File: niggli.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (193 lines) | stat: -rw-r--r-- 5,088 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np


def cellvector_products(cell):
    cell = _pad_nonpbc(cell)
    g0 = np.empty(6, dtype=float)
    g0[0] = cell[0] @ cell[0]
    g0[1] = cell[1] @ cell[1]
    g0[2] = cell[2] @ cell[2]
    g0[3] = 2 * (cell[1] @ cell[2])
    g0[4] = 2 * (cell[2] @ cell[0])
    g0[5] = 2 * (cell[0] @ cell[1])
    return g0


def _pad_nonpbc(cell):
    # Add "infinitely long" lattice vectors for non-periodic directions,
    # perpendicular to the periodic ones.
    maxlen = max(cell.lengths())
    mask = cell.any(1)
    cell = cell.complete()
    cell[~mask] *= 2 * maxlen
    return cell


def niggli_reduce_cell(cell, epsfactor=None):
    from ase.cell import Cell

    cell = Cell.new(cell)
    npbc = cell.rank

    if epsfactor is None:
        epsfactor = 1e-5

    vol_normalization_exponent = 1 if npbc == 0 else 1 / npbc
    vol_normalization = cell.complete().volume**vol_normalization_exponent
    eps = epsfactor * vol_normalization

    g0 = cellvector_products(cell)
    g, C = _niggli_reduce(g0, eps)

    abc = np.sqrt(g[:3])
    # Prevent division by zero e.g. for cell==zeros((3, 3)):
    abcprod = max(abc.prod(), 1e-100)
    cosangles = abc * g[3:] / (2 * abcprod)
    angles = 180 * np.arccos(cosangles) / np.pi

    # Non-periodic directions have artificial infinitely long lattice vectors.
    # We re-zero their lengths before returning:
    abc[npbc:] = 0.0

    newcell = Cell.fromcellpar(np.concatenate([abc, angles]))

    newcell[npbc:] = 0.0
    return newcell, C


def lmn_to_ijk(lmn):
    if lmn.prod() == 1:
        ijk = lmn.copy()
        for idx in range(3):
            if ijk[idx] == 0:
                ijk[idx] = 1
    else:
        ijk = np.ones(3, dtype=int)
        if np.any(lmn != -1):
            r = None
            for idx in range(3):
                if lmn[idx] == 1:
                    ijk[idx] = -1
                elif lmn[idx] == 0:
                    r = idx
            if ijk.prod() == -1:
                ijk[r] = -1
    return ijk


def _niggli_reduce(g0, eps):
    I3 = np.eye(3, dtype=int)
    I6 = np.eye(6, dtype=int)

    C = I3.copy()
    D = I6.copy()

    g = D @ g0

    def lt(x, y, eps=eps):
        return x < y - eps

    def gt(x, y, eps=eps):
        return lt(y, x, eps)

    def eq(x, y, eps=eps):
        return not (lt(x, y, eps) or gt(x, y, eps))

    for _ in range(10000):
        if (gt(g[0], g[1])
                or (eq(g[0], g[1]) and gt(abs(g[3]), abs(g[4])))):
            C = C @ (-I3[[1, 0, 2]])
            D = I6[[1, 0, 2, 4, 3, 5]] @ D
            g = D @ g0
            continue
        elif (gt(g[1], g[2])
                or (eq(g[1], g[2]) and gt(abs(g[4]), abs(g[5])))):
            C = C @ (-I3[[0, 2, 1]])
            D = I6[[0, 2, 1, 3, 5, 4]] @ D
            g = D @ g0
            continue

        lmn = np.array(gt(g[3:], 0, eps=eps / 2), dtype=int)
        lmn -= np.array(lt(g[3:], 0, eps=eps / 2), dtype=int)

        ijk = lmn_to_ijk(lmn)

        C *= ijk[np.newaxis]

        D[3] *= ijk[1] * ijk[2]
        D[4] *= ijk[0] * ijk[2]
        D[5] *= ijk[0] * ijk[1]
        g = D @ g0

        if (gt(abs(g[3]), g[1])
                or (eq(g[3], g[1]) and lt(2 * g[4], g[5]))
                or (eq(g[3], -g[1]) and lt(g[5], 0))):
            s = int(np.sign(g[3]))

            A = I3.copy()
            A[1, 2] = -s
            C = C @ A

            B = I6.copy()
            B[2, 1] = 1
            B[2, 3] = -s
            B[3, 1] = -2 * s
            B[4, 5] = -s
            D = B @ D
            g = D @ g0
        elif (gt(abs(g[4]), g[0])
                or (eq(g[4], g[0]) and lt(2 * g[3], g[5]))
                or (eq(g[4], -g[0]) and lt(g[5], 0))):
            s = int(np.sign(g[4]))

            A = I3.copy()
            A[0, 2] = -s
            C = C @ A

            B = I6.copy()
            B[2, 0] = 1
            B[2, 4] = -s
            B[3, 5] = -s
            B[4, 0] = -2 * s
            D = B @ D
            g = D @ g0
        elif (gt(abs(g[5]), g[0])
                or (eq(g[5], g[0]) and lt(2 * g[3], g[4]))
                or (eq(g[5], -g[0]) and lt(g[4], 0))):
            s = int(np.sign(g[5]))

            A = I3.copy()
            A[0, 1] = -s
            C = C @ A

            B = I6.copy()
            B[1, 0] = 1
            B[1, 5] = -s
            B[3, 4] = -s
            B[5, 0] = -2 * s
            D = B @ D
            g = D @ g0
        elif (lt(g[[0, 1, 3, 4, 5]].sum(), 0)
                or (eq(g[[0, 1, 3, 4, 5]].sum(), 0)
                    and gt(2 * (g[0] + g[4]) + g[5], 0))):
            A = I3.copy()
            A[:, 2] = 1
            C = C @ A

            B = I6.copy()
            B[2, :] = 1
            B[3, 1] = 2
            B[3, 5] = 1
            B[4, 0] = 2
            B[4, 5] = 1
            D = B @ D
            g = D @ g0
        else:
            break
    else:
        raise RuntimeError('Niggli reduction not done in 10000 steps!\n'
                           'g={}\n'
                           'operation={}'
                           .format(g.tolist(), C.tolist()))

    return g, C