1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
from math import gcd, sqrt
import numpy as np
from ase.atoms import Atoms
def nanotube(n, m, length=1, bond=1.42, symbol='C', verbose=False,
vacuum=None):
"""Create an atomic structure.
Creates a single-walled nanotube whose structure is specified using the
standardized (n, m) notation.
Parameters
----------
n : int
n in the (n, m) notation.
m : int
m in the (n, m) notation.
length : int, optional
Length (axial repetitions) of the nanotube.
bond : float, optional
Bond length between neighboring atoms.
symbol : str, optional
Chemical element to construct the nanotube from.
verbose : bool, optional
If True, will display key geometric parameters.
Returns
-------
ase.atoms.Atoms
An ASE Atoms object corresponding to the specified molecule.
Examples
--------
>>> from ase.build import nanotube
>>> atoms1 = nanotube(6, 0, length=4)
>>> atoms2 = nanotube(3, 3, length=6, bond=1.4, symbol='Si')
"""
if n < m:
m, n = n, m
sign = -1
else:
sign = 1
nk = 6000
sq3 = sqrt(3.0)
a = sq3 * bond
l2 = n * n + m * m + n * m
l1 = sqrt(l2)
nd = gcd(n, m)
if (n - m) % (3 * nd) == 0:
ndr = 3 * nd
else:
ndr = nd
nr = (2 * m + n) // ndr
ns = -(2 * n + m) // ndr
nn = 2 * l2 // ndr
ichk = 0
if nr == 0:
n60 = 1
else:
n60 = nr * 4
absn = abs(n60)
nnp = []
nnq = []
for i in range(-absn, absn + 1):
for j in range(-absn, absn + 1):
j2 = nr * j - ns * i
if j2 == 1:
j1 = m * i - n * j
if j1 > 0 and j1 < nn:
ichk += 1
nnp.append(i)
nnq.append(j)
if ichk == 0:
raise RuntimeError('not found p, q strange!!')
if ichk >= 2:
raise RuntimeError('more than 1 pair p, q strange!!')
nnnp = nnp[0]
nnnq = nnq[0]
if verbose:
print('the symmetry vector is', nnnp, nnnq)
lp = nnnp * nnnp + nnnq * nnnq + nnnp * nnnq
r = a * sqrt(lp)
c = a * l1
t = sq3 * c / ndr
if 2 * nn > nk:
raise RuntimeError('parameter nk is too small!')
rs = c / (2.0 * np.pi)
if verbose:
print('radius=', rs, t)
q1 = np.arctan((sq3 * m) / (2 * n + m))
q2 = np.arctan((sq3 * nnnq) / (2 * nnnp + nnnq))
q3 = q1 - q2
q4 = 2.0 * np.pi / nn
q5 = bond * np.cos((np.pi / 6.0) - q1) / c * 2.0 * np.pi
h1 = abs(t) / abs(np.sin(q3))
h2 = bond * np.sin((np.pi / 6.0) - q1)
ii = 0
x, y, z = [], [], []
for i in range(nn):
x1, y1, z1 = 0, 0, 0
k = np.floor(i * abs(r) / h1)
x1 = rs * np.cos(i * q4)
y1 = rs * np.sin(i * q4)
z1 = (i * abs(r) - k * h1) * np.sin(q3)
kk2 = abs(np.floor((z1 + 0.0001) / t))
if z1 >= t - 0.0001:
z1 -= t * kk2
elif z1 < 0:
z1 += t * kk2
ii += 1
x.append(x1)
y.append(y1)
z.append(z1)
z3 = (i * abs(r) - k * h1) * np.sin(q3) - h2
ii += 1
if z3 >= 0 and z3 < t:
x2 = rs * np.cos(i * q4 + q5)
y2 = rs * np.sin(i * q4 + q5)
z2 = (i * abs(r) - k * h1) * np.sin(q3) - h2
x.append(x2)
y.append(y2)
z.append(z2)
else:
x2 = rs * np.cos(i * q4 + q5)
y2 = rs * np.sin(i * q4 + q5)
z2 = (i * abs(r) - (k + 1) * h1) * np.sin(q3) - h2
kk = abs(np.floor(z2 / t))
if z2 >= t - 0.0001:
z2 -= t * kk
elif z2 < 0:
z2 += t * kk
x.append(x2)
y.append(y2)
z.append(z2)
ntotal = 2 * nn
X = []
for i in range(ntotal):
X.append([x[i], y[i], sign * z[i]])
if length > 1:
xx = X[:]
for mnp in range(2, length + 1):
for i in range(len(xx)):
X.append(xx[i][:2] + [xx[i][2] + (mnp - 1) * t])
transvec = t
numatom = ntotal * length
diameter = rs * 2
chiralangle = np.arctan((sq3 * n) / (2 * m + n)) / np.pi * 180
cell = [[0, 0, 0], [0, 0, 0], [0, 0, length * t]]
atoms = Atoms(symbol + str(numatom),
positions=X,
cell=cell,
pbc=[False, False, True])
if vacuum:
atoms.center(vacuum, axis=(0, 1))
if verbose:
print('translation vector =', transvec)
print('diameter = ', diameter)
print('chiral angle = ', chiralangle)
return atoms
|