1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
import os
from pathlib import Path
import pytest
import numpy as np
from numpy.testing import assert_array_almost_equal
from ase import units, Atoms
import ase.io
from ase.calculators.qmmm import ForceConstantCalculator
from ase.vibrations import Vibrations, VibrationsData
from ase.thermochemistry import IdealGasThermo
class TestHarmonicVibrations:
"""Test the ase.vibrations.Vibrations object using a harmonic calculator
"""
def setup_method(self):
self.logfile = 'vibrations-log.txt'
@pytest.fixture
def random_dimer(self):
rng = np.random.RandomState(42)
d = 1 + 0.5 * rng.rand()
z_values = rng.randint(1, high=50, size=2)
hessian = rng.rand(6, 6)
hessian += hessian.T # Ensure the random Hessian is symmetric
atoms = Atoms(z_values, [[0, 0, 0], [0, 0, d]])
ref_atoms = atoms.copy()
atoms.calc = ForceConstantCalculator(D=hessian,
ref=ref_atoms,
f0=np.zeros((2, 3)))
return atoms
def test_harmonic_vibrations(self, testdir):
"""Check the numerics with a trivial case: one atom in harmonic well"""
rng = np.random.RandomState(42)
k = rng.rand()
ref_atoms = Atoms('H', positions=np.zeros([1, 3]))
atoms = ref_atoms.copy()
mass = atoms.get_masses()[0]
atoms.calc = ForceConstantCalculator(D=np.eye(3) * k,
ref=ref_atoms,
f0=np.zeros((1, 3)))
vib = Vibrations(atoms, name='harmonic')
vib.run()
vib.read()
expected_energy = (units._hbar # In J/s
* np.sqrt(k # In eV/A^2
* units._e # eV -> J
* units.m**2 # A^-2 -> m^-2
/ mass # in amu
/ units._amu # amu^-1 -> kg^-1
)
) / units._e # J/s -> eV/s
assert np.allclose(vib.get_energies(), expected_energy)
def test_consistency_with_vibrationsdata(self, testdir, random_dimer):
vib = Vibrations(random_dimer, delta=1e-6, nfree=4)
vib.run()
vib_data = vib.get_vibrations()
assert_array_almost_equal(vib.get_energies(),
vib_data.get_energies())
for mode_index in range(3 * len(vib.atoms)):
assert_array_almost_equal(vib.get_mode(mode_index),
vib_data.get_modes()[mode_index])
# Hessian should be close to the ForceConstantCalculator input
assert_array_almost_equal(random_dimer.calc.D,
vib_data.get_hessian_2d(),
decimal=6)
def test_json_manipulation(self, testdir, random_dimer):
vib = Vibrations(random_dimer, name='interrupt')
vib.run()
disp_file = Path('interrupt/cache.1x-.json')
comb_file = Path('interrupt/combined.json')
assert disp_file.is_file()
assert not comb_file.is_file()
# Should do nothing harmful as files are already split
# (It used to raise an error but this is no longer implemented.)
vib.split()
# Build a combined file
assert vib.combine() == 13
# Individual displacements should be gone, combination should exist
assert not disp_file.is_file()
assert comb_file.is_file()
# Not allowed to run after data has been combined
with pytest.raises(RuntimeError):
vib.run()
# But reading is allowed
vib.read()
# Splitting should fail if any split file already exists
with open(disp_file, 'w') as fd:
fd.write("hello")
with pytest.raises(AssertionError):
vib.split()
os.remove(disp_file)
# Now split() for real: replace .all.json file with displacements
vib.split()
assert disp_file.is_file()
assert not comb_file.is_file()
def test_vibrations_methods(self, testdir, random_dimer):
vib = Vibrations(random_dimer)
vib.run()
vib_energies = vib.get_energies()
for image in vib.iterimages():
assert len(image) == 2
thermo = IdealGasThermo(vib_energies=vib_energies, geometry='linear',
atoms=vib.atoms, symmetrynumber=2, spin=0)
thermo.get_gibbs_energy(temperature=298.15, pressure=2 * 101325.,
verbose=False)
with open(self.logfile, 'w') as fd:
vib.summary(log=fd)
with open(self.logfile, 'rt') as fd:
log_txt = fd.read()
assert log_txt == '\n'.join(
VibrationsData._tabulate_from_energies(vib_energies)) + '\n'
last_mode = vib.get_mode(-1)
scale = 0.5
assert_array_almost_equal(vib.show_as_force(-1, scale=scale,
show=False).get_forces(),
last_mode * 3 * len(vib.atoms) * scale)
vib.write_mode(n=3, nimages=5)
for i in range(3):
assert not Path('vib.{}.traj'.format(i)).is_file()
mode_traj = ase.io.read('vib.3.traj', index=':')
assert len(mode_traj) == 5
assert_array_almost_equal(mode_traj[0].get_all_distances(),
random_dimer.get_all_distances())
with pytest.raises(AssertionError):
assert_array_almost_equal(mode_traj[4].get_all_distances(),
random_dimer.get_all_distances())
assert vib.clean(empty_files=True) == 0
assert vib.clean() == 13
assert len(list(vib.iterimages())) == 13
d = dict(vib.iterdisplace(inplace=False))
for name, image in vib.iterdisplace(inplace=True):
assert d[name] == random_dimer
def test_vibrations_restart_dir(self, testdir, random_dimer):
vib = Vibrations(random_dimer)
vib.run()
freqs = vib.get_frequencies()
assert freqs is not None
# write/read the data from another working directory
atoms = random_dimer.copy() # This copy() removes the Calculator
with ase.utils.workdir('run_from_here', mkdir=True):
vib = Vibrations(atoms, name=str(Path.cwd().parent / 'vib'))
assert_array_almost_equal(freqs, vib.get_frequencies())
assert vib.clean() == 13
class TestVibrationsDataStaticMethods:
@pytest.mark.parametrize('mask,expected_indices',
[([True, True, False, True], [0, 1, 3]),
([False, False], []),
([], []),
(np.array([True, True]), [0, 1]),
(np.array([False, True, True]), [1, 2]),
(np.array([], dtype=bool), [])])
def test_indices_from_mask(self, mask, expected_indices):
assert VibrationsData.indices_from_mask(mask) == expected_indices
def test_tabulate_energies(self):
# Test the private classmethod _tabulate_from_energies
# used by public tabulate() method
energies = np.array([1., complex(2., 1.), complex(1., 1e-3)])
table = VibrationsData._tabulate_from_energies(energies, im_tol=1e-2)
for sep_row in 0, 2, 6:
assert table[sep_row] == '-' * 21
assert tuple(table[1].strip().split()) == ('#', 'meV', 'cm^-1')
expected_rows = [
# energy in eV should be converted to meV and cm-1
('0', '1000.0', '8065.5'),
# Imaginary component over threshold detected
('1', '1000.0i', '8065.5i'),
# Small imaginary component ignored
('2', '1000.0', '8065.5')]
for row, expected in zip(table[3:6], expected_rows):
assert tuple(row.split()) == expected
# ZPE = (1 + 2 + 1) / 2 - currently we keep all real parts
assert table[7].split()[2] == '2.000'
assert len(table) == 8
na2 = Atoms('Na2', cell=[2, 2, 2], positions=[[0, 0, 0],
[1, 1, 1]])
na2_image_1 = na2.copy()
na2_image_1.info.update({'mode#': '0',
'frequency_cm-1': 8065.5})
na2_image_1.arrays['mode'] = np.array([[1., 1., 1.],
[0.5, 0.5, 0.5]])
@pytest.mark.parametrize('kwargs,expected',
[(dict(atoms=na2,
energies=[1.],
modes=np.array([[[1., 1., 1.],
[0.5, 0.5, 0.5]]])),
[na2_image_1])
])
def test_get_jmol_images(self, kwargs, expected):
# Test the private staticmethod _get_jmol_images
# used by the public write_jmol_images() method
from ase.calculators.calculator import compare_atoms
jmol_images = list(VibrationsData._get_jmol_images(**kwargs))
assert len(jmol_images) == len(expected)
for image, reference in zip(jmol_images, expected):
assert compare_atoms(image, reference) == []
for key, value in reference.info.items():
if key == 'frequency_cm-1':
assert float(image.info[key]) == pytest.approx(value,
abs=0.1)
else:
assert image.info[key] == value
class TestVibrationsData:
@pytest.fixture
def random_dimer(self):
rng = np.random.RandomState(42)
d = 1 + 0.5 * rng.rand()
z_values = rng.randint(1, high=50, size=2)
hessian = rng.rand(6, 6)
hessian += hessian.T # Ensure the random Hessian is symmetric
atoms = Atoms(z_values, [[0, 0, 0], [0, 0, d]])
ref_atoms = atoms.copy()
atoms.calc = ForceConstantCalculator(D=hessian,
ref=ref_atoms,
f0=np.zeros((2, 3)))
return atoms
@pytest.fixture
def n2_data(self):
return{'atoms': Atoms('N2', positions=[[0., 0., 0.05095057],
[0., 0., 1.04904943]]),
'hessian': np.array([[[[4.67554672e-03, 0.0, 0.0],
[-4.67554672e-03, 0.0, 0.0]],
[[0.0, 4.67554672e-03, 0.0],
[0.0, -4.67554672e-03, 0.0]],
[[0.0, 0.0, 3.90392599e+01],
[0.0, 0.0, -3.90392599e+01]]],
[[[-4.67554672e-03, 0.0, 0.0],
[4.67554672e-03, 0.0, 0.0]],
[[0.0, -4.67554672e-03, 0.0],
[0.0, 4.67554672e-03, 0.0]],
[[0.0, 0.0, -3.90392599e+01],
[0.0, 0.0, 3.90392599e+01]]]]),
'ref_frequencies': [0.00000000e+00 + 0.j,
6.06775530e-08 + 0.j,
3.62010442e-06 + 0.j,
1.34737571e+01 + 0.j,
1.34737571e+01 + 0.j,
1.23118496e+03 + 0.j],
'ref_zpe': 0.07799427233401508,
'ref_forces': np.array([[0., 0., -2.26722e-1],
[0., 0., 2.26722e-1]])
}
@pytest.fixture
def n2_unstable_data(self):
return{'atoms': Atoms('N2', positions=[[0., 0., 0.45],
[0., 0., -0.45]]),
'hessian': np.array(
[-5.150829928323684, 0.0, -0.6867385017096544,
5.150829928323684, 0.0, 0.6867385017096544, 0.0,
-5.158454318599951, 0.0, 0.0, 5.158454318599951, 0.0,
-0.6867385017096544, 0.0, 56.65107699250456,
0.6867385017096544, 0.0, -56.65107699250456,
5.150829928323684, 0.0, 0.6867385017096544,
-5.150829928323684, 0.0, -0.6867385017096544, 0.0,
5.158454318599951, 0.0, 0.0, -5.158454318599951, 0.0,
0.6867385017096544, 0.0, -56.65107699250456,
-0.6867385017096544, 0.0, 56.65107699250456
]).reshape((2, 3, 2, 3))
}
@pytest.fixture
def n2_vibdata(self, n2_data):
return VibrationsData(n2_data['atoms'], n2_data['hessian'])
def setup_method(self):
self.jmol_file = 'vib-data.xyz'
def test_init(self, n2_data):
# Check that init runs without error; properties are checked in other
# methods using the (identical) n2_vibdata fixture
VibrationsData(n2_data['atoms'], n2_data['hessian'])
def test_energies_and_modes(self, n2_data, n2_vibdata):
energies, modes = n2_vibdata.get_energies_and_modes()
assert_array_almost_equal(n2_data['ref_frequencies'],
energies / units.invcm,
decimal=5)
assert_array_almost_equal(n2_data['ref_frequencies'],
n2_vibdata.get_energies() / units.invcm,
decimal=5)
assert_array_almost_equal(n2_data['ref_frequencies'],
n2_vibdata.get_frequencies(),
decimal=5)
assert (n2_vibdata.get_zero_point_energy()
== pytest.approx(n2_data['ref_zpe']))
assert n2_vibdata.tabulate() == (
'\n'.join(VibrationsData._tabulate_from_energies(energies)) + '\n')
atoms_with_forces = n2_vibdata.show_as_force(-1, show=False)
try:
assert_array_almost_equal(atoms_with_forces.get_forces(),
n2_data['ref_forces'])
except AssertionError:
# Eigenvectors may be off by a sign change, which is allowed
assert_array_almost_equal(atoms_with_forces.get_forces(),
-n2_data['ref_forces'])
def test_imaginary_energies(self, n2_unstable_data):
vib_data = VibrationsData(n2_unstable_data['atoms'],
n2_unstable_data['hessian'])
assert vib_data.tabulate() == (
'\n'.join(VibrationsData._tabulate_from_energies(
vib_data.get_energies()))
+ '\n')
def test_zero_mass(self, n2_data):
atoms = n2_data['atoms']
atoms.set_masses([0., 1.])
vib_data = VibrationsData(atoms, n2_data['hessian'])
with pytest.raises(ValueError):
vib_data.get_energies_and_modes()
def test_new_mass(self, n2_data, n2_vibdata):
original_masses = n2_vibdata.get_atoms().get_masses()
new_masses = original_masses * 3
new_vib_data = n2_vibdata.with_new_masses(new_masses)
assert_array_almost_equal(new_vib_data.get_atoms().get_masses(),
new_masses)
assert_array_almost_equal(n2_vibdata.get_energies() / np.sqrt(3),
new_vib_data.get_energies())
def test_fixed_atoms(self, n2_data):
vib_data = VibrationsData(n2_data['atoms'],
n2_data['hessian'][1:, :, 1:, :],
indices=[1, ])
assert vib_data.get_indices() == [1, ]
assert vib_data.get_mask().tolist() == [False, True]
def test_dos(self, n2_vibdata):
with pytest.warns(np.ComplexWarning):
dos = n2_vibdata.get_dos()
assert_array_almost_equal(dos.get_energies(),
n2_vibdata.get_energies())
def test_pdos(self, n2_vibdata):
with pytest.warns(np.ComplexWarning):
pdos = n2_vibdata.get_pdos()
assert_array_almost_equal(pdos[0].get_energies(),
n2_vibdata.get_energies())
assert_array_almost_equal(pdos[1].get_energies(),
n2_vibdata.get_energies())
# 3N states = 6, divided equally over two N atoms = 3.0
assert sum(pdos[0].get_weights()) == pytest.approx(3.0)
def test_todict(self, n2_data, n2_vibdata):
vib_data_dict = n2_vibdata.todict()
assert vib_data_dict['indices'] is None
assert_array_almost_equal(vib_data_dict['atoms'].positions,
n2_data['atoms'].positions)
assert_array_almost_equal(vib_data_dict['hessian'],
n2_data['hessian'])
def test_dict_roundtrip(self, n2_vibdata):
vib_data_dict = n2_vibdata.todict()
vib_data_roundtrip = VibrationsData.fromdict(vib_data_dict)
for getter in ('get_atoms',):
assert (getattr(n2_vibdata, getter)()
== getattr(vib_data_roundtrip, getter)())
for array_getter in ('get_hessian', 'get_hessian_2d',
'get_mask', 'get_indices'):
assert_array_almost_equal(
getattr(n2_vibdata, array_getter)(),
getattr(vib_data_roundtrip, array_getter)())
@pytest.mark.parametrize('indices, expected_mask',
[([1], [False, True]),
(None, [True, True])])
def test_dict_indices(self, n2_vibdata, indices, expected_mask):
vib_data_dict = n2_vibdata.todict()
vib_data_dict['indices'] = indices
# Reduce size of Hessian if necessary
if indices is not None:
n_active = len(indices)
vib_data_dict['hessian'] = (
np.asarray(vib_data_dict['hessian']
)[:n_active, :, :n_active, :].tolist())
vib_data_fromdict = VibrationsData.fromdict(vib_data_dict)
assert_array_almost_equal(vib_data_fromdict.get_mask(), expected_mask)
def test_jmol_roundtrip(self, testdir, n2_data):
ir_intensities = np.random.RandomState(42).rand(6)
vib_data = VibrationsData(n2_data['atoms'], n2_data['hessian'])
vib_data.write_jmol(self.jmol_file, ir_intensities=ir_intensities)
images = ase.io.read(self.jmol_file, index=':')
for i, image in enumerate(images):
assert_array_almost_equal(image.positions,
vib_data.get_atoms().positions)
assert (image.info['IR_intensity']
== pytest.approx(ir_intensities[i]))
assert_array_almost_equal(image.arrays['mode'],
vib_data.get_modes()[i])
def test_bad_hessian(self, n2_data):
bad_hessians = (None, 'fish', 1,
np.array([1, 2, 3]),
np.eye(6),
np.array([[[1, 0, 0]],
[[0, 0, 1]]]))
for bad_hessian in bad_hessians:
with pytest.raises(ValueError):
VibrationsData(n2_data['atoms'], bad_hessian)
def test_bad_hessian2d(self, n2_data):
bad_hessians = (None, 'fish', 1,
np.array([1, 2, 3]),
n2_data['hessian'],
np.array([[[1, 0, 0]],
[[0, 0, 1]]]))
for bad_hessian in bad_hessians:
with pytest.raises(ValueError):
VibrationsData.from_2d(n2_data['atoms'], bad_hessian)
class TestSlab:
"N2 above Ag slab - vibration with frozen molecules"
def test_vibration_on_surface(self, testdir):
from ase.build import fcc111, add_adsorbate
ag_slab = fcc111('Ag', (4, 4, 2), a=2)
n2 = Atoms('N2', positions=[[0., 0., 0.],
[0., np.sqrt(2), np.sqrt(2)]])
add_adsorbate(ag_slab, n2, height=1, position='fcc')
# Add an interaction between the N atoms
hessian_bottom_corner = np.zeros((2, 3, 2, 3))
hessian_bottom_corner[-1, :, -2] = [1, 1, 1]
hessian_bottom_corner[-2, :, -1] = [1, 1, 1]
hessian = np.zeros((34, 3, 34, 3))
hessian[32:, :, 32:, :] = hessian_bottom_corner
ag_slab.calc = ForceConstantCalculator(hessian.reshape((34 * 3,
34 * 3)),
ref=ag_slab.copy(),
f0=np.zeros((34, 3)))
# Check that Vibrations with restricted indices returns correct Hessian
vibs = Vibrations(ag_slab, indices=[-2, -1])
vibs.run()
vibs.read()
assert_array_almost_equal(vibs.get_vibrations().get_hessian(),
hessian_bottom_corner)
# These should blow up if the vectors don't match number of atoms
vibs.summary()
vibs.write_jmol()
for i in range(6):
# Frozen atoms should have zero displacement
assert_array_almost_equal(vibs.get_mode(i)[0], [0., 0., 0.])
# The N atoms should have finite displacement
assert np.all(np.any(vibs.get_mode(i)[-2:, :], axis=1))
|