1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
|
import numpy as np
from numpy import linalg
from ase.transport.selfenergy import LeadSelfEnergy, BoxProbe
from ase.transport.greenfunction import GreenFunction
from ase.transport.tools import subdiagonalize, cutcoupling, dagger,\
rotate_matrix, fermidistribution
from ase.units import kB
class TransportCalculator:
"""Determine transport properties of a device sandwiched between
two semi-infinite leads using a Green function method.
"""
def __init__(self, **kwargs):
"""Create the transport calculator.
Parameters:
h : (N, N) ndarray
Hamiltonian matrix for the central region.
s : {None, (N, N) ndarray}, optional
Overlap matrix for the central region.
Use None for an orthonormal basis.
h1 : (N1, N1) ndarray
Hamiltonian matrix for lead1.
h2 : {None, (N2, N2) ndarray}, optional
Hamiltonian matrix for lead2. You may use None if lead1 and lead2
are identical.
s1 : {None, (N1, N1) ndarray}, optional
Overlap matrix for lead1. Use None for an orthonomormal basis.
hc1 : {None, (N1, N) ndarray}, optional
Hamiltonian coupling matrix between the first principal
layer in lead1 and the central region.
hc2 : {None, (N2, N} ndarray), optional
Hamiltonian coupling matrix between the first principal
layer in lead2 and the central region.
sc1 : {None, (N1, N) ndarray}, optional
Overlap coupling matrix between the first principal
layer in lead1 and the central region.
sc2 : {None, (N2, N) ndarray}, optional
Overlap coupling matrix between the first principal
layer in lead2 and the central region.
energies : {None, array_like}, optional
Energy points for which calculated transport properties are
evaluated.
eta : {1.0e-5, float}, optional
Infinitesimal for the central region Green function.
eta1/eta2 : {1.0e-5, float}, optional
Infinitesimal for lead1/lead2 Green function.
align_bf : {None, int}, optional
Use align_bf=m to shift the central region
by a constant potential such that the m'th onsite element
in the central region is aligned to the m'th onsite element
in lead1 principal layer.
logfile : {None, str}, optional
Write a logfile to file with name `logfile`.
Use '-' to write to std out.
eigenchannels: {0, int}, optional
Number of eigenchannel transmission coefficients to
calculate.
pdos : {None, (N,) array_like}, optional
Specify which basis functions to calculate the
projected density of states for.
dos : {False, bool}, optional
The total density of states of the central region.
box: XXX
YYY
If hc1/hc2 are None, they are assumed to be identical to
the coupling matrix elements between neareste neighbor
principal layers in lead1/lead2.
Examples:
>>> import numpy as np
>>> h = np.array((0,)).reshape((1,1))
>>> h1 = np.array((0, -1, -1, 0)).reshape(2,2)
>>> energies = np.arange(-3, 3, 0.1)
>>> calc = TransportCalculator(h=h, h1=h1, energies=energies)
>>> T = calc.get_transmission()
"""
# The default values for all extra keywords
self.input_parameters = {'energies': None,
'h': None,
'h1': None,
'h2': None,
's': None,
's1': None,
's2': None,
'hc1': None,
'hc2': None,
'sc1': None,
'sc2': None,
'box': None,
'align_bf': None,
'eta1': 1e-5,
'eta2': 1e-5,
'eta': 1e-5,
'logfile': None,
'eigenchannels': 0,
'dos': False,
'pdos': []}
self.initialized = False # Changed Hamiltonians?
self.uptodate = False # Changed energy grid?
self.set(**kwargs)
def set(self, **kwargs):
for key in kwargs:
if key in ['h', 'h1', 'h2', 'hc1', 'hc2',
's', 's1', 's2', 'sc1', 'sc2',
'eta', 'eta1', 'eta2', 'align_bf', 'box']:
self.initialized = False
self.uptodate = False
break
elif key in ['energies', 'eigenchannels', 'dos', 'pdos']:
self.uptodate = False
elif key not in self.input_parameters:
raise KeyError('%r not a vaild keyword' % key)
self.input_parameters.update(kwargs)
log = self.input_parameters['logfile']
if log is None:
class Trash:
def write(self, s):
pass
def flush(self):
pass
self.log = Trash()
elif log == '-':
from sys import stdout
self.log = stdout
elif 'logfile' in kwargs:
self.log = open(log, 'w')
def initialize(self):
if self.initialized:
return
print('# Initializing calculator...', file=self.log)
p = self.input_parameters
if p['s'] is None:
p['s'] = np.identity(len(p['h']))
identical_leads = False
if p['h2'] is None:
p['h2'] = p['h1'] # Lead2 is idendical to lead1
identical_leads = True
if p['s1'] is None:
p['s1'] = np.identity(len(p['h1']))
if identical_leads:
p['s2'] = p['s1']
else:
if p['s2'] is None:
p['s2'] = np.identity(len(p['h2']))
h_mm = p['h']
s_mm = p['s']
pl1 = len(p['h1']) // 2
pl2 = len(p['h2']) // 2
h1_ii = p['h1'][:pl1, :pl1]
h1_ij = p['h1'][:pl1, pl1:2 * pl1]
s1_ii = p['s1'][:pl1, :pl1]
s1_ij = p['s1'][:pl1, pl1:2 * pl1]
h2_ii = p['h2'][:pl2, :pl2]
h2_ij = p['h2'][pl2: 2 * pl2, :pl2]
s2_ii = p['s2'][:pl2, :pl2]
s2_ij = p['s2'][pl2: 2 * pl2, :pl2]
if p['hc1'] is None:
nbf = len(h_mm)
h1_im = np.zeros((pl1, nbf), complex)
s1_im = np.zeros((pl1, nbf), complex)
h1_im[:pl1, :pl1] = h1_ij
s1_im[:pl1, :pl1] = s1_ij
p['hc1'] = h1_im
p['sc1'] = s1_im
else:
h1_im = p['hc1']
if p['sc1'] is not None:
s1_im = p['sc1']
else:
s1_im = np.zeros(h1_im.shape, complex)
p['sc1'] = s1_im
if p['hc2'] is None:
h2_im = np.zeros((pl2, nbf), complex)
s2_im = np.zeros((pl2, nbf), complex)
h2_im[-pl2:, -pl2:] = h2_ij
s2_im[-pl2:, -pl2:] = s2_ij
p['hc2'] = h2_im
p['sc2'] = s2_im
else:
h2_im = p['hc2']
if p['sc2'] is not None:
s2_im = p['sc2']
else:
s2_im = np.zeros(h2_im.shape, complex)
p['sc2'] = s2_im
align_bf = p['align_bf']
if align_bf is not None:
diff = ((h_mm[align_bf, align_bf] - h1_ii[align_bf, align_bf]) /
s_mm[align_bf, align_bf])
print('# Aligning scat. H to left lead H. diff=', diff,
file=self.log)
h_mm -= diff * s_mm
# Setup lead self-energies
# All infinitesimals must be > 0
assert np.all(np.array((p['eta'], p['eta1'], p['eta2'])) > 0.0)
self.selfenergies = [LeadSelfEnergy((h1_ii, s1_ii),
(h1_ij, s1_ij),
(h1_im, s1_im),
p['eta1']),
LeadSelfEnergy((h2_ii, s2_ii),
(h2_ij, s2_ij),
(h2_im, s2_im),
p['eta2'])]
box = p['box']
if box is not None:
print('Using box probe!')
self.selfenergies.append(
BoxProbe(eta=box[0], a=box[1], b=box[2], energies=box[3],
S=s_mm, T=0.3))
# setup scattering green function
self.greenfunction = GreenFunction(selfenergies=self.selfenergies,
H=h_mm,
S=s_mm,
eta=p['eta'])
self.initialized = True
def update(self):
if self.uptodate:
return
p = self.input_parameters
self.energies = p['energies']
nepts = len(self.energies)
nchan = p['eigenchannels']
pdos = p['pdos']
self.T_e = np.empty(nepts)
if p['dos']:
self.dos_e = np.empty(nepts)
if pdos != []:
self.pdos_ne = np.empty((len(pdos), nepts))
if nchan > 0:
self.eigenchannels_ne = np.empty((nchan, nepts))
for e, energy in enumerate(self.energies):
Ginv_mm = self.greenfunction.retarded(energy, inverse=True)
lambda1_mm = self.selfenergies[0].get_lambda(energy)
lambda2_mm = self.selfenergies[1].get_lambda(energy)
a_mm = linalg.solve(Ginv_mm, lambda1_mm)
b_mm = linalg.solve(dagger(Ginv_mm), lambda2_mm)
T_mm = np.dot(a_mm, b_mm)
if nchan > 0:
t_n = linalg.eigvals(T_mm).real
self.eigenchannels_ne[:, e] = np.sort(t_n)[-nchan:]
self.T_e[e] = np.sum(t_n)
else:
self.T_e[e] = np.trace(T_mm).real
print(energy, self.T_e[e], file=self.log)
self.log.flush()
if p['dos']:
self.dos_e[e] = self.greenfunction.dos(energy)
if pdos != []:
self.pdos_ne[:, e] = np.take(self.greenfunction.pdos(energy),
pdos)
self.uptodate = True
def print_pl_convergence(self):
self.initialize()
pl1 = len(self.input_parameters['h1']) // 2
h_ii = self.selfenergies[0].h_ii
s_ii = self.selfenergies[0].s_ii
ha_ii = self.greenfunction.H[:pl1, :pl1]
sa_ii = self.greenfunction.S[:pl1, :pl1]
c1 = np.abs(h_ii - ha_ii).max()
c2 = np.abs(s_ii - sa_ii).max()
print('Conv (h,s)=%.2e, %2.e' % (c1, c2))
def plot_pl_convergence(self):
self.initialize()
pl1 = len(self.input_parameters['h1']) // 2
hlead = self.selfenergies[0].h_ii.real.diagonal()
hprincipal = self.greenfunction.H.real.diagonal[:pl1]
import pylab as pl
pl.plot(hlead, label='lead')
pl.plot(hprincipal, label='principal layer')
pl.axis('tight')
pl.show()
def get_current(self, bias, T=0., E=None, T_e=None, spinpol=False):
'''Returns the current as a function of the
bias voltage.
**Parameters:**
bias : {float, (M,) ndarray}, units: V
Specifies the bias voltage.
T : {float}, units: K, optional
Specifies the temperature.
E : {(N,) ndarray}, units: eV, optional
Contains energy grid of the transmission function.
T_e {(N,) ndarray}, units: unitless, optional
Contains the transmission function.
spinpol: {bool}, optional
Specifies whether the current should be
calculated assuming degenerate spins
**Returns:**
I : {float, (M,) ndarray}, units: 2e/h*eV
Contains the electric current.
Examples:
>> import numpy as np
>> import pylab as plt
>> from ase import units
>>
>> bias = np.arange(0, 2, .1)
>> current = calc.get_current(bias, T = 0.)
>> plt.plot(bias, 2.*units._e**2/units._hplanck*current)
>> plt.xlabel('U [V]')
>> plt.ylabel('I [A]')
>> plt.show()
'''
if E is not None:
if T_e is None:
self.energies = E
self.uptodate = False
T_e = self.get_transmission().copy()
else:
assert self.uptodate, 'Energy grid and transmission function not defined.'
E = self.energies.copy()
T_e = self.T_e.copy()
if not isinstance(bias, (int, float)):
bias = bias[np.newaxis]
E = E[:, np.newaxis]
T_e = T_e[:, np.newaxis]
fl = fermidistribution(E - bias/2., kB * T)
fr = fermidistribution(E + bias/2., kB * T)
if spinpol:
return .5 * np.trapz((fl - fr) * T_e, x=E, axis=0)
else:
return np.trapz((fl - fr) * T_e, x=E, axis=0)
def get_transmission(self):
self.initialize()
self.update()
return self.T_e
def get_dos(self):
self.initialize()
self.update()
return self.dos_e
def get_eigenchannels(self, n=None):
"""Get ``n`` first eigenchannels."""
self.initialize()
self.update()
if n is None:
n = self.input_parameters['eigenchannels']
return self.eigenchannels_ne[:n]
def get_pdos(self):
self.initialize()
self.update()
return self.pdos_ne
def subdiagonalize_bfs(self, bfs, apply=False):
self.initialize()
bfs = np.array(bfs)
p = self.input_parameters
h_mm = p['h']
s_mm = p['s']
ht_mm, st_mm, c_mm, e_m = subdiagonalize(h_mm, s_mm, bfs)
if apply:
self.uptodate = False
h_mm[:] = ht_mm.real
s_mm[:] = st_mm.real
# Rotate coupling between lead and central region
for alpha, sigma in enumerate(self.selfenergies):
sigma.h_im[:] = np.dot(sigma.h_im, c_mm)
sigma.s_im[:] = np.dot(sigma.s_im, c_mm)
c_mm = np.take(c_mm, bfs, axis=0)
c_mm = np.take(c_mm, bfs, axis=1)
return ht_mm, st_mm, e_m.real, c_mm
def cutcoupling_bfs(self, bfs, apply=False):
self.initialize()
bfs = np.array(bfs)
p = self.input_parameters
h_pp = p['h'].copy()
s_pp = p['s'].copy()
cutcoupling(h_pp, s_pp, bfs)
if apply:
self.uptodate = False
p['h'][:] = h_pp
p['s'][:] = s_pp
for alpha, sigma in enumerate(self.selfenergies):
for m in bfs:
sigma.h_im[:, m] = 0.0
sigma.s_im[:, m] = 0.0
return h_pp, s_pp
def lowdin_rotation(self, apply=False):
p = self.input_parameters
h_mm = p['h']
s_mm = p['s']
eig, rot_mm = linalg.eigh(s_mm)
eig = np.abs(eig)
rot_mm = np.dot(rot_mm / np.sqrt(eig), dagger(rot_mm))
if apply:
self.uptodate = False
h_mm[:] = rotate_matrix(h_mm, rot_mm) # rotate C region
s_mm[:] = rotate_matrix(s_mm, rot_mm)
for alpha, sigma in enumerate(self.selfenergies):
sigma.h_im[:] = np.dot(sigma.h_im, rot_mm) # rotate L-C coupl.
sigma.s_im[:] = np.dot(sigma.s_im, rot_mm)
return rot_mm
def get_left_channels(self, energy, nchan=1):
self.initialize()
g_s_ii = self.greenfunction.retarded(energy)
lambda_l_ii = self.selfenergies[0].get_lambda(energy)
lambda_r_ii = self.selfenergies[1].get_lambda(energy)
if self.greenfunction.S is not None:
s_mm = self.greenfunction.S
s_s_i, s_s_ii = linalg.eig(s_mm)
s_s_i = np.abs(s_s_i)
s_s_sqrt_i = np.sqrt(s_s_i) # sqrt of eigenvalues
s_s_sqrt_ii = np.dot(s_s_ii * s_s_sqrt_i, dagger(s_s_ii))
s_s_isqrt_ii = np.dot(s_s_ii / s_s_sqrt_i, dagger(s_s_ii))
lambdab_r_ii = np.dot(np.dot(s_s_isqrt_ii, lambda_r_ii), s_s_isqrt_ii)
a_l_ii = np.dot(np.dot(g_s_ii, lambda_l_ii), dagger(g_s_ii))
ab_l_ii = np.dot(np.dot(s_s_sqrt_ii, a_l_ii), s_s_sqrt_ii)
lambda_i, u_ii = linalg.eig(ab_l_ii)
ut_ii = np.sqrt(lambda_i / (2.0 * np.pi)) * u_ii
m_ii = 2 * np.pi * np.dot(np.dot(dagger(ut_ii), lambdab_r_ii), ut_ii)
T_i, c_in = linalg.eig(m_ii)
T_i = np.abs(T_i)
channels = np.argsort(-T_i)[:nchan]
c_in = np.take(c_in, channels, axis=1)
T_n = np.take(T_i, channels)
v_in = np.dot(np.dot(s_s_isqrt_ii, ut_ii), c_in)
return T_n, v_in
|