1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
"""Storage and analysis for vibrational data"""
import collections
from math import sin, pi, sqrt
from numbers import Real, Integral
from typing import Any, Dict, Iterator, List, Sequence, Tuple, TypeVar, Union
import numpy as np
from ase.atoms import Atoms
import ase.units as units
import ase.io
from ase.utils import jsonable, lazymethod
from ase.calculators.singlepoint import SinglePointCalculator
from ase.spectrum.dosdata import RawDOSData
from ase.spectrum.doscollection import DOSCollection
RealSequence4D = Sequence[Sequence[Sequence[Sequence[Real]]]]
VD = TypeVar('VD', bound='VibrationsData')
@jsonable('vibrationsdata')
class VibrationsData:
"""Class for storing and analyzing vibrational data (i.e. Atoms + Hessian)
This class is not responsible for calculating Hessians; the Hessian should
be computed by a Calculator or some other algorithm. Once the
VibrationsData has been constructed, this class provides some common
processing options; frequency calculation, mode animation, DOS etc.
If the Atoms object is a periodic supercell, VibrationsData may be
converted to a PhononData using the VibrationsData.to_phonondata() method.
This provides access to q-point-dependent analyses such as phonon
dispersion plotting.
Args:
atoms:
Equilibrium geometry of vibrating system. This will be stored as a
lightweight copy with just positions, masses, unit cell.
hessian: Second-derivative in energy with respect to
Cartesian nuclear movements as an (N, 3, N, 3) array.
indices: indices of atoms which are included
in Hessian. Default value (None) includes all atoms.
"""
def __init__(self,
atoms: Atoms,
hessian: Union[RealSequence4D, np.ndarray],
indices: Union[Sequence[int], np.ndarray] = None,
) -> None:
if indices is None:
self._indices = np.arange(len(atoms), dtype=int)
else:
self._indices = np.array(indices, dtype=int)
n_atoms = self._check_dimensions(atoms, np.asarray(hessian),
indices=self._indices)
self._atoms = atoms.copy()
self._hessian2d = (np.asarray(hessian)
.reshape(3 * n_atoms, 3 * n_atoms).copy())
_setter_error = ("VibrationsData properties cannot be modified: construct "
"a new VibrationsData with consistent atoms, Hessian and "
"(optionally) indices/mask.")
@classmethod
def from_2d(cls, atoms: Atoms,
hessian_2d: Union[Sequence[Sequence[Real]], np.ndarray],
indices: Sequence[int] = None) -> 'VibrationsData':
"""Instantiate VibrationsData when the Hessian is in a 3Nx3N format
Args:
atoms: Equilibrium geometry of vibrating system
hessian: Second-derivative in energy with respect to
Cartesian nuclear movements as a (3N, 3N) array.
indices: Indices of (non-frozen) atoms included in Hessian
"""
if indices is None:
indices = range(len(atoms))
assert indices is not None # Show Mypy that indices is now a sequence
hessian_2d_array = np.asarray(hessian_2d)
n_atoms = cls._check_dimensions(atoms, hessian_2d_array,
indices=indices, two_d=True)
return cls(atoms, hessian_2d_array.reshape(n_atoms, 3, n_atoms, 3),
indices=indices)
@staticmethod
def indices_from_mask(mask: Union[Sequence[bool], np.ndarray]
) -> List[int]:
"""Indices corresponding to boolean mask
This is provided as a convenience for instantiating VibrationsData with
a boolean mask. For example, if the Hessian data includes only the H
atoms in a structure::
h_mask = atoms.get_chemical_symbols() == 'H'
vib_data = VibrationsData(atoms, hessian,
VibrationsData.indices_from_mask(h_mask))
Take care to ensure that the length of the mask corresponds to the full
number of atoms; this function is only aware of the mask it has been
given.
Args:
mask: a sequence of True, False values
Returns:
indices of True elements
"""
return np.where(mask)[0].tolist()
@staticmethod
def _check_dimensions(atoms: Atoms,
hessian: np.ndarray,
indices: Sequence[int],
two_d: bool = False) -> int:
"""Sanity check on array shapes from input data
Args:
atoms: Structure
indices: Indices of atoms used in Hessian
hessian: Proposed Hessian array
Returns:
Number of atoms contributing to Hessian
Raises:
ValueError if Hessian dimensions are not (N, 3, N, 3)
"""
n_atoms = len(atoms[indices])
if two_d:
ref_shape = [n_atoms * 3, n_atoms * 3]
ref_shape_txt = '{n:d}x{n:d}'.format(n=(n_atoms * 3))
else:
ref_shape = [n_atoms, 3, n_atoms, 3]
ref_shape_txt = '{n:d}x3x{n:d}x3'.format(n=n_atoms)
if (isinstance(hessian, np.ndarray)
and hessian.shape == tuple(ref_shape)):
return n_atoms
else:
raise ValueError("Hessian for these atoms should be a "
"{} numpy array.".format(ref_shape_txt))
def get_atoms(self) -> Atoms:
return self._atoms.copy()
def get_indices(self) -> np.ndarray:
return self._indices.copy()
def get_mask(self) -> np.ndarray:
"""Boolean mask of atoms selected by indices"""
return self._mask_from_indices(self._atoms, self.get_indices())
@staticmethod
def _mask_from_indices(atoms: Atoms,
indices: Union[None, Sequence[int], np.ndarray]
) -> np.ndarray:
"""Boolean mask of atoms selected by indices"""
natoms = len(atoms)
# Wrap indices to allow negative values
indices = np.asarray(indices) % natoms
mask = np.full(natoms, False, dtype=bool)
mask[indices] = True
return mask
def get_hessian(self) -> np.ndarray:
"""The Hessian; second derivative of energy wrt positions
This format is preferred for iteration over atoms and when
addressing specific elements of the Hessian.
Returns:
array with shape (n_atoms, 3, n_atoms, 3) where
- the first and third indices identify atoms in self.get_atoms()
- the second and fourth indices cover the corresponding Cartesian
movements in x, y, z
e.g. the element h[0, 2, 1, 0] gives a harmonic force exerted on
atoms[1] in the x-direction in response to a movement in the
z-direction of atoms[0]
"""
n_atoms = int(self._hessian2d.shape[0] / 3)
return self._hessian2d.reshape(n_atoms, 3, n_atoms, 3).copy()
def get_hessian_2d(self) -> np.ndarray:
"""Get the Hessian as a 2-D array
This format may be preferred for use with standard linear algebra
functions
Returns:
array with shape (n_atoms * 3, n_atoms * 3) where the elements are
ordered by atom and Cartesian direction
[[at1x_at1x, at1x_at1y, at1x_at1z, at1x_at2x, ...],
[at1y_at1x, at1y_at1y, at1y_at1z, at1y_at2x, ...],
[at1z_at1x, at1z_at1y, at1z_at1z, at1z_at2x, ...],
[at2x_at1x, at2x_at1y, at2x_at1z, at2x_at2x, ...],
...]
e.g. the element h[2, 3] gives a harmonic force exerted on
atoms[1] in the x-direction in response to a movement in the
z-direction of atoms[0]
"""
return self._hessian2d.copy()
def todict(self) -> Dict[str, Any]:
if np.allclose(self._indices, range(len(self._atoms))):
indices = None
else:
indices = self.get_indices()
return {'atoms': self.get_atoms(),
'hessian': self.get_hessian(),
'indices': indices}
@classmethod
def fromdict(cls, data: Dict[str, Any]) -> 'VibrationsData':
# mypy is understandably suspicious of data coming from a dict that
# holds mixed types, but it can see if we sanity-check with 'assert'
assert isinstance(data['atoms'], Atoms)
assert isinstance(data['hessian'], (collections.abc.Sequence,
np.ndarray))
if data['indices'] is not None:
assert isinstance(data['indices'], (collections.abc.Sequence,
np.ndarray))
for index in data['indices']:
assert isinstance(index, Integral)
return cls(data['atoms'], data['hessian'], indices=data['indices'])
@lazymethod
def _energies_and_modes(self) -> Tuple[np.ndarray, np.ndarray]:
"""Diagonalise the Hessian to obtain harmonic modes
This method is an internal implementation of get_energies_and_modes(),
see the docstring of that method for more information.
"""
active_atoms = self._atoms[self.get_mask()]
n_atoms = len(active_atoms)
masses = active_atoms.get_masses()
if not np.all(masses):
raise ValueError('Zero mass encountered in one or more of '
'the vibrated atoms. Use Atoms.set_masses()'
' to set all masses to non-zero values.')
mass_weights = np.repeat(masses**-0.5, 3)
omega2, vectors = np.linalg.eigh(mass_weights
* self.get_hessian_2d()
* mass_weights[:, np.newaxis])
unit_conversion = units._hbar * units.m / sqrt(units._e * units._amu)
energies = unit_conversion * omega2.astype(complex)**0.5
modes = vectors.T.reshape(n_atoms * 3, n_atoms, 3)
modes = modes * masses[np.newaxis, :, np.newaxis]**-0.5
return (energies, modes)
def get_energies_and_modes(self, all_atoms: bool = False
) -> Tuple[np.ndarray, np.ndarray]:
"""Diagonalise the Hessian to obtain harmonic modes
Results are cached so diagonalization will only be performed once for
this object instance.
Args:
all_atoms:
If True, return modes as (3N, [N + N_frozen], 3) array where
the second axis corresponds to the full list of atoms in the
attached atoms object. Atoms that were not included in the
Hessian will have displacement vectors of (0, 0, 0).
Returns:
tuple (energies, modes)
Energies are given in units of eV. (To convert these to frequencies
in cm-1, divide by ase.units.invcm.)
Modes are given in Cartesian coordinates as a (3N, N, 3) array
where indices correspond to the (mode_index, atom, direction).
"""
energies, modes_from_hessian = self._energies_and_modes()
if all_atoms:
n_active_atoms = len(self.get_indices())
n_all_atoms = len(self._atoms)
modes = np.zeros((3 * n_active_atoms, n_all_atoms, 3))
modes[:, self.get_mask(), :] = modes_from_hessian
else:
modes = modes_from_hessian.copy()
return (energies.copy(), modes)
def get_modes(self, all_atoms: bool = False) -> np.ndarray:
"""Diagonalise the Hessian to obtain harmonic modes
Results are cached so diagonalization will only be performed once for
this object instance.
all_atoms:
If True, return modes as (3N, [N + N_frozen], 3) array where
the second axis corresponds to the full list of atoms in the
attached atoms object. Atoms that were not included in the
Hessian will have displacement vectors of (0, 0, 0).
Returns:
Modes in Cartesian coordinates as a (3N, N, 3) array where indices
correspond to the (mode_index, atom, direction).
"""
return self.get_energies_and_modes(all_atoms=all_atoms)[1]
def get_energies(self) -> np.ndarray:
"""Diagonalise the Hessian to obtain eigenvalues
Results are cached so diagonalization will only be performed once for
this object instance.
Returns:
Harmonic mode energies in units of eV
"""
return self.get_energies_and_modes()[0]
def get_frequencies(self) -> np.ndarray:
"""Diagonalise the Hessian to obtain frequencies in cm^-1
Results are cached so diagonalization will only be performed once for
this object instance.
Returns:
Harmonic mode frequencies in units of cm^-1
"""
return self.get_energies() / units.invcm
def get_zero_point_energy(self) -> float:
"""Diagonalise the Hessian and sum hw/2 to obtain zero-point energy
Args:
energies:
Pre-computed energy eigenvalues. Use if available to avoid
re-calculating these from the Hessian.
Returns:
zero-point energy in eV
"""
return self._calculate_zero_point_energy(self.get_energies())
@staticmethod
def _calculate_zero_point_energy(energies: Union[Sequence[complex],
np.ndarray]) -> float:
return 0.5 * np.asarray(energies).real.sum()
def tabulate(self, im_tol: float = 1e-8) -> str:
"""Get a summary of the vibrational frequencies.
Args:
im_tol:
Tolerance for imaginary frequency in eV. If frequency has a
larger imaginary component than im_tol, the imaginary component
is shown in the summary table.
Returns:
Summary table as formatted text
"""
energies = self.get_energies()
return ('\n'.join(self._tabulate_from_energies(energies,
im_tol=im_tol))
+ '\n')
@classmethod
def _tabulate_from_energies(cls,
energies: Union[Sequence[complex], np.ndarray],
im_tol: float = 1e-8) -> List[str]:
summary_lines = ['---------------------',
' # meV cm^-1',
'---------------------']
for n, e in enumerate(energies):
if abs(e.imag) > im_tol:
c = 'i'
e = e.imag
else:
c = ''
e = e.real
summary_lines.append('{index:3d} {mev:6.1f}{im:1s} {cm:7.1f}{im}'
.format(index=n, mev=(e * 1e3),
cm=(e / units.invcm), im=c))
summary_lines.append('---------------------')
summary_lines.append('Zero-point energy: {:.3f} eV'.format(
cls._calculate_zero_point_energy(energies=energies)))
return summary_lines
def iter_animated_mode(self, mode_index: int,
temperature: float = units.kB * 300,
frames: int = 30) -> Iterator[Atoms]:
"""Obtain animated mode as a series of Atoms
Args:
mode_index: Selection of mode to animate
temperature: In energy units - use units.kB * T_IN_KELVIN
frames: number of image frames in animation
Yields:
Displaced atoms following vibrational mode
"""
mode = (self.get_modes(all_atoms=True)[mode_index]
* sqrt(temperature / abs(self.get_energies()[mode_index])))
for phase in np.linspace(0, 2 * pi, frames, endpoint=False):
atoms = self.get_atoms()
atoms.positions += sin(phase) * mode
yield atoms
def show_as_force(self,
mode: int,
scale: float = 0.2,
show: bool = True) -> Atoms:
"""Illustrate mode as "forces" on atoms
Args:
mode: mode index
scale: scale factor
show: if True, open the ASE GUI and show atoms
Returns:
Atoms with scaled forces corresponding to mode eigenvectors (using
attached SinglePointCalculator).
"""
atoms = self.get_atoms()
mode = self.get_modes(all_atoms=True)[mode] * len(atoms) * 3 * scale
atoms.calc = SinglePointCalculator(atoms, forces=mode)
if show:
atoms.edit()
return atoms
def write_jmol(self,
filename: str = 'vib.xyz',
ir_intensities: Union[Sequence[float], np.ndarray] = None
) -> None:
"""Writes file for viewing of the modes with jmol.
This is an extended XYZ file with eigenvectors given as extra columns
and metadata given in the label/comment line for each image. The format
is not quite human-friendly, but has the advantage that it can be
imported back into ASE with ase.io.read.
Args:
filename: Path for output file
ir_intensities: If available, IR intensities can be included in the
header lines. This does not affect the visualisation, but may
be convenient when comparing to experimental data.
"""
all_images = list(self._get_jmol_images(atoms=self.get_atoms(),
energies=self.get_energies(),
modes=self.get_modes(all_atoms=True),
ir_intensities=ir_intensities))
ase.io.write(filename, all_images, format='extxyz')
@staticmethod
def _get_jmol_images(atoms: Atoms,
energies: np.ndarray,
modes: np.ndarray,
ir_intensities:
Union[Sequence[float], np.ndarray] = None
) -> Iterator[Atoms]:
"""Get vibrational modes as a series of Atoms with attached data
For each image (Atoms object):
- eigenvalues are attached to image.arrays['mode']
- "mode#" and "frequency_cm-1" are set in image.info
- "IR_intensity" is set if provided in ir_intensities
- "masses" is removed
This is intended to set up the object for JMOL-compatible export using
ase.io.extxyz.
Args:
atoms: The base atoms object; all images have the same positions
energies: Complex vibrational energies in eV
modes: Eigenvectors array corresponding to atoms and energies. This
should cover the full set of atoms (i.e. modes =
vib.get_modes(all_atoms=True)).
ir_intensities: If available, IR intensities can be included in the
header lines. This does not affect the visualisation, but may
be convenient when comparing to experimental data.
Returns:
Iterator of Atoms objects
"""
for i, (energy, mode) in enumerate(zip(energies, modes)):
# write imaginary frequencies as negative numbers
if energy.imag > energy.real:
energy = float(-energy.imag)
else:
energy = energy.real
image = atoms.copy()
image.info.update({'mode#': str(i),
'frequency_cm-1': energy / units.invcm,
})
image.arrays['mode'] = mode
# Custom masses are quite useful in vibration analysis, but will
# show up in the xyz file unless we remove them
if image.has('masses'):
del image.arrays['masses']
if ir_intensities is not None:
image.info['IR_intensity'] = float(ir_intensities[i])
yield image
def get_dos(self) -> RawDOSData:
"""Total phonon DOS"""
energies = self.get_energies()
return RawDOSData(energies, np.ones_like(energies))
def get_pdos(self) -> DOSCollection:
"""Phonon DOS, including atomic contributions"""
energies = self.get_energies()
masses = self._atoms[self.get_mask()].get_masses()
# Get weights as N_moving_atoms x N_modes array
vectors = self.get_modes() / masses[np.newaxis, :, np.newaxis]**-0.5
all_weights = (np.linalg.norm(vectors, axis=-1)**2).T
mask = self.get_mask()
all_info = [{'index': i, 'symbol': a.symbol}
for i, a in enumerate(self._atoms) if mask[i]]
return DOSCollection([RawDOSData(energies, weights, info=info)
for weights, info in zip(all_weights, all_info)])
def with_new_masses(self: VD, masses: Union[Sequence[float], np.ndarray]
) -> VD:
"""Get a copy of vibrations with modified masses and the same Hessian
Args:
masses:
New sequence of masses corresponding to the atom order in
self.get_atoms()
Returns:
A copy of the data with new masses for the same Hessian
"""
new_atoms = self.get_atoms()
new_atoms.set_masses(masses)
return self.__class__(new_atoms, self.get_hessian(),
indices=self.get_indices())
|