File: test_vib.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (527 lines) | stat: -rw-r--r-- 21,709 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import os
from pathlib import Path
import pytest
import numpy as np
from numpy.testing import assert_array_almost_equal

from ase import units, Atoms
import ase.io
from ase.calculators.qmmm import ForceConstantCalculator
from ase.vibrations import Vibrations, VibrationsData
from ase.thermochemistry import IdealGasThermo


class TestHarmonicVibrations:
    """Test the ase.vibrations.Vibrations object using a harmonic calculator
    """
    def setup_method(self):
        self.logfile = 'vibrations-log.txt'

    @pytest.fixture
    def random_dimer(self):
        rng = np.random.RandomState(42)

        d = 1 + 0.5 * rng.rand()
        z_values = rng.randint(1, high=50, size=2)

        hessian = rng.rand(6, 6)
        hessian += hessian.T  # Ensure the random Hessian is symmetric

        atoms = Atoms(z_values, [[0, 0, 0], [0, 0, d]])
        ref_atoms = atoms.copy()
        atoms.calc = ForceConstantCalculator(D=hessian,
                                             ref=ref_atoms,
                                             f0=np.zeros((2, 3)))
        return atoms

    def test_harmonic_vibrations(self, testdir):
        """Check the numerics with a trivial case: one atom in harmonic well"""
        rng = np.random.RandomState(42)

        k = rng.rand()

        ref_atoms = Atoms('H', positions=np.zeros([1, 3]))
        atoms = ref_atoms.copy()
        mass = atoms.get_masses()[0]

        atoms.calc = ForceConstantCalculator(D=np.eye(3) * k,
                                             ref=ref_atoms,
                                             f0=np.zeros((1, 3)))
        vib = Vibrations(atoms, name='harmonic')
        vib.run()
        vib.read()

        expected_energy = (units._hbar  # In J/s
                           * np.sqrt(k  # In eV/A^2
                                     * units._e  # eV -> J
                                     * units.m**2  # A^-2 -> m^-2
                                     / mass  # in amu
                                     / units._amu  # amu^-1 -> kg^-1
                                     )
                           ) / units._e  # J/s -> eV/s

        assert np.allclose(vib.get_energies(), expected_energy)

    def test_consistency_with_vibrationsdata(self, testdir, random_dimer):
        vib = Vibrations(random_dimer, delta=1e-6, nfree=4)
        vib.run()
        vib_data = vib.get_vibrations()

        assert_array_almost_equal(vib.get_energies(),
                                  vib_data.get_energies())

        for mode_index in range(3 * len(vib.atoms)):
            assert_array_almost_equal(vib.get_mode(mode_index),
                                      vib_data.get_modes()[mode_index])

        # Hessian should be close to the ForceConstantCalculator input
        assert_array_almost_equal(random_dimer.calc.D,
                                  vib_data.get_hessian_2d(),
                                  decimal=6)

    def test_json_manipulation(self, testdir, random_dimer):
        vib = Vibrations(random_dimer, name='interrupt')
        vib.run()

        disp_file = Path('interrupt/cache.1x-.json')
        comb_file = Path('interrupt/combined.json')
        assert disp_file.is_file()
        assert not comb_file.is_file()

        # Should do nothing harmful as files are already split
        # (It used to raise an error but this is no longer implemented.)
        vib.split()

        # Build a combined file
        assert vib.combine() == 13

        # Individual displacements should be gone, combination should exist
        assert not disp_file.is_file()
        assert comb_file.is_file()

        # Not allowed to run after data has been combined
        with pytest.raises(RuntimeError):
            vib.run()
        # But reading is allowed
        vib.read()

        # Splitting should fail if any split file already exists
        with open(disp_file, 'w') as fd:
            fd.write("hello")

        with pytest.raises(AssertionError):
            vib.split()

        os.remove(disp_file)

        # Now split() for real: replace .all.json file with displacements
        vib.split()
        assert disp_file.is_file()
        assert not comb_file.is_file()

    def test_vibrations_methods(self, testdir, random_dimer):
        vib = Vibrations(random_dimer)
        vib.run()
        vib_energies = vib.get_energies()

        for image in vib.iterimages():
            assert len(image) == 2

        thermo = IdealGasThermo(vib_energies=vib_energies, geometry='linear',
                                atoms=vib.atoms, symmetrynumber=2, spin=0)
        thermo.get_gibbs_energy(temperature=298.15, pressure=2 * 101325.,
                                verbose=False)

        with open(self.logfile, 'w') as fd:
            vib.summary(log=fd)

        with open(self.logfile, 'rt') as fd:
            log_txt = fd.read()
            assert log_txt == '\n'.join(
                VibrationsData._tabulate_from_energies(vib_energies)) + '\n'

        last_mode = vib.get_mode(-1)
        scale = 0.5
        assert_array_almost_equal(vib.show_as_force(-1, scale=scale,
                                                    show=False).get_forces(),
                                  last_mode * 3 * len(vib.atoms) * scale)

        vib.write_mode(n=3, nimages=5)
        for i in range(3):
            assert not Path('vib.{}.traj'.format(i)).is_file()
        mode_traj = ase.io.read('vib.3.traj', index=':')
        assert len(mode_traj) == 5

        assert_array_almost_equal(mode_traj[0].get_all_distances(),
                                  random_dimer.get_all_distances())
        with pytest.raises(AssertionError):
            assert_array_almost_equal(mode_traj[4].get_all_distances(),
                                      random_dimer.get_all_distances())

        assert vib.clean(empty_files=True) == 0
        assert vib.clean() == 13
        assert len(list(vib.iterimages())) == 13

        d = dict(vib.iterdisplace(inplace=False))

        for name, image in vib.iterdisplace(inplace=True):
            assert d[name] == random_dimer

    def test_vibrations_restart_dir(self, testdir, random_dimer):
        vib = Vibrations(random_dimer)
        vib.run()
        freqs = vib.get_frequencies()
        assert freqs is not None

        # write/read the data from another working directory
        atoms = random_dimer.copy()  # This copy() removes the Calculator

        with ase.utils.workdir('run_from_here', mkdir=True):
            vib = Vibrations(atoms, name=str(Path.cwd().parent / 'vib'))
            assert_array_almost_equal(freqs, vib.get_frequencies())
            assert vib.clean() == 13


class TestVibrationsDataStaticMethods:
    @pytest.mark.parametrize('mask,expected_indices',
                             [([True, True, False, True], [0, 1, 3]),
                              ([False, False], []),
                              ([], []),
                              (np.array([True, True]), [0, 1]),
                              (np.array([False, True, True]), [1, 2]),
                              (np.array([], dtype=bool), [])])
    def test_indices_from_mask(self, mask, expected_indices):
        assert VibrationsData.indices_from_mask(mask) == expected_indices

    def test_tabulate_energies(self):
        # Test the private classmethod _tabulate_from_energies
        # used by public tabulate() method
        energies = np.array([1., complex(2., 1.), complex(1., 1e-3)])

        table = VibrationsData._tabulate_from_energies(energies, im_tol=1e-2)

        for sep_row in 0, 2, 6:
            assert table[sep_row] == '-' * 21
        assert tuple(table[1].strip().split()) == ('#', 'meV', 'cm^-1')

        expected_rows = [
            # energy in eV should be converted to meV and cm-1
            ('0', '1000.0', '8065.5'),
            # Imaginary component over threshold detected
            ('1', '1000.0i', '8065.5i'),
            # Small imaginary component ignored
            ('2', '1000.0', '8065.5')]

        for row, expected in zip(table[3:6], expected_rows):
            assert tuple(row.split()) == expected

        # ZPE = (1 + 2 + 1) / 2  - currently we keep all real parts
        assert table[7].split()[2] == '2.000'
        assert len(table) == 8

    na2 = Atoms('Na2', cell=[2, 2, 2], positions=[[0, 0, 0],
                                                  [1, 1, 1]])
    na2_image_1 = na2.copy()
    na2_image_1.info.update({'mode#': '0',
                             'frequency_cm-1': 8065.5})
    na2_image_1.arrays['mode'] = np.array([[1., 1., 1.],
                                           [0.5, 0.5, 0.5]])

    @pytest.mark.parametrize('kwargs,expected',
                             [(dict(atoms=na2,
                                    energies=[1.],
                                    modes=np.array([[[1., 1., 1.],
                                                     [0.5, 0.5, 0.5]]])),
                               [na2_image_1])
                              ])
    def test_get_jmol_images(self, kwargs, expected):
        # Test the private staticmethod _get_jmol_images
        # used by the public write_jmol_images() method
        from ase.calculators.calculator import compare_atoms

        jmol_images = list(VibrationsData._get_jmol_images(**kwargs))
        assert len(jmol_images) == len(expected)

        for image, reference in zip(jmol_images, expected):
            assert compare_atoms(image, reference) == []
            for key, value in reference.info.items():
                if key == 'frequency_cm-1':
                    assert float(image.info[key]) == pytest.approx(value,
                                                                   abs=0.1)
                else:
                    assert image.info[key] == value


class TestVibrationsData:
    @pytest.fixture
    def random_dimer(self):
        rng = np.random.RandomState(42)

        d = 1 + 0.5 * rng.rand()
        z_values = rng.randint(1, high=50, size=2)

        hessian = rng.rand(6, 6)
        hessian += hessian.T  # Ensure the random Hessian is symmetric

        atoms = Atoms(z_values, [[0, 0, 0], [0, 0, d]])
        ref_atoms = atoms.copy()
        atoms.calc = ForceConstantCalculator(D=hessian,
                                             ref=ref_atoms,
                                             f0=np.zeros((2, 3)))
        return atoms

    @pytest.fixture
    def n2_data(self):
        return{'atoms': Atoms('N2', positions=[[0., 0., 0.05095057],
                                               [0., 0., 1.04904943]]),
               'hessian': np.array([[[[4.67554672e-03, 0.0, 0.0],
                                      [-4.67554672e-03, 0.0, 0.0]],

                                     [[0.0, 4.67554672e-03, 0.0],
                                      [0.0, -4.67554672e-03, 0.0]],

                                     [[0.0, 0.0, 3.90392599e+01],
                                      [0.0, 0.0, -3.90392599e+01]]],

                                    [[[-4.67554672e-03, 0.0, 0.0],
                                      [4.67554672e-03, 0.0, 0.0]],

                                     [[0.0, -4.67554672e-03, 0.0],
                                      [0.0, 4.67554672e-03, 0.0]],

                                     [[0.0, 0.0, -3.90392599e+01],
                                      [0.0, 0.0, 3.90392599e+01]]]]),
               'ref_frequencies': [0.00000000e+00 + 0.j,
                                   6.06775530e-08 + 0.j,
                                   3.62010442e-06 + 0.j,
                                   1.34737571e+01 + 0.j,
                                   1.34737571e+01 + 0.j,
                                   1.23118496e+03 + 0.j],
               'ref_zpe': 0.07799427233401508,
               'ref_forces': np.array([[0., 0., -2.26722e-1],
                                       [0., 0., 2.26722e-1]])
               }

    @pytest.fixture
    def n2_unstable_data(self):
        return{'atoms': Atoms('N2', positions=[[0., 0., 0.45],
                                               [0., 0., -0.45]]),
               'hessian': np.array(
                   [-5.150829928323684, 0.0, -0.6867385017096544,
                    5.150829928323684, 0.0, 0.6867385017096544, 0.0,
                    -5.158454318599951, 0.0, 0.0, 5.158454318599951, 0.0,
                    -0.6867385017096544, 0.0, 56.65107699250456,
                    0.6867385017096544, 0.0, -56.65107699250456,
                    5.150829928323684, 0.0, 0.6867385017096544,
                    -5.150829928323684, 0.0, -0.6867385017096544, 0.0,
                    5.158454318599951, 0.0, 0.0, -5.158454318599951, 0.0,
                    0.6867385017096544, 0.0, -56.65107699250456,
                    -0.6867385017096544, 0.0, 56.65107699250456
                    ]).reshape((2, 3, 2, 3))
               }

    @pytest.fixture
    def n2_vibdata(self, n2_data):
        return VibrationsData(n2_data['atoms'], n2_data['hessian'])

    def setup_method(self):
        self.jmol_file = 'vib-data.xyz'

    def test_init(self, n2_data):
        # Check that init runs without error; properties are checked in other
        # methods using the (identical) n2_vibdata fixture
        VibrationsData(n2_data['atoms'], n2_data['hessian'])

    def test_energies_and_modes(self, n2_data, n2_vibdata):
        energies, modes = n2_vibdata.get_energies_and_modes()
        assert_array_almost_equal(n2_data['ref_frequencies'],
                                  energies / units.invcm,
                                  decimal=5)
        assert_array_almost_equal(n2_data['ref_frequencies'],
                                  n2_vibdata.get_energies() / units.invcm,
                                  decimal=5)
        assert_array_almost_equal(n2_data['ref_frequencies'],
                                  n2_vibdata.get_frequencies(),
                                  decimal=5)

        assert (n2_vibdata.get_zero_point_energy()
                == pytest.approx(n2_data['ref_zpe']))

        assert n2_vibdata.tabulate() == (
            '\n'.join(VibrationsData._tabulate_from_energies(energies)) + '\n')

        atoms_with_forces = n2_vibdata.show_as_force(-1, show=False)

        try:
            assert_array_almost_equal(atoms_with_forces.get_forces(),
                                      n2_data['ref_forces'])
        except AssertionError:
            # Eigenvectors may be off by a sign change, which is allowed
            assert_array_almost_equal(atoms_with_forces.get_forces(),
                                      -n2_data['ref_forces'])

    def test_imaginary_energies(self, n2_unstable_data):
        vib_data = VibrationsData(n2_unstable_data['atoms'],
                                  n2_unstable_data['hessian'])

        assert vib_data.tabulate() == (
            '\n'.join(VibrationsData._tabulate_from_energies(
                vib_data.get_energies()))
            + '\n')

    def test_zero_mass(self, n2_data):
        atoms = n2_data['atoms']
        atoms.set_masses([0., 1.])
        vib_data = VibrationsData(atoms, n2_data['hessian'])
        with pytest.raises(ValueError):
            vib_data.get_energies_and_modes()

    def test_new_mass(self, n2_data, n2_vibdata):
        original_masses = n2_vibdata.get_atoms().get_masses()
        new_masses = original_masses * 3
        new_vib_data = n2_vibdata.with_new_masses(new_masses)
        assert_array_almost_equal(new_vib_data.get_atoms().get_masses(),
                                  new_masses)
        assert_array_almost_equal(n2_vibdata.get_energies() / np.sqrt(3),
                                  new_vib_data.get_energies())

    def test_fixed_atoms(self, n2_data):
        vib_data = VibrationsData(n2_data['atoms'],
                                  n2_data['hessian'][1:, :, 1:, :],
                                  indices=[1, ])
        assert vib_data.get_indices() == [1, ]
        assert vib_data.get_mask().tolist() == [False, True]

    def test_dos(self, n2_vibdata):
        with pytest.warns(np.ComplexWarning):
            dos = n2_vibdata.get_dos()
        assert_array_almost_equal(dos.get_energies(),
                                  n2_vibdata.get_energies())

    def test_pdos(self, n2_vibdata):
        with pytest.warns(np.ComplexWarning):
            pdos = n2_vibdata.get_pdos()
        assert_array_almost_equal(pdos[0].get_energies(),
                                  n2_vibdata.get_energies())
        assert_array_almost_equal(pdos[1].get_energies(),
                                  n2_vibdata.get_energies())
        # 3N states = 6, divided equally over two N atoms = 3.0
        assert sum(pdos[0].get_weights()) == pytest.approx(3.0)

    def test_todict(self, n2_data, n2_vibdata):
        vib_data_dict = n2_vibdata.todict()

        assert vib_data_dict['indices'] is None
        assert_array_almost_equal(vib_data_dict['atoms'].positions,
                                  n2_data['atoms'].positions)
        assert_array_almost_equal(vib_data_dict['hessian'],
                                  n2_data['hessian'])

    def test_dict_roundtrip(self, n2_vibdata):
        vib_data_dict = n2_vibdata.todict()
        vib_data_roundtrip = VibrationsData.fromdict(vib_data_dict)

        for getter in ('get_atoms',):
            assert (getattr(n2_vibdata, getter)()
                    == getattr(vib_data_roundtrip, getter)())
        for array_getter in ('get_hessian', 'get_hessian_2d',
                             'get_mask', 'get_indices'):
            assert_array_almost_equal(
                getattr(n2_vibdata, array_getter)(),
                getattr(vib_data_roundtrip, array_getter)())

    @pytest.mark.parametrize('indices, expected_mask',
                             [([1], [False, True]),
                              (None, [True, True])])
    def test_dict_indices(self, n2_vibdata, indices, expected_mask):
        vib_data_dict = n2_vibdata.todict()
        vib_data_dict['indices'] = indices

        # Reduce size of Hessian if necessary
        if indices is not None:
            n_active = len(indices)
            vib_data_dict['hessian'] = (
                np.asarray(vib_data_dict['hessian']
                           )[:n_active, :, :n_active, :].tolist())

        vib_data_fromdict = VibrationsData.fromdict(vib_data_dict)
        assert_array_almost_equal(vib_data_fromdict.get_mask(), expected_mask)

    def test_jmol_roundtrip(self, testdir, n2_data):
        ir_intensities = np.random.RandomState(42).rand(6)

        vib_data = VibrationsData(n2_data['atoms'], n2_data['hessian'])
        vib_data.write_jmol(self.jmol_file, ir_intensities=ir_intensities)

        images = ase.io.read(self.jmol_file, index=':')
        for i, image in enumerate(images):
            assert_array_almost_equal(image.positions,
                                      vib_data.get_atoms().positions)
            assert (image.info['IR_intensity']
                    == pytest.approx(ir_intensities[i]))
            assert_array_almost_equal(image.arrays['mode'],
                                      vib_data.get_modes()[i])

    def test_bad_hessian(self, n2_data):
        bad_hessians = (None, 'fish', 1,
                        np.array([1, 2, 3]),
                        np.eye(6),
                        np.array([[[1, 0, 0]],
                                  [[0, 0, 1]]]))

        for bad_hessian in bad_hessians:
            with pytest.raises(ValueError):
                VibrationsData(n2_data['atoms'], bad_hessian)

    def test_bad_hessian2d(self, n2_data):
        bad_hessians = (None, 'fish', 1,
                        np.array([1, 2, 3]),
                        n2_data['hessian'],
                        np.array([[[1, 0, 0]],
                                  [[0, 0, 1]]]))

        for bad_hessian in bad_hessians:
            with pytest.raises(ValueError):
                VibrationsData.from_2d(n2_data['atoms'], bad_hessian)


class TestSlab:
    "N2 above Ag slab - vibration with frozen molecules"
    def test_vibration_on_surface(self, testdir):
        from ase.build import fcc111, add_adsorbate
        ag_slab = fcc111('Ag', (4, 4, 2), a=2)
        n2 = Atoms('N2', positions=[[0., 0., 0.],
                                    [0., np.sqrt(2), np.sqrt(2)]])
        add_adsorbate(ag_slab, n2, height=1, position='fcc')

        # Add an interaction between the N atoms
        hessian_bottom_corner = np.zeros((2, 3, 2, 3))
        hessian_bottom_corner[-1, :, -2] = [1, 1, 1]
        hessian_bottom_corner[-2, :, -1] = [1, 1, 1]

        hessian = np.zeros((34, 3, 34, 3))
        hessian[32:, :, 32:, :] = hessian_bottom_corner

        ag_slab.calc = ForceConstantCalculator(hessian.reshape((34 * 3,
                                                                34 * 3)),
                                               ref=ag_slab.copy(),
                                               f0=np.zeros((34, 3)))

        # Check that Vibrations with restricted indices returns correct Hessian
        vibs = Vibrations(ag_slab, indices=[-2, -1])
        vibs.run()
        vibs.read()

        assert_array_almost_equal(vibs.get_vibrations().get_hessian(),
                                  hessian_bottom_corner)

        # These should blow up if the vectors don't match number of atoms
        vibs.summary()
        vibs.write_jmol()

        for i in range(6):
            # Frozen atoms should have zero displacement
            assert_array_almost_equal(vibs.get_mode(i)[0], [0., 0., 0.])

            # The N atoms should have finite displacement
            assert np.all(np.any(vibs.get_mode(i)[-2:, :], axis=1))