File: calculators.py

package info (click to toggle)
python-ase 3.22.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,344 kB
  • sloc: python: 126,379; xml: 946; makefile: 111; javascript: 47
file content (474 lines) | stat: -rw-r--r-- 17,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import numpy as np

from numpy import linalg
from ase.transport.selfenergy import LeadSelfEnergy, BoxProbe
from ase.transport.greenfunction import GreenFunction
from ase.transport.tools import subdiagonalize, cutcoupling, dagger,\
    rotate_matrix, fermidistribution
from ase.units import kB


class TransportCalculator:
    """Determine transport properties of a device sandwiched between
    two semi-infinite leads using a Green function method.
    """

    def __init__(self, **kwargs):
        """Create the transport calculator.

        Parameters:

        h : (N, N) ndarray
            Hamiltonian matrix for the central region.
        s : {None, (N, N) ndarray}, optional
            Overlap matrix for the central region.
            Use None for an orthonormal basis.
        h1 : (N1, N1) ndarray
            Hamiltonian matrix for lead1.
        h2 : {None, (N2, N2) ndarray}, optional
            Hamiltonian matrix for lead2. You may use None if lead1 and lead2
            are identical.
        s1 : {None, (N1, N1) ndarray}, optional
            Overlap matrix for lead1. Use None for an orthonomormal basis.
        hc1 : {None, (N1, N) ndarray}, optional
            Hamiltonian coupling matrix between the first principal
            layer in lead1 and the central region.
        hc2 : {None, (N2, N} ndarray), optional
            Hamiltonian coupling matrix between the first principal
            layer in lead2 and the central region.
        sc1 : {None, (N1, N) ndarray}, optional
            Overlap coupling matrix between the first principal
            layer in lead1 and the central region.
        sc2 : {None, (N2, N) ndarray}, optional
            Overlap coupling matrix between the first principal
            layer in lead2 and the central region.
        energies : {None, array_like}, optional
            Energy points for which calculated transport properties are
            evaluated.
        eta : {1.0e-5, float}, optional
            Infinitesimal for the central region Green function.
        eta1/eta2 : {1.0e-5, float}, optional
            Infinitesimal for lead1/lead2 Green function.
        align_bf : {None, int}, optional
            Use align_bf=m to shift the central region
            by a constant potential such that the m'th onsite element
            in the central region is aligned to the m'th onsite element
            in lead1 principal layer.
        logfile : {None, str}, optional
            Write a logfile to file with name `logfile`.
            Use '-' to write to std out.
        eigenchannels: {0, int}, optional
            Number of eigenchannel transmission coefficients to
            calculate.
        pdos : {None, (N,) array_like}, optional
            Specify which basis functions to calculate the
            projected density of states for.
        dos : {False, bool}, optional
            The total density of states of the central region.
        box: XXX
            YYY

        If hc1/hc2 are None, they are assumed to be identical to
        the coupling matrix elements between neareste neighbor
        principal layers in lead1/lead2.

        Examples:

        >>> import numpy as np
        >>> h = np.array((0,)).reshape((1,1))
        >>> h1 = np.array((0, -1, -1, 0)).reshape(2,2)
        >>> energies = np.arange(-3, 3, 0.1)
        >>> calc = TransportCalculator(h=h, h1=h1, energies=energies)
        >>> T = calc.get_transmission()

        """

        # The default values for all extra keywords
        self.input_parameters = {'energies': None,
                                 'h': None,
                                 'h1': None,
                                 'h2': None,
                                 's': None,
                                 's1': None,
                                 's2': None,
                                 'hc1': None,
                                 'hc2': None,
                                 'sc1': None,
                                 'sc2': None,
                                 'box': None,
                                 'align_bf': None,
                                 'eta1': 1e-5,
                                 'eta2': 1e-5,
                                 'eta': 1e-5,
                                 'logfile': None,
                                 'eigenchannels': 0,
                                 'dos': False,
                                 'pdos': []}

        self.initialized = False  # Changed Hamiltonians?
        self.uptodate = False  # Changed energy grid?
        self.set(**kwargs)

    def set(self, **kwargs):
        for key in kwargs:
            if key in ['h', 'h1', 'h2', 'hc1', 'hc2',
                       's', 's1', 's2', 'sc1', 'sc2',
                       'eta', 'eta1', 'eta2', 'align_bf', 'box']:
                self.initialized = False
                self.uptodate = False
                break
            elif key in ['energies', 'eigenchannels', 'dos', 'pdos']:
                self.uptodate = False
            elif key not in self.input_parameters:
                raise KeyError('%r not a vaild keyword' % key)

        self.input_parameters.update(kwargs)
        log = self.input_parameters['logfile']
        if log is None:
            class Trash:
                def write(self, s):
                    pass

                def flush(self):
                    pass

            self.log = Trash()
        elif log == '-':
            from sys import stdout
            self.log = stdout
        elif 'logfile' in kwargs:
            self.log = open(log, 'w')

    def initialize(self):
        if self.initialized:
            return

        print('# Initializing calculator...', file=self.log)

        p = self.input_parameters
        if p['s'] is None:
            p['s'] = np.identity(len(p['h']))

        identical_leads = False
        if p['h2'] is None:
            p['h2'] = p['h1']  # Lead2 is idendical to lead1
            identical_leads = True

        if p['s1'] is None:
            p['s1'] = np.identity(len(p['h1']))

        if identical_leads:
            p['s2'] = p['s1']
        else:
            if p['s2'] is None:
                p['s2'] = np.identity(len(p['h2']))

        h_mm = p['h']
        s_mm = p['s']
        pl1 = len(p['h1']) // 2
        pl2 = len(p['h2']) // 2
        h1_ii = p['h1'][:pl1, :pl1]
        h1_ij = p['h1'][:pl1, pl1:2 * pl1]
        s1_ii = p['s1'][:pl1, :pl1]
        s1_ij = p['s1'][:pl1, pl1:2 * pl1]
        h2_ii = p['h2'][:pl2, :pl2]
        h2_ij = p['h2'][pl2: 2 * pl2, :pl2]
        s2_ii = p['s2'][:pl2, :pl2]
        s2_ij = p['s2'][pl2: 2 * pl2, :pl2]

        if p['hc1'] is None:
            nbf = len(h_mm)
            h1_im = np.zeros((pl1, nbf), complex)
            s1_im = np.zeros((pl1, nbf), complex)
            h1_im[:pl1, :pl1] = h1_ij
            s1_im[:pl1, :pl1] = s1_ij
            p['hc1'] = h1_im
            p['sc1'] = s1_im
        else:
            h1_im = p['hc1']
            if p['sc1'] is not None:
                s1_im = p['sc1']
            else:
                s1_im = np.zeros(h1_im.shape, complex)
                p['sc1'] = s1_im

        if p['hc2'] is None:
            h2_im = np.zeros((pl2, nbf), complex)
            s2_im = np.zeros((pl2, nbf), complex)
            h2_im[-pl2:, -pl2:] = h2_ij
            s2_im[-pl2:, -pl2:] = s2_ij
            p['hc2'] = h2_im
            p['sc2'] = s2_im
        else:
            h2_im = p['hc2']
            if p['sc2'] is not None:
                s2_im = p['sc2']
            else:
                s2_im = np.zeros(h2_im.shape, complex)
                p['sc2'] = s2_im

        align_bf = p['align_bf']
        if align_bf is not None:
            diff = ((h_mm[align_bf, align_bf] - h1_ii[align_bf, align_bf]) /
                    s_mm[align_bf, align_bf])
            print('# Aligning scat. H to left lead H. diff=', diff,
                  file=self.log)
            h_mm -= diff * s_mm

        # Setup lead self-energies
        # All infinitesimals must be > 0
        assert np.all(np.array((p['eta'], p['eta1'], p['eta2'])) > 0.0)
        self.selfenergies = [LeadSelfEnergy((h1_ii, s1_ii),
                                            (h1_ij, s1_ij),
                                            (h1_im, s1_im),
                                            p['eta1']),
                             LeadSelfEnergy((h2_ii, s2_ii),
                                            (h2_ij, s2_ij),
                                            (h2_im, s2_im),
                                            p['eta2'])]
        box = p['box']
        if box is not None:
            print('Using box probe!')
            self.selfenergies.append(
                BoxProbe(eta=box[0], a=box[1], b=box[2], energies=box[3],
                         S=s_mm, T=0.3))

        # setup scattering green function
        self.greenfunction = GreenFunction(selfenergies=self.selfenergies,
                                           H=h_mm,
                                           S=s_mm,
                                           eta=p['eta'])

        self.initialized = True

    def update(self):
        if self.uptodate:
            return

        p = self.input_parameters
        self.energies = p['energies']
        nepts = len(self.energies)
        nchan = p['eigenchannels']
        pdos = p['pdos']
        self.T_e = np.empty(nepts)
        if p['dos']:
            self.dos_e = np.empty(nepts)
        if pdos != []:
            self.pdos_ne = np.empty((len(pdos), nepts))
        if nchan > 0:
            self.eigenchannels_ne = np.empty((nchan, nepts))

        for e, energy in enumerate(self.energies):
            Ginv_mm = self.greenfunction.retarded(energy, inverse=True)
            lambda1_mm = self.selfenergies[0].get_lambda(energy)
            lambda2_mm = self.selfenergies[1].get_lambda(energy)
            a_mm = linalg.solve(Ginv_mm, lambda1_mm)
            b_mm = linalg.solve(dagger(Ginv_mm), lambda2_mm)
            T_mm = np.dot(a_mm, b_mm)
            if nchan > 0:
                t_n = linalg.eigvals(T_mm).real
                self.eigenchannels_ne[:, e] = np.sort(t_n)[-nchan:]
                self.T_e[e] = np.sum(t_n)
            else:
                self.T_e[e] = np.trace(T_mm).real

            print(energy, self.T_e[e], file=self.log)
            self.log.flush()

            if p['dos']:
                self.dos_e[e] = self.greenfunction.dos(energy)

            if pdos != []:
                self.pdos_ne[:, e] = np.take(self.greenfunction.pdos(energy),
                                             pdos)

        self.uptodate = True

    def print_pl_convergence(self):
        self.initialize()
        pl1 = len(self.input_parameters['h1']) // 2

        h_ii = self.selfenergies[0].h_ii
        s_ii = self.selfenergies[0].s_ii
        ha_ii = self.greenfunction.H[:pl1, :pl1]
        sa_ii = self.greenfunction.S[:pl1, :pl1]
        c1 = np.abs(h_ii - ha_ii).max()
        c2 = np.abs(s_ii - sa_ii).max()
        print('Conv (h,s)=%.2e, %2.e' % (c1, c2))

    def plot_pl_convergence(self):
        self.initialize()
        pl1 = len(self.input_parameters['h1']) // 2
        hlead = self.selfenergies[0].h_ii.real.diagonal()
        hprincipal = self.greenfunction.H.real.diagonal[:pl1]

        import pylab as pl
        pl.plot(hlead, label='lead')
        pl.plot(hprincipal, label='principal layer')
        pl.axis('tight')
        pl.show()

    def get_current(self, bias, T=0., E=None, T_e=None, spinpol=False):
        '''Returns the current as a function of the
        bias voltage.

        **Parameters:**
        bias : {float, (M,) ndarray}, units: V
          Specifies the bias voltage.  
        T : {float}, units: K, optional
          Specifies the temperature.
        E : {(N,) ndarray}, units: eV, optional
          Contains energy grid of the transmission function.  
        T_e {(N,) ndarray}, units: unitless, optional
          Contains the transmission function.
        spinpol: {bool}, optional
          Specifies whether the current should be 
          calculated assuming degenerate spins

        **Returns:** 
        I : {float, (M,) ndarray}, units: 2e/h*eV
          Contains the electric current.

        Examples:

        >> import numpy as np
        >> import pylab as plt
        >> from ase import units
        >>
        >> bias = np.arange(0, 2, .1)
        >> current = calc.get_current(bias, T = 0.)
        >> plt.plot(bias, 2.*units._e**2/units._hplanck*current)
        >> plt.xlabel('U [V]')
        >> plt.ylabel('I [A]')
        >> plt.show()

        '''
        if E is not None:
            if T_e is None:
                self.energies = E
                self.uptodate = False
                T_e = self.get_transmission().copy()
        else:
            assert self.uptodate, 'Energy grid and transmission function not defined.'
            E = self.energies.copy()
            T_e = self.T_e.copy()

        if not isinstance(bias, (int, float)):
            bias = bias[np.newaxis]
            E = E[:, np.newaxis]
            T_e = T_e[:, np.newaxis]

        fl = fermidistribution(E - bias/2., kB * T)
        fr = fermidistribution(E + bias/2., kB * T)

        if spinpol:
            return .5 * np.trapz((fl - fr) * T_e, x=E, axis=0)
        else:
            return np.trapz((fl - fr) * T_e, x=E, axis=0)

    def get_transmission(self):
        self.initialize()
        self.update()
        return self.T_e

    def get_dos(self):
        self.initialize()
        self.update()
        return self.dos_e

    def get_eigenchannels(self, n=None):
        """Get ``n`` first eigenchannels."""
        self.initialize()
        self.update()
        if n is None:
            n = self.input_parameters['eigenchannels']
        return self.eigenchannels_ne[:n]

    def get_pdos(self):
        self.initialize()
        self.update()
        return self.pdos_ne

    def subdiagonalize_bfs(self, bfs, apply=False):
        self.initialize()
        bfs = np.array(bfs)
        p = self.input_parameters
        h_mm = p['h']
        s_mm = p['s']
        ht_mm, st_mm, c_mm, e_m = subdiagonalize(h_mm, s_mm, bfs)
        if apply:
            self.uptodate = False
            h_mm[:] = ht_mm.real
            s_mm[:] = st_mm.real
            # Rotate coupling between lead and central region
            for alpha, sigma in enumerate(self.selfenergies):
                sigma.h_im[:] = np.dot(sigma.h_im, c_mm)
                sigma.s_im[:] = np.dot(sigma.s_im, c_mm)

        c_mm = np.take(c_mm, bfs, axis=0)
        c_mm = np.take(c_mm, bfs, axis=1)
        return ht_mm, st_mm, e_m.real, c_mm

    def cutcoupling_bfs(self, bfs, apply=False):
        self.initialize()
        bfs = np.array(bfs)
        p = self.input_parameters
        h_pp = p['h'].copy()
        s_pp = p['s'].copy()
        cutcoupling(h_pp, s_pp, bfs)
        if apply:
            self.uptodate = False
            p['h'][:] = h_pp
            p['s'][:] = s_pp
            for alpha, sigma in enumerate(self.selfenergies):
                for m in bfs:
                    sigma.h_im[:, m] = 0.0
                    sigma.s_im[:, m] = 0.0
        return h_pp, s_pp

    def lowdin_rotation(self, apply=False):
        p = self.input_parameters
        h_mm = p['h']
        s_mm = p['s']
        eig, rot_mm = linalg.eigh(s_mm)
        eig = np.abs(eig)
        rot_mm = np.dot(rot_mm / np.sqrt(eig), dagger(rot_mm))
        if apply:
            self.uptodate = False
            h_mm[:] = rotate_matrix(h_mm, rot_mm)  # rotate C region
            s_mm[:] = rotate_matrix(s_mm, rot_mm)
            for alpha, sigma in enumerate(self.selfenergies):
                sigma.h_im[:] = np.dot(sigma.h_im, rot_mm)  # rotate L-C coupl.
                sigma.s_im[:] = np.dot(sigma.s_im, rot_mm)

        return rot_mm

    def get_left_channels(self, energy, nchan=1):
        self.initialize()
        g_s_ii = self.greenfunction.retarded(energy)
        lambda_l_ii = self.selfenergies[0].get_lambda(energy)
        lambda_r_ii = self.selfenergies[1].get_lambda(energy)

        if self.greenfunction.S is not None:
            s_mm = self.greenfunction.S
            s_s_i, s_s_ii = linalg.eig(s_mm)
            s_s_i = np.abs(s_s_i)
            s_s_sqrt_i = np.sqrt(s_s_i)  # sqrt of eigenvalues
            s_s_sqrt_ii = np.dot(s_s_ii * s_s_sqrt_i, dagger(s_s_ii))
            s_s_isqrt_ii = np.dot(s_s_ii / s_s_sqrt_i, dagger(s_s_ii))

        lambdab_r_ii = np.dot(np.dot(s_s_isqrt_ii, lambda_r_ii), s_s_isqrt_ii)
        a_l_ii = np.dot(np.dot(g_s_ii, lambda_l_ii), dagger(g_s_ii))
        ab_l_ii = np.dot(np.dot(s_s_sqrt_ii, a_l_ii), s_s_sqrt_ii)
        lambda_i, u_ii = linalg.eig(ab_l_ii)
        ut_ii = np.sqrt(lambda_i / (2.0 * np.pi)) * u_ii
        m_ii = 2 * np.pi * np.dot(np.dot(dagger(ut_ii), lambdab_r_ii), ut_ii)
        T_i, c_in = linalg.eig(m_ii)
        T_i = np.abs(T_i)

        channels = np.argsort(-T_i)[:nchan]
        c_in = np.take(c_in, channels, axis=1)
        T_n = np.take(T_i, channels)
        v_in = np.dot(np.dot(s_s_isqrt_ii, ut_ii), c_in)

        return T_n, v_in