
"buffer_width": 3.61},
{"test_size": [4, 1, 4],
"expected_pbc": np.array([False, True, False]),
"buffer_width": 3.61},
{"test_size": [1, 4, 4],
"expected_pbc": np.array([True, False, False]),
"buffer_width":3.61},
# testing scenario periodic in one direction
# and non periodic in the other two
# relevant for surfaces.
# testing three different scenarios
{"test_size": [1, 1, 4],
"expected_pbc": np.array([True, True, False]),
"buffer_width": 3.61},
{"test_size": [4, 1, 1],
"expected_pbc": np.array([False, True, True]),
"buffer_width": 3.61},
{"test_size": [1, 4, 1],
"expected_pbc": np.array([True, False, True]),
"buffer_width": 3.61}
])
def test_qm_pbc(kwargs, qm_calc, mm_calc, bulk_at):
kwargs1 = {}
kwargs1.update(kwargs)
compare_qm_cell_and_pbc(qm_calc, mm_calc, bulk_at, **kwargs1)
def test_rescaled_calculator():
"""
Test rescaled RescaledCalculator() by computing lattice constant
and bulk modulus using fit to equation of state
and comparing it to the desired values
"""
from ase.calculators.eam import EAM
from ase.units import GPa
# A simple empirical N-body potential for
# transition metals by M. W. Finnis & J.E. Sinclair
# https://www.tandfonline.com/doi/abs/10.1080/01418618408244210
# using analytical formulation in order to avoid extra file dependence
# All the constants are taken from the paper.
# Please refer to the paper for more details
def pair_potential(r):
"""
returns the pair potential as a equation 27 in pair_potential
r - numpy array with the values of distance to compute the pair function
"""
# parameters for W
c = 3.25
c0 = 47.1346499
c1 = -33.7665655
c2 = 6.2541999
energy = (c0 + c1 * r + c2 * r ** 2.0) * (r - c) ** 2.0
energy[r > c] = 0.0
return energy
def cohesive_potential(r):
"""
returns the cohesive potential as a equation 28 in pair_potential
r - numpy array with the values of distance to compute the pair function
"""
# parameters for W
d = 4.400224
rho = (r - d) ** 2.0
rho[r > d] = 0.0
return rho
def embedding_function(rho):
"""
returns energy as a function of electronic density from eq 3
"""
A = 1.896373
energy = - A * np.sqrt(rho)
return energy
cutoff = 4.400224
W_FS = EAM(elements=['W'], embedded_energy=np.array([embedding_function]),
electron_density=np.array([[cohesive_potential]]),
phi=np.array([[pair_potential]]), cutoff=cutoff, form='fs')
# compute MM and QM equations of state
def strain(at, e, calc):
at = at.copy()
at.set_cell((1.0 + e) * at.cell, scale_atoms=True)
at.calc = calc
v = at.get_volume()
e = at.get_potential_energy()
return v, e
# desired DFT values
a0_qm = 3.18556
C11_qm = 522 # pm 15 GPa
C12_qm = 193 # pm 5 GPa
B_qm = (C11_qm + 2.0 * C12_qm) / 3.0
bulk_at = bulk("W", cubic=True)
mm_calc = W_FS
eps = np.linspace(-0.01, 0.01, 13)
v_mm, E_mm = zip(*[strain(bulk_at, e, mm_calc) for e in eps])
eos_mm = EquationOfState(v_mm, E_mm)
v0_mm, E0_mm, B_mm = eos_mm.fit()
B_mm /= GPa
a0_mm = v0_mm ** (1.0 / 3.0)
mm_r = RescaledCalculator(mm_calc, a0_qm, B_qm, a0_mm, B_mm)
bulk_at = bulk("W", cubic=True, a=a0_qm)
v_mm_r, E_mm_r = zip(*[strain(bulk_at, e, mm_r) for e in eps])
eos_mm_r = EquationOfState(v_mm_r, E_mm_r)
v0_mm_r, E0_mm_r, B_mm_r = eos_mm_r.fit()
B_mm_r /= GPa
a0_mm_r = v0_mm_r ** (1.0 / 3)
# check match of a0 and B after rescaling is adequate
# 0.1% error in lattice constant and bulk modulus
assert abs((a0_mm_r - a0_qm) / a0_qm) < 1e-3
assert abs((B_mm_r - B_qm) / B_qm) < 1e-3
@pytest.mark.slow
def test_forceqmmm(qm_calc, mm_calc, bulk_at):
# parameters
N_cell = 2
R_QMs = np.array([3, 7])
sigma = (bulk_at * 2).get_distance(0, 1) * (2. ** (-1. / 6))
at0 = bulk_at * N_cell
r = at0.get_distances(0, np.arange(1, len(at0)), mic=True)
print(len(r))
del at0[0] # introduce a vacancy
print("N_cell", N_cell, 'N_MM', len(at0),
"Size", N_cell * bulk_at.cell[0, 0])
ref_at = at0.copy()
ref_at.calc = qm_calc
opt = FIRE(ref_at)
opt.run(fmax=1e-3)
u_ref = ref_at.positions - at0.positions
us = []
for R_QM in R_QMs:
at = at0.copy()
qm_mask = r < R_QM
qm_buffer_mask_ref = r < 2 * qm_calc.rc + R_QM
print(f'R_QM {R_QM} N_QM {qm_mask.sum()}')
print(f'R_QM + buffer: {2 * qm_calc.rc + R_QM:.2f}'
f' N_QM_buffer {qm_buffer_mask_ref.sum()}')
print(f' N_total: {len(at)}')
# Warning: Small size of the cell and large size of the buffer
# lead to the qm calculation performed on the whole cell.
qmmm = ForceQMMM(at, qm_mask, qm_calc, mm_calc,
buffer_width=2 * qm_calc.rc)
qmmm.initialize_qm_buffer_mask(at)
at.calc = qmmm
opt = FIRE(at)
opt.run(fmax=1e-3)
us.append(at.positions - at0.positions)
# compute error in energy norm |\nabla u - \nabla u_ref|
def strain_error(at0, u_ref, u, cutoff, mask):
I, J = neighbor_list('ij', at0, cutoff)
I, J = np.array([(i, j) for i, j in zip(I, J) if mask[i]]).T
v = u_ref - u
dv = np.linalg.norm(v[I, :] - v[J, :], axis=1)
return np.linalg.norm(dv)
du_global = [strain_error(at0, u_ref, u, 1.5 * sigma,
np.ones(len(r))) for u in us]
du_local = [strain_error(at0, u_ref, u, 1.5 * sigma, r < 3.0) for u in us]
print('du_local', du_local)
print('du_global', du_global)
# check local errors are monotonically decreasing
assert np.all(np.diff(du_local) < 0)
# check global errors are monotonically converging
assert np.all(np.diff(du_global) < 0)
# biggest QM/MM should match QM result
assert du_local[-1] < 1e-10
assert du_global[-1] < 1e-10
@pytest.fixture
def at0(qm_calc, mm_calc, bulk_at):
alat = bulk_at.cell[0, 0]
at0 = bulk_at * 5
r = at0.get_distances(0, np.arange(len(at0)), mic=True)
# should give 12 nearest neighbours + atom in the center
R_QM = alat / np.sqrt(2.0) + 1.0e-3
qm_mask = r < R_QM
qmmm = ForceQMMM(at0, qm_mask, qm_calc, mm_calc,
buffer_width=3.61)
qmmm.initialize_qm_buffer_mask(at0)
at0.calc = qmmm
return at0
def test_export_xyz(at0, testdir):
"""
test the export_extxyz function and checks the region adn forces arrays
"""
# evaluating forces to test exporting of forces
forces = at0.get_forces()
filename = "qmmm_export_test.xyz"
qmmm = at0.calc
qmmm.export_extxyz(filename=filename)
from ase.io import read
read_atoms = read(filename)
assert "region" in read_atoms.arrays
original_region = qmmm.get_region_from_masks()
assert all(original_region == read_atoms.get_array("region"))
assert "forces" in read_atoms.arrays
# absolute tolerance for comparing forces close to zero
np.testing.assert_allclose(forces, read_atoms.get_forces(), atol=1.0e-6)
def test_set_masks_from_region(at0, qm_calc, mm_calc):
"""
Test setting masks from region array
"""
qmmm = at0.calc
region = qmmm.get_region_from_masks(at0)
# initialise another qmmm with different masks
r = at0.get_distances(0, np.arange(len(at0)), mic=True)
R_QM = 1.0e-3
qm_mask = r < R_QM
test_qmmm = ForceQMMM(at0, qm_mask, qm_calc, mm_calc,
buffer_width=3.61)
# assert that number of qm atoms is different
assert not (np.count_nonzero(qmmm.qm_selection_mask) ==
np.count_nonzero(test_qmmm.qm_selection_mask))
test_qmmm.set_masks_from_region(region)
assert all(test_qmmm.qm_selection_mask == qmmm.qm_selection_mask)
assert all(test_qmmm.qm_buffer_mask == qmmm.qm_buffer_mask)
test_region = test_qmmm.get_region_from_masks(at0)
assert all(region == test_region)
def test_import_xyz(at0, qm_calc, mm_calc, testdir):
"""
test the import_extxyz function and checks the mapping
"""
filename = "qmmm_export_test.xyz"
qmmm = at0.calc
qmmm.export_extxyz(filename=filename, atoms=at0)
imported_qmmm = ForceQMMM.import_extxyz(filename, qm_calc, mm_calc)
assert all(imported_qmmm.qm_selection_mask == qmmm.qm_selection_mask)
assert all(imported_qmmm.qm_buffer_mask == qmmm.qm_buffer_mask)
|