1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
import os
import subprocess
from pathlib import Path
from warnings import warn
import numpy as np
from ase.calculators.calculator import (
BaseCalculator,
Calculator,
FileIOCalculator,
)
from ase.io import write
from ase.io.vasp import write_vasp
from ase.parallel import world
from ase.units import Bohr, Hartree
def dftd3_defaults():
default_parameters = {'xc': None, # PBE if no custom damping parameters
'grad': True, # calculate forces/stress
'abc': False, # ATM 3-body contribution
'cutoff': 95 * Bohr, # Cutoff for 2-body calcs
'cnthr': 40 * Bohr, # Cutoff for 3-body and CN calcs
'old': False, # use old DFT-D2 method instead
'damping': 'zero', # Default to zero-damping
'tz': False, # 'triple zeta' alt. parameters
's6': None, # damping parameters start here
'sr6': None,
's8': None,
'sr8': None,
'alpha6': None,
'a1': None,
'a2': None,
'beta': None}
return default_parameters
class DFTD3(BaseCalculator):
"""Grimme DFT-D3 calculator"""
def __init__(self,
label='ase_dftd3', # Label for dftd3 output files
command=None, # Command for running dftd3
dft=None, # DFT calculator
comm=world,
**kwargs):
# Convert from 'func' keyword to 'xc'. Internally, we only store
# 'xc', but 'func' is also allowed since it is consistent with the
# CLI dftd3 interface.
func = kwargs.pop('func', None)
if func is not None:
if kwargs.get('xc') is not None:
raise RuntimeError('Both "func" and "xc" were provided! '
'Please provide at most one of these '
'two keywords. The preferred keyword '
'is "xc"; "func" is allowed for '
'consistency with the CLI dftd3 '
'interface.')
kwargs['xc'] = func
# If the user did not supply an XC functional, but did attach a
# DFT calculator that has XC set, then we will use that. Note that
# DFTD3's spelling convention is different from most, so in general
# you will have to explicitly set XC for both the DFT calculator and
# for DFTD3 (and DFTD3's will likely be spelled differently...)
if dft is not None and kwargs.get('xc') is None:
dft_xc = dft.parameters.get('xc')
if dft_xc is not None:
kwargs['xc'] = dft_xc
dftd3 = PureDFTD3(label=label, command=command, comm=comm, **kwargs)
# dftd3 only implements energy, forces, and stresses (for periodic
# systems). But, if a DFT calculator is attached, and that calculator
# implements more properties, we expose those properties.
# dftd3 contributions for those properties will be zero.
if dft is None:
self.implemented_properties = list(dftd3.dftd3_properties)
else:
self.implemented_properties = list(dft.implemented_properties)
# Should our arguments be "parameters" (passed to superclass)
# or are they not really "parameters"?
#
# That's not really well defined. Let's not do anything then.
super().__init__()
self.dftd3 = dftd3
self.dft = dft
def todict(self):
return {}
def calculate(self, atoms, properties, system_changes):
common_props = set(self.dftd3.dftd3_properties) & set(properties)
dftd3_results = self._get_properties(atoms, common_props, self.dftd3)
if self.dft is None:
results = dftd3_results
else:
dft_results = self._get_properties(atoms, properties, self.dft)
results = dict(dft_results)
for name in set(results) & set(dftd3_results):
assert np.shape(results[name]) == np.shape(dftd3_results[name])
results[name] += dftd3_results[name]
# Although DFTD3 may have calculated quantities not provided
# by the calculator (e.g. stress), it would be wrong to
# return those! Return only what corresponds to the DFT calc.
assert set(results) == set(dft_results)
self.results = results
def _get_properties(self, atoms, properties, calc):
# We want any and all properties that the calculator
# normally produces. So we intend to rob the calc.results
# dictionary instead of only getting the requested properties.
import copy
for name in properties:
calc.get_property(name, atoms)
assert name in calc.results
# XXX maybe use get_properties() when that makes sense.
results = copy.deepcopy(calc.results)
assert set(properties) <= set(results)
return results
class PureDFTD3(FileIOCalculator):
"""DFTD3 calculator without corresponding DFT contribution.
This class is an implementation detail."""
name = 'puredftd3'
dftd3_properties = {'energy', 'free_energy', 'forces', 'stress'}
implemented_properties = list(dftd3_properties)
default_parameters = dftd3_defaults()
damping_methods = {'zero', 'bj', 'zerom', 'bjm'}
_legacy_default_command = 'dftd3'
def __init__(self,
*,
label='ase_dftd3', # Label for dftd3 output files
command=None, # Command for running dftd3
comm=world,
**kwargs):
# FileIOCalculator would default to self.name to get the envvar
# which determines the command.
# We'll have to overrule that if we want to keep scripts working:
command = command or self.cfg.get('ASE_DFTD3_COMMAND')
super().__init__(label=label,
command=command,
**kwargs)
# TARP: This is done because the calculator does not call
# FileIOCalculator.calculate, but Calculator.calculate and does not
# use the profile defined in FileIOCalculator.__init__
self.comm = comm
def set(self, **kwargs):
changed_parameters = {}
# Check for unknown arguments. Don't raise an error, just let the
# user know that we don't understand what they're asking for.
unknown_kwargs = set(kwargs) - set(self.default_parameters)
if unknown_kwargs:
warn('WARNING: Ignoring the following unknown keywords: {}'
''.format(', '.join(unknown_kwargs)))
changed_parameters.update(FileIOCalculator.set(self, **kwargs))
# Ensure damping method is valid (zero, bj, zerom, bjm).
damping = self.parameters['damping']
if damping is not None:
damping = damping.lower()
if damping not in self.damping_methods:
raise ValueError(f'Unknown damping method {damping}!')
# d2 only is valid with 'zero' damping
elif self.parameters['old'] and damping != 'zero':
raise ValueError('Only zero-damping can be used with the D2 '
'dispersion correction method!')
# If cnthr (cutoff for three-body and CN calculations) is greater
# than cutoff (cutoff for two-body calculations), then set the former
# equal to the latter, since that doesn't make any sense.
if self.parameters['cnthr'] > self.parameters['cutoff']:
warn('WARNING: CN cutoff value of {cnthr} is larger than '
'regular cutoff value of {cutoff}! Reducing CN cutoff '
'to {cutoff}.'
''.format(cnthr=self.parameters['cnthr'],
cutoff=self.parameters['cutoff']))
self.parameters['cnthr'] = self.parameters['cutoff']
# If you only care about the energy, gradient calculations (forces,
# stresses) can be bypassed. This will greatly speed up calculations
# in dense 3D-periodic systems with three-body corrections. But, we
# can no longer say that we implement forces and stresses.
# if not self.parameters['grad']:
# for val in ['forces', 'stress']:
# if val in self.implemented_properties:
# self.implemented_properties.remove(val)
# Check to see if we're using custom damping parameters.
zero_damppars = {'s6', 'sr6', 's8', 'sr8', 'alpha6'}
bj_damppars = {'s6', 'a1', 's8', 'a2', 'alpha6'}
zerom_damppars = {'s6', 'sr6', 's8', 'beta', 'alpha6'}
all_damppars = zero_damppars | bj_damppars | zerom_damppars
self.custom_damp = False
damppars = set(kwargs) & all_damppars
if damppars:
self.custom_damp = True
if damping == 'zero':
valid_damppars = zero_damppars
elif damping in ['bj', 'bjm']:
valid_damppars = bj_damppars
elif damping == 'zerom':
valid_damppars = zerom_damppars
# If some but not all damping parameters are provided for the
# selected damping method, raise an error. We don't have "default"
# values for damping parameters, since those are stored in the
# dftd3 executable & depend on XC functional.
missing_damppars = valid_damppars - damppars
if missing_damppars and missing_damppars != valid_damppars:
raise ValueError('An incomplete set of custom damping '
'parameters for the {} damping method was '
'provided! Expected: {}; got: {}'
''.format(damping,
', '.join(valid_damppars),
', '.join(damppars)))
# If a user provides damping parameters that are not used in the
# selected damping method, let them know that we're ignoring them.
# If the user accidentally provided the *wrong* set of parameters,
# (e.g., the BJ parameters when they are using zero damping), then
# the previous check will raise an error, so we don't need to
# worry about that here.
if damppars - valid_damppars:
warn('WARNING: The following damping parameters are not '
'valid for the {} damping method and will be ignored: {}'
''.format(damping,
', '.join(damppars)))
# The default XC functional is PBE, but this is only set if the user
# did not provide their own value for xc or any custom damping
# parameters.
if self.parameters['xc'] and self.custom_damp:
warn('WARNING: Custom damping parameters will be used '
'instead of those parameterized for {}!'
''.format(self.parameters['xc']))
if changed_parameters:
self.results.clear()
return changed_parameters
def calculate(self, atoms, properties, system_changes):
# We don't call FileIOCalculator.calculate here, because that method
# calls subprocess.call(..., shell=True), which we don't want to do.
# So, we reproduce some content from that method here.
Calculator.calculate(self, atoms, properties, system_changes)
# If a parameter file exists in the working directory, delete it
# first. If we need that file, we'll recreate it later.
localparfile = os.path.join(self.directory, '.dftd3par.local')
if self.comm.rank == 0 and os.path.isfile(localparfile):
os.remove(localparfile)
# Write XYZ or POSCAR file and .dftd3par.local file if we are using
# custom damping parameters.
self.write_input(self.atoms, properties, system_changes)
# command = self._generate_command()
inputs = DFTD3Inputs(command=self.command, prefix=self.label,
atoms=self.atoms, parameters=self.parameters)
command = inputs.get_argv(custom_damp=self.custom_damp)
# Finally, call dftd3 and parse results.
# DFTD3 does not run in parallel
# so we only need it to run on 1 core
errorcode = 0
if self.comm.rank == 0:
with open(self.label + '.out', 'w') as fd:
errorcode = subprocess.call(command,
cwd=self.directory, stdout=fd)
errorcode = self.comm.sum_scalar(errorcode)
if errorcode:
raise RuntimeError('%s returned an error: %d' %
(self.name, errorcode))
self.read_results()
def write_input(self, atoms, properties=None, system_changes=None):
FileIOCalculator.write_input(self, atoms, properties=properties,
system_changes=system_changes)
# dftd3 can either do fully 3D periodic or non-periodic calculations.
# It cannot do calculations that are only periodic in 1 or 2
# dimensions. If the atoms object is periodic in only 1 or 2
# dimensions, then treat it as a fully 3D periodic system, but warn
# the user.
if self.custom_damp:
damppars = _get_damppars(self.parameters)
else:
damppars = None
pbc = any(atoms.pbc)
if pbc and not all(atoms.pbc):
warn('WARNING! dftd3 can only calculate the dispersion energy '
'of non-periodic or 3D-periodic systems. We will treat '
'this system as 3D-periodic!')
if self.comm.rank == 0:
self._actually_write_input(
directory=Path(self.directory), atoms=atoms,
properties=properties, prefix=self.label,
damppars=damppars, pbc=pbc)
def _actually_write_input(self, directory, prefix, atoms, properties,
damppars, pbc):
if pbc:
fname = directory / f'{prefix}.POSCAR'
# We sort the atoms so that the atomtypes list becomes as
# short as possible. The dftd3 program can only handle 10
# atomtypes
write_vasp(fname, atoms, sort=True)
else:
fname = directory / f'{prefix}.xyz'
write(fname, atoms, format='xyz', parallel=False)
# Generate custom damping parameters file. This is kind of ugly, but
# I don't know of a better way of doing this.
if damppars is not None:
damp_fname = directory / '.dftd3par.local'
with open(damp_fname, 'w') as fd:
fd.write(' '.join(damppars))
def _outname(self):
return Path(self.directory) / f'{self.label}.out'
def _read_and_broadcast_results(self):
from ase.parallel import broadcast
if self.comm.rank == 0:
output = DFTD3Output(directory=self.directory,
stdout_path=self._outname())
dct = output.read(atoms=self.atoms,
read_forces=bool(self.parameters['grad']))
else:
dct = None
dct = broadcast(dct, root=0, comm=self.comm)
return dct
def read_results(self):
results = self._read_and_broadcast_results()
self.results = results
class DFTD3Inputs:
dftd3_flags = {'grad', 'pbc', 'abc', 'old', 'tz'}
def __init__(self, command, prefix, atoms, parameters):
self.command = command
self.prefix = prefix
self.atoms = atoms
self.parameters = parameters
@property
def pbc(self):
return any(self.atoms.pbc)
@property
def inputformat(self):
if self.pbc:
return 'POSCAR'
else:
return 'xyz'
def get_argv(self, custom_damp):
argv = self.command.split()
argv.append(f'{self.prefix}.{self.inputformat}')
if not custom_damp:
xc = self.parameters.get('xc')
if xc is None:
xc = 'pbe'
argv += ['-func', xc.lower()]
for arg in self.dftd3_flags:
if self.parameters.get(arg):
argv.append('-' + arg)
if self.pbc:
argv.append('-pbc')
argv += ['-cnthr', str(self.parameters['cnthr'] / Bohr)]
argv += ['-cutoff', str(self.parameters['cutoff'] / Bohr)]
if not self.parameters['old']:
argv.append('-' + self.parameters['damping'])
return argv
class DFTD3Output:
def __init__(self, directory, stdout_path):
self.directory = Path(directory)
self.stdout_path = Path(stdout_path)
def read(self, *, atoms, read_forces):
results = {}
energy = self.read_energy()
results['energy'] = energy
results['free_energy'] = energy
if read_forces:
results['forces'] = self.read_forces(atoms)
if any(atoms.pbc):
results['stress'] = self.read_stress(atoms.cell)
return results
def read_forces(self, atoms):
forcename = self.directory / 'dftd3_gradient'
with open(forcename) as fd:
forces = self.parse_forces(fd)
assert len(forces) == len(atoms)
forces *= -Hartree / Bohr
# XXXX ordering!
if any(atoms.pbc):
# This seems to be due to vasp file sorting.
# If that sorting rule changes, we will get garbled
# forces!
ind = np.argsort(atoms.symbols)
forces[ind] = forces.copy()
return forces
def read_stress(self, cell):
volume = cell.volume
assert volume > 0
stress = self.read_cellgradient()
stress *= Hartree / Bohr / volume
stress = stress.T @ cell
return stress.flat[[0, 4, 8, 5, 2, 1]]
def read_cellgradient(self):
with (self.directory / 'dftd3_cellgradient').open() as fd:
return self.parse_cellgradient(fd)
def read_energy(self) -> float:
with self.stdout_path.open() as fd:
return self.parse_energy(fd, self.stdout_path)
def parse_energy(self, fd, outname):
for line in fd:
if line.startswith(' program stopped'):
if 'functional name unknown' in line:
message = ('Unknown DFTD3 functional name. '
'Please check the dftd3.f source file '
'for the list of known functionals '
'and their spelling.')
else:
message = ('dftd3 failed! Please check the {} '
'output file and report any errors '
'to the ASE developers.'
''.format(outname))
raise RuntimeError(message)
if line.startswith(' Edisp'):
# line looks something like this:
#
# Edisp /kcal,au,ev: xxx xxx xxx
#
parts = line.split()
assert parts[1][0] == '/'
index = 2 + parts[1][1:-1].split(',').index('au')
e_dftd3 = float(parts[index]) * Hartree
return e_dftd3
raise RuntimeError('Could not parse energy from dftd3 '
'output, see file {}'.format(outname))
def parse_forces(self, fd):
forces = []
for i, line in enumerate(fd):
forces.append(line.split())
return np.array(forces, dtype=float)
def parse_cellgradient(self, fd):
stress = np.zeros((3, 3))
for i, line in enumerate(fd):
for j, x in enumerate(line.split()):
stress[i, j] = float(x)
# Check if all stress elements are present?
# Check if file is longer?
return stress
def _get_damppars(par):
damping = par['damping']
damppars = []
# s6 is always first
damppars.append(str(float(par['s6'])))
# sr6 is the second value for zero{,m} damping, a1 for bj{,m}
if damping in ['zero', 'zerom']:
damppars.append(str(float(par['sr6'])))
elif damping in ['bj', 'bjm']:
damppars.append(str(float(par['a1'])))
# s8 is always third
damppars.append(str(float(par['s8'])))
# sr8 is fourth for zero, a2 for bj{,m}, beta for zerom
if damping == 'zero':
damppars.append(str(float(par['sr8'])))
elif damping in ['bj', 'bjm']:
damppars.append(str(float(par['a2'])))
elif damping == 'zerom':
damppars.append(str(float(par['beta'])))
# alpha6 is always fifth
damppars.append(str(int(par['alpha6'])))
# last is the version number
if par['old']:
damppars.append('2')
elif damping == 'zero':
damppars.append('3')
elif damping == 'bj':
damppars.append('4')
elif damping == 'zerom':
damppars.append('5')
elif damping == 'bjm':
damppars.append('6')
return damppars
|