File: test_wannier.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (469 lines) | stat: -rw-r--r-- 16,081 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import pytest
import numpy as np
from ase.transport.tools import dagger, normalize
from ase.dft.kpoints import monkhorst_pack
from ase.build import molecule
from ase.io.cube import read_cube
from ase.lattice import CUB, FCC, BCC, TET, BCT, ORC, ORCF, ORCI, ORCC, HEX, \
    RHL, MCL, MCLC, TRI, OBL, HEX2D, RECT, CRECT, SQR, LINE
from ase.dft.wannier import gram_schmidt, lowdin, random_orthogonal_matrix, \
    neighbor_k_search, calculate_weights, steepest_descent, md_min, \
    rotation_from_projection, Wannier


calc = pytest.mark.calculator


@pytest.fixture()
def rng():
    return np.random.RandomState(0)


@pytest.fixture(scope='module')
def _std_calculator_gpwfile(tmp_path_factory, factories):
    factories.require('gpaw')
    import gpaw
    atoms = molecule('H2', pbc=True)
    atoms.center(vacuum=3.)
    gpw_path = tmp_path_factory.mktemp('sub') / 'dumpfile.gpw'
    calc = gpaw.GPAW(gpts=(8, 8, 8), nbands=4, kpts=(2, 2, 2),
                     symmetry='off', txt=None)
    atoms.calc = calc
    atoms.get_potential_energy()
    calc.write(gpw_path, mode='all')
    return gpw_path


@pytest.fixture(scope='module')
def std_calculator(_std_calculator_gpwfile):
    import gpaw
    return gpaw.GPAW(_std_calculator_gpwfile, txt=None)


@pytest.fixture
def wan(rng, std_calculator):
    def _wan(gpts=(8, 8, 8),
             atoms=None,
             calc=None,
             nwannier=2,
             fixedstates=None,
             initialwannier='bloch',
             kpts=(1, 1, 1),
             file=None,
             rng=rng,
             full_calc=False,
             std_calc=True):
        if std_calc and calc is None and atoms is None:
            calc = std_calculator
        else:
            if calc is None:
                gpaw = pytest.importorskip('gpaw')
                calc = gpaw.GPAW(gpts=gpts, nbands=nwannier, kpts=kpts,
                                 symmetry='off', txt=None)
            if atoms is None and not full_calc:
                pbc = (np.array(kpts) > 1).any()
                atoms = molecule('H2', pbc=pbc)
                atoms.center(vacuum=3.)
            if not full_calc:
                atoms.calc = calc
                atoms.get_potential_energy()
        return Wannier(nwannier=nwannier,
                       fixedstates=fixedstates,
                       calc=calc,
                       initialwannier=initialwannier,
                       file=None,
                       rng=rng)
    return _wan


def bravais_lattices():
    return [CUB(1), FCC(1), BCC(1), TET(1, 2), BCT(1, 2),
            ORC(1, 2, 3), ORCF(1, 2, 3), ORCI(1, 2, 3),
            ORCC(1, 2, 3), HEX(1, 2), RHL(1, 110),
            MCL(1, 2, 3, 70), MCLC(1, 2, 3, 70),
            TRI(1, 2, 3, 60, 70, 80), OBL(1, 2, 110),
            HEX2D(1), RECT(1, 2), CRECT(1, 70), SQR(1),
            LINE(1)]


class Paraboloid:

    def __init__(self, pos=(10., 10., 10.), shift=1.):
        self.pos = np.array(pos, dtype=complex)
        self.shift = shift

    def get_gradients(self):
        return 2 * self.pos

    def step(self, dF, updaterot=True, updatecoeff=True):
        self.pos -= dF

    def get_functional_value(self):
        return np.sum(self.pos**2) + self.shift


def orthonormality_error(matrix):
    return np.abs(dagger(matrix) @ matrix - np.eye(len(matrix))).max()


def orthogonality_error(matrix):
    errors = []
    for i in range(len(matrix)):
        for j in range(i + 1, len(matrix)):
            errors.append(np.abs(matrix[i].T @ matrix[j]))
    return np.max(errors)


def normalization_error(matrix):
    old_matrix = matrix.copy()
    normalize(matrix)
    return np.abs(matrix - old_matrix).max()


def test_gram_schmidt(rng):
    matrix = rng.rand(4, 4)
    assert orthonormality_error(matrix) > 1
    gram_schmidt(matrix)
    assert orthonormality_error(matrix) < 1e-12


def test_lowdin(rng):
    matrix = rng.rand(4, 4)
    assert orthonormality_error(matrix) > 1
    lowdin(matrix)
    assert orthonormality_error(matrix) < 1e-12


def test_random_orthogonal_matrix(rng):
    dim = 4
    matrix = random_orthogonal_matrix(dim, rng=rng, real=True)
    assert matrix.shape[0] == matrix.shape[1]
    assert orthonormality_error(matrix) < 1e-12
    matrix = random_orthogonal_matrix(dim, rng=rng, real=False)
    assert matrix.shape[0] == matrix.shape[1]
    assert orthonormality_error(matrix) < 1e-12


def test_neighbor_k_search():
    kpt_kc = monkhorst_pack((4, 4, 4))
    Gdir_dc = [[1, 0, 0], [0, 1, 0], [0, 0, 1],
               [1, 1, 0], [1, 0, 1], [0, 1, 1]]
    tol = 1e-4
    for d, Gdir_c in enumerate(Gdir_dc):
        for k, k_c in enumerate(kpt_kc):
            kk, k0 = neighbor_k_search(k_c, Gdir_c, kpt_kc, tol=tol)
            assert np.linalg.norm(kpt_kc[kk] - k_c - Gdir_c + k0) < tol


@pytest.mark.parametrize('lat', bravais_lattices())
def test_calculate_weights(lat):
    # Equation from Berghold et al. PRB v61 n15 (2000)
    tol = 1e-5
    cell = lat.tocell()
    g = cell @ cell.T
    w, G = calculate_weights(cell, normalize=False)

    errors = []
    for i in range(3):
        for j in range(3):
            errors.append(np.abs((w * G[:, i] @ G[:, j]) - g[i, j]))

    assert np.max(errors) < tol


def test_steepest_descent():
    tol = 1e-6
    step = 0.1
    func = Paraboloid(pos=np.array([10, 10, 10], dtype=float), shift=1.)
    steepest_descent(func=func, step=step, tolerance=tol, verbose=False)
    assert func.get_functional_value() == pytest.approx(1, abs=1e-5)


def test_md_min():
    tol = 1e-8
    step = 0.1
    func = Paraboloid(pos=np.array([10, 10, 10], dtype=complex), shift=1.)
    md_min(func=func, step=step, tolerance=tol, verbose=False)
    assert func.get_functional_value() == pytest.approx(1, abs=1e-5)


def test_rotation_from_projection(rng):
    proj_nw = rng.rand(6, 4)
    assert orthonormality_error(proj_nw[:int(min(proj_nw.shape))]) > 1
    U_ww, C_ul = rotation_from_projection(proj_nw, fixed=2, ortho=True)
    assert orthonormality_error(U_ww) < 1e-10, 'U_ww not unitary'
    assert orthogonality_error(C_ul.T) < 1e-10, 'C_ul columns not orthogonal'
    assert normalization_error(C_ul) < 1e-10, 'C_ul not normalized'
    U_ww, C_ul = rotation_from_projection(proj_nw, fixed=2, ortho=False)
    assert normalization_error(U_ww) < 1e-10, 'U_ww not normalized'


def test_save(tmpdir, wan):
    wanf = wan(nwannier=4, fixedstates=2, initialwannier='bloch')
    picklefile = tmpdir.join('wanf.pickle')
    f1 = wanf.get_functional_value()
    wanf.save(picklefile)
    wanf.initialize(file=picklefile, initialwannier='bloch')
    assert pytest.approx(f1) == wanf.get_functional_value()


# The following test always fails because get_radii() is broken.
@pytest.mark.parametrize('lat', bravais_lattices())
def test_get_radii(lat, std_calculator, wan):
    if ((lat.tocell() == FCC(a=1).tocell()).all() or
            (lat.tocell() == ORCF(a=1, b=2, c=3).tocell()).all()):
        pytest.skip("lattices not supported, yet")
    atoms = molecule('H2', pbc=True)
    atoms.cell = lat.tocell()
    atoms.center(vacuum=3.)
    calc = std_calculator
    wanf = wan(nwannier=4, fixedstates=2, atoms=atoms, calc=calc,
               initialwannier='bloch', full_calc=True)
    assert not (wanf.get_radii() == 0).all()


def test_get_functional_value(wan):
    # Only testing if the functional scales with the number of functions
    wan1 = wan(nwannier=3)
    f1 = wan1.get_functional_value()
    wan2 = wan(nwannier=4)
    f2 = wan2.get_functional_value()
    assert f1 < f2


@calc('gpaw')
def test_get_centers(factory):
    # Rough test on the position of the Wannier functions' centers
    gpaw = pytest.importorskip('gpaw')
    calc = gpaw.GPAW(gpts=(32, 32, 32), nbands=4, txt=None)
    atoms = molecule('H2', calculator=calc)
    atoms.center(vacuum=3.)
    atoms.get_potential_energy()
    wanf = Wannier(nwannier=2, calc=calc, initialwannier='bloch')
    centers = wanf.get_centers()
    com = atoms.get_center_of_mass()
    assert np.abs(centers - [com, com]).max() < 1e-4


def test_write_cube(wan):
    atoms = molecule('H2')
    atoms.center(vacuum=3.)
    wanf = wan(atoms=atoms)
    index = 0
    # It returns some errors when using file objects, so we use simple filename
    cubefilename = 'wanf.cube'
    wanf.write_cube(index, cubefilename)
    with open(cubefilename, mode='r') as inputfile:
        content = read_cube(inputfile)
    assert pytest.approx(content['atoms'].cell.array) == atoms.cell.array
    assert pytest.approx(content['data']) == wanf.get_function(index)


def test_localize(wan):
    wanf = wan(initialwannier='random')
    fvalue = wanf.get_functional_value()
    wanf.localize()
    assert wanf.get_functional_value() > fvalue


def test_get_spectral_weight_bloch(wan):
    nwannier = 4
    wanf = wan(initialwannier='bloch', nwannier=nwannier)
    for i in range(nwannier):
        assert wanf.get_spectral_weight(i)[:, i].sum() == pytest.approx(1)


def test_get_spectral_weight_random(wan, rng):
    nwannier = 4
    wanf = wan(initialwannier='random', nwannier=nwannier, rng=rng)
    for i in range(nwannier):
        assert wanf.get_spectral_weight(i).sum() == pytest.approx(1)


def test_get_pdos(wan):
    nwannier = 4
    gpaw = pytest.importorskip('gpaw')
    calc = gpaw.GPAW(gpts=(16, 16, 16), nbands=nwannier, txt=None)
    atoms = molecule('H2')
    atoms.center(vacuum=3.)
    atoms.calc = calc
    atoms.get_potential_energy()
    wanf = wan(atoms=atoms, calc=calc,
               nwannier=nwannier, initialwannier='bloch')
    eig_n = calc.get_eigenvalues()
    for i in range(nwannier):
        pdos_n = wanf.get_pdos(w=i, energies=eig_n, width=0.001)
        assert pdos_n[i] != pytest.approx(0)


def test_translate(wan, std_calculator):
    nwannier = 2
    calc = std_calculator
    atoms = calc.get_atoms()
    wanf = wan(nwannier=nwannier, initialwannier='bloch')
    wanf.translate_all_to_cell(cell=[0, 0, 0])
    c0_w = wanf.get_centers()
    for i in range(nwannier):
        c2_w = np.delete(wanf.get_centers(), i, 0)
        wanf.translate(w=i, R=[1, 1, 1])
        c1_w = wanf.get_centers()
        assert np.linalg.norm(c1_w[i] - c0_w[i]) == \
            pytest.approx(np.linalg.norm(atoms.cell.array.diagonal()))
        c1_w = np.delete(c1_w, i, 0)
        assert c1_w == pytest.approx(c2_w)


def test_translate_to_cell(wan, std_calculator):
    nwannier = 2
    calc = std_calculator
    atoms = calc.get_atoms()
    wanf = wan(nwannier=nwannier, initialwannier='bloch')
    for i in range(nwannier):
        wanf.translate_to_cell(w=i, cell=[0, 0, 0])
        c0_w = wanf.get_centers()
        assert (c0_w[i] < atoms.cell.array.diagonal()).all()
        wanf.translate_to_cell(w=i, cell=[1, 1, 1])
        c1_w = wanf.get_centers()
        assert (c1_w[i] > atoms.cell.array.diagonal()).all()
        assert np.linalg.norm(c1_w[i] - c0_w[i]) == \
            pytest.approx(np.linalg.norm(atoms.cell.array.diagonal()))
        c0_w = np.delete(c0_w, i, 0)
        c1_w = np.delete(c1_w, i, 0)
        assert c0_w == pytest.approx(c1_w)


def test_translate_all_to_cell(wan, std_calculator):
    nwannier = 2
    calc = std_calculator
    atoms = calc.get_atoms()
    wanf = wan(nwannier=nwannier, initialwannier='bloch')
    wanf.translate_all_to_cell(cell=[0, 0, 0])
    c0_w = wanf.get_centers()
    assert (c0_w < atoms.cell.array.diagonal()).all()
    wanf.translate_all_to_cell(cell=[1, 1, 1])
    c1_w = wanf.get_centers()
    assert (c1_w > atoms.cell.array.diagonal()).all()
    for i in range(nwannier):
        assert np.linalg.norm(c1_w[i] - c0_w[i]) == \
            pytest.approx(np.linalg.norm(atoms.cell.array.diagonal()))


def test_distances(wan, std_calculator):
    nwannier = 2
    calc = std_calculator
    atoms = calc.get_atoms()
    wanf = wan(nwannier=nwannier, initialwannier='bloch')
    cent_w = wanf.get_centers()
    dist_ww = wanf.distances([0, 0, 0])
    dist1_ww = wanf.distances([1, 1, 1])
    for i in range(nwannier):
        assert dist_ww[i, i] == pytest.approx(0)
        assert dist1_ww[i, i] == pytest.approx(np.linalg.norm(atoms.cell.array))
        for j in range(i + 1, nwannier):
            assert dist_ww[i, j] == dist_ww[j, i]
            assert dist_ww[i, j] == \
                pytest.approx(np.linalg.norm(cent_w[i] - cent_w[j]))


def test_get_hopping_bloch(wan):
    nwannier = 4
    wanf = wan(nwannier=nwannier, initialwannier='bloch')
    hop0_ww = wanf.get_hopping([0, 0, 0])
    hop1_ww = wanf.get_hopping([1, 1, 1])
    for i in range(nwannier):
        assert hop0_ww[i, i] != 0
        assert hop1_ww[i, i] != 0
        assert np.abs(hop1_ww[i, i]) < np.abs(hop0_ww[i, i])
        for j in range(i + 1, nwannier):
            assert hop0_ww[i, j] == 0
            assert hop1_ww[i, j] == 0
            assert hop0_ww[i, j] == hop0_ww[j, i]
            assert hop1_ww[i, j] == hop1_ww[j, i]


def test_get_hopping_random(wan, rng):
    nwannier = 4
    wanf = wan(nwannier=nwannier, initialwannier='random')
    hop0_ww = wanf.get_hopping([0, 0, 0])
    hop1_ww = wanf.get_hopping([1, 1, 1])
    for i in range(nwannier):
        for j in range(i + 1, nwannier):
            assert np.abs(hop0_ww[i, j]) == pytest.approx(np.abs(hop0_ww[j, i]))
            assert np.abs(hop1_ww[i, j]) == pytest.approx(np.abs(hop1_ww[j, i]))


def test_get_hamiltonian_bloch(wan):
    nwannier = 4
    atoms = molecule('H2', pbc=True)
    atoms.center(vacuum=3.)
    kpts = (2, 2, 2)
    Nk = kpts[0] * kpts[1] * kpts[2]
    wanf = wan(atoms=atoms, kpts=kpts,
               nwannier=nwannier, initialwannier='bloch')
    for k in range(Nk):
        H_ww = wanf.get_hamiltonian(k=k)
        for i in range(nwannier):
            assert H_ww[i, i] != 0
            for j in range(i + 1, nwannier):
                assert H_ww[i, j] == 0
                assert H_ww[i, j] == pytest.approx(H_ww[j, i])


def test_get_hamiltonian_random(wan, rng):
    nwannier = 4
    atoms = molecule('H2', pbc=True)
    atoms.center(vacuum=3.)
    kpts = (2, 2, 2)
    Nk = kpts[0] * kpts[1] * kpts[2]
    wanf = wan(atoms=atoms, kpts=kpts, rng=rng,
               nwannier=nwannier, initialwannier='random')
    for k in range(Nk):
        H_ww = wanf.get_hamiltonian(k=k)
        for i in range(nwannier):
            for j in range(i + 1, nwannier):
                assert np.abs(H_ww[i, j]) == pytest.approx(np.abs(H_ww[j, i]))


def test_get_hamiltonian_kpoint(wan, rng, std_calculator):
    nwannier = 4
    calc = std_calculator
    atoms = calc.get_atoms()
    wanf = wan(nwannier=nwannier, initialwannier='random')
    kpts = atoms.cell.bandpath(density=50).cartesian_kpts()
    for kpt_c in kpts:
        H_ww = wanf.get_hamiltonian_kpoint(kpt_c=kpt_c)
        for i in range(nwannier):
            for j in range(i + 1, nwannier):
                assert np.abs(H_ww[i, j]) == pytest.approx(np.abs(H_ww[j, i]))


def test_get_function(wan):
    nwannier = 2
    atoms = molecule('H2', pbc=True)
    atoms.center(vacuum=3.)
    nk = 2
    gpts = np.array([8, 8, 8])
    wanf = wan(atoms=atoms, gpts=gpts, kpts=(nk, nk, nk), rng=rng,
               nwannier=nwannier, initialwannier='bloch')
    assert (wanf.get_function(index=[0, 0]) == 0).all()
    assert wanf.get_function(index=[0, 1]) + wanf.get_function(index=[1, 0]) \
        == pytest.approx(wanf.get_function(index=[1, 1]))
    for i in range(nwannier):
        assert (gpts * nk == wanf.get_function(index=i).shape).all()
        assert (gpts * [1, 2, 3] ==
                wanf.get_function(index=i, repeat=[1, 2, 3]).shape).all()


def test_get_gradients(wan, rng):
    wanf = wan(nwannier=4, fixedstates=2, kpts=(1, 1, 1),
               initialwannier='bloch', std_calc=False)
    # create an anti-hermitian array/matrix
    step = rng.rand(wanf.get_gradients().size) + \
        1.j * rng.rand(wanf.get_gradients().size)
    step *= 1e-8
    step -= dagger(step)
    f1 = wanf.get_functional_value()
    wanf.step(step)
    f2 = wanf.get_functional_value()
    assert (np.abs((f2 - f1) / step).ravel() -
            np.abs(wanf.get_gradients())).max() < 1e-4