1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
# flake8: noqa
"""Calculator for the Embedded Atom Method Potential"""
# eam.py
# Embedded Atom Method Potential
# These routines integrate with the ASE simulation environment
# Paul White (Oct 2012)
# UNCLASSIFIED
# License: See accompanying license files for details
import os
import numpy as np
from scipy.interpolate import InterpolatedUnivariateSpline as spline
from ase.calculators.calculator import Calculator, all_changes
from ase.data import chemical_symbols
from ase.neighborlist import NeighborList
from ase.units import Bohr, Hartree
class EAM(Calculator):
r"""
EAM Interface Documentation
Introduction
============
The Embedded Atom Method (EAM) [1]_ is a classical potential which is
good for modelling metals, particularly fcc materials. Because it is
an equiaxial potential the EAM does not model directional bonds
well. However, the Angular Dependent Potential (ADP) [2]_ which is an
extended version of EAM is able to model directional bonds and is also
included in the EAM calculator.
Generally all that is required to use this calculator is to supply a
potential file or as a set of functions that describe the potential.
The files containing the potentials for this calculator are not
included but many suitable potentials can be downloaded from The
Interatomic Potentials Repository Project at
https://www.ctcms.nist.gov/potentials/
Theory
======
A single element EAM potential is defined by three functions: the
embedded energy, electron density and the pair potential. A two
element alloy contains the individual three functions for each element
plus cross pair interactions. The ADP potential has two additional
sets of data to define the dipole and quadrupole directional terms for
each alloy and their cross interactions.
The total energy `E_{\rm tot}` of an arbitrary arrangement of atoms is
given by the EAM potential as
.. math::
E_\text{tot} = \sum_i F(\bar\rho_i) + \frac{1}{2}\sum_{i\ne j} \phi(r_{ij})
and
.. math::
\bar\rho_i = \sum_j \rho(r_{ij})
where `F` is an embedding function, namely the energy to embed an atom `i` in
the combined electron density `\bar\rho_i` which is contributed from
each of its neighbouring atoms `j` by an amount `\rho(r_{ij})`,
`\phi(r_{ij})` is the pair potential function representing the energy
in bond `ij` which is due to the short-range electro-static
interaction between atoms, and `r_{ij}` is the distance between an
atom and its neighbour for that bond.
The ADP potential is defined as
.. math::
E_\text{tot} = \sum_i F(\bar\rho_i) + \frac{1}{2}\sum_{i\ne j} \phi(r_{ij})
+ \frac{1}{2} \sum_{i,\alpha} (\mu_i^\alpha)^2
+ \frac{1}{2} \sum_{i,\alpha,\beta} (\lambda_i^{\alpha\beta})^2
- \frac{1}{6} \sum_i \nu_i^2
where `\mu_i^\alpha` is the dipole vector, `\lambda_i^{\alpha\beta}`
is the quadrupole tensor and `\nu_i` is the trace of
`\lambda_i^{\alpha\beta}`.
The fs potential is defined as
.. math::
E_i = F_\alpha (\sum_{j\neq i} \rho_{\alpha \beta}(r_{ij}))
+ \frac{1}{2}\sum_{j\neq i}\phi_{\alpha \beta}(r_{ij})
where `\alpha` and `\beta` are element types of atoms. This form is similar to
original EAM formula above, except that `\rho` and `\phi` are determined
by element types.
Running the Calculator
======================
EAM calculates the cohesive atom energy and forces. Internally the
potential functions are defined by splines which may be directly
supplied or created by reading the spline points from a data file from
which a spline function is created. The LAMMPS compatible ``.alloy``, ``.fs``
and ``.adp`` formats are supported. The LAMMPS ``.eam`` format is
slightly different from the ``.alloy`` format and is currently not
supported.
For example::
from ase.calculators.eam import EAM
mishin = EAM(potential='Al99.eam.alloy')
mishin.write_potential('new.eam.alloy')
mishin.plot()
slab.calc = mishin
slab.get_potential_energy()
slab.get_forces()
The breakdown of energy contribution from the indvidual components are
stored in the calculator instance ``.results['energy_components']``
Arguments
=========
========================= ====================================================
Keyword Description
========================= ====================================================
``potential`` file of potential in ``.eam``, ``.alloy``, ``.adp`` or ``.fs``
format or file object
(This is generally all you need to supply).
For file object the ``form`` argument is required
``elements[N]`` array of N element abbreviations
``embedded_energy[N]`` arrays of embedded energy functions
``electron_density[N]`` arrays of electron density functions
``phi[N,N]`` arrays of pair potential functions
``d_embedded_energy[N]`` arrays of derivative embedded energy functions
``d_electron_density[N]`` arrays of derivative electron density functions
``d_phi[N,N]`` arrays of derivative pair potentials functions
``d[N,N], q[N,N]`` ADP dipole and quadrupole function
``d_d[N,N], d_q[N,N]`` ADP dipole and quadrupole derivative functions
``skin`` skin distance passed to NeighborList(). If no atom
has moved more than the skin-distance since the last
call to the ``update()`` method then the neighbor
list can be reused. Defaults to 1.0.
``form`` the form of the potential
``eam``, ``alloy``, ``adp`` or
``fs``. This will be determined from the file suffix
or must be set if using equations or file object
========================= ====================================================
Additional parameters for writing potential files
=================================================
The following parameters are only required for writing a potential in
``.alloy``, ``.adp`` or ``fs`` format file.
========================= ====================================================
Keyword Description
========================= ====================================================
``header`` Three line text header. Default is standard message.
``Z[N]`` Array of atomic number of each element
``mass[N]`` Atomic mass of each element
``a[N]`` Array of lattice parameters for each element
``lattice[N]`` Lattice type
``nrho`` No. of rho samples along embedded energy curve
``drho`` Increment for sampling density
``nr`` No. of radial points along density and pair
potential curves
``dr`` Increment for sampling radius
========================= ====================================================
Special features
================
``.plot()``
Plots the individual functions. This may be called from multiple EAM
potentials to compare the shape of the individual curves. This
function requires the installation of the Matplotlib libraries.
Notes/Issues
=============
* Although currently not fast, this calculator can be good for trying
small calculations or for creating new potentials by matching baseline
data such as from DFT results. The format for these potentials is
compatible with LAMMPS_ and so can be used either directly by LAMMPS or
with the ASE LAMMPS calculator interface.
* Supported formats are the LAMMPS_ ``.alloy`` and ``.adp``. The
``.eam`` format is currently not supported. The form of the
potential will be determined from the file suffix.
* Any supplied values will override values read from the file.
* The derivative functions, if supplied, are only used to calculate
forces.
* There is a bug in early versions of scipy that will cause eam.py to
crash when trying to evaluate splines of a potential with one
neighbor such as caused by evaluating a dimer.
.. _LAMMPS: http://lammps.sandia.gov/
.. [1] M.S. Daw and M.I. Baskes, Phys. Rev. Letters 50 (1983)
1285.
.. [2] Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos,
Acta Materialia 53 2005 4029--4041.
End EAM Interface Documentation
"""
implemented_properties = ['energy', 'forces']
default_parameters = dict(
skin=1.0,
potential=None,
header=[b'EAM/ADP potential file\n',
b'Generated from eam.py\n',
b'blank\n'])
def __init__(self, restart=None,
ignore_bad_restart_file=Calculator._deprecated,
label=os.curdir, atoms=None, form=None, **kwargs):
self.form = form
if 'potential' in kwargs:
self.read_potential(kwargs['potential'])
Calculator.__init__(self, restart, ignore_bad_restart_file,
label, atoms, **kwargs)
valid_args = ('potential', 'elements', 'header', 'drho', 'dr',
'cutoff', 'atomic_number', 'mass', 'a', 'lattice',
'embedded_energy', 'electron_density', 'phi',
# derivatives
'd_embedded_energy', 'd_electron_density', 'd_phi',
'd', 'q', 'd_d', 'd_q', # adp terms
'skin', 'Z', 'nr', 'nrho', 'mass')
# set any additional keyword arguments
for arg, val in self.parameters.items():
if arg in valid_args:
setattr(self, arg, val)
else:
raise RuntimeError(
f'unknown keyword arg "{arg}" : not in {valid_args}')
def set_form(self, name):
"""set the form variable based on the file name suffix"""
extension = os.path.splitext(name)[1]
if extension == '.eam':
self.form = 'eam'
elif extension == '.alloy':
self.form = 'alloy'
elif extension == '.adp':
self.form = 'adp'
elif extension == '.fs':
self.form = 'fs'
else:
raise RuntimeError(f'unknown file extension type: {extension}')
def read_potential(self, filename):
"""Reads a LAMMPS EAM file in alloy or adp format
and creates the interpolation functions from the data
"""
if isinstance(filename, str):
with open(filename) as fd:
self._read_potential(fd)
else:
fd = filename
self._read_potential(fd)
def _read_potential(self, fd):
if self.form is None:
self.set_form(fd.name)
lines = fd.readlines()
def lines_to_list(lines):
"""Make the data one long line so as not to care how its formatted
"""
data = []
for line in lines:
data.extend(line.split())
return data
if self.form == 'eam': # single element eam file (aka funcfl)
self.header = lines[:1]
data = lines_to_list(lines[1:])
# eam form is just like an alloy form for one element
self.Nelements = 1
self.elements = [chemical_symbols[int(data[0])]]
self.Z = np.array([data[0]], dtype=int)
self.mass = np.array([data[1]])
self.a = np.array([data[2]])
self.lattice = [data[3]]
self.nrho = int(data[4])
self.drho = float(data[5])
self.nr = int(data[6])
self.dr = float(data[7])
self.cutoff = float(data[8])
n = 9 + self.nrho
self.embedded_data = np.array([np.float64(data[9:n])])
self.rphi_data = np.zeros([self.Nelements, self.Nelements,
self.nr])
effective_charge = np.float64(data[n:n + self.nr])
# convert effective charges to rphi according to
# http://lammps.sandia.gov/doc/pair_eam.html
self.rphi_data[0, 0] = Bohr * Hartree * (effective_charge**2)
self.density_data = np.array(
[np.float64(data[n + self.nr:n + 2 * self.nr])])
elif self.form in ['alloy', 'adp']:
self.header = lines[:3]
i = 3
data = lines_to_list(lines[i:])
self.Nelements = int(data[0])
d = 1
self.elements = data[d:d + self.Nelements]
d += self.Nelements
self.nrho = int(data[d])
self.drho = float(data[d + 1])
self.nr = int(data[d + 2])
self.dr = float(data[d + 3])
self.cutoff = float(data[d + 4])
self.embedded_data = np.zeros([self.Nelements, self.nrho])
self.density_data = np.zeros([self.Nelements, self.nr])
self.Z = np.zeros([self.Nelements], dtype=int)
self.mass = np.zeros([self.Nelements])
self.a = np.zeros([self.Nelements])
self.lattice = []
d += 5
# reads in the part of the eam file for each element
for elem in range(self.Nelements):
self.Z[elem] = int(data[d])
self.mass[elem] = float(data[d + 1])
self.a[elem] = float(data[d + 2])
self.lattice.append(data[d + 3])
d += 4
self.embedded_data[elem] = np.float64(
data[d:(d + self.nrho)])
d += self.nrho
self.density_data[elem] = np.float64(data[d:(d + self.nr)])
d += self.nr
# reads in the r*phi data for each interaction between elements
self.rphi_data = np.zeros([self.Nelements, self.Nelements,
self.nr])
for i in range(self.Nelements):
for j in range(i + 1):
self.rphi_data[j, i] = np.float64(data[d:(d + self.nr)])
d += self.nr
elif self.form == 'fs':
self.header = lines[:3]
i = 3
data = lines_to_list(lines[i:])
self.Nelements = int(data[0])
d = 1
self.elements = data[d:d + self.Nelements]
d += self.Nelements
self.nrho = int(data[d])
self.drho = float(data[d + 1])
self.nr = int(data[d + 2])
self.dr = float(data[d + 3])
self.cutoff = float(data[d + 4])
self.embedded_data = np.zeros([self.Nelements, self.nrho])
self.density_data = np.zeros([self.Nelements, self.Nelements,
self.nr])
self.Z = np.zeros([self.Nelements], dtype=int)
self.mass = np.zeros([self.Nelements])
self.a = np.zeros([self.Nelements])
self.lattice = []
d += 5
# reads in the part of the eam file for each element
for elem in range(self.Nelements):
self.Z[elem] = int(data[d])
self.mass[elem] = float(data[d + 1])
self.a[elem] = float(data[d + 2])
self.lattice.append(data[d + 3])
d += 4
self.embedded_data[elem] = np.float64(
data[d:(d + self.nrho)])
d += self.nrho
self.density_data[elem, :, :] = np.float64(
data[d:(d + self.nr * self.Nelements)]).reshape([
self.Nelements, self.nr])
d += self.nr * self.Nelements
# reads in the r*phi data for each interaction between elements
self.rphi_data = np.zeros([self.Nelements, self.Nelements,
self.nr])
for i in range(self.Nelements):
for j in range(i + 1):
self.rphi_data[j, i] = np.float64(data[d:(d + self.nr)])
d += self.nr
self.r = np.arange(0, self.nr) * self.dr
self.rho = np.arange(0, self.nrho) * self.drho
# choose the set_splines method according to the type
if self.form == 'fs':
self.set_fs_splines()
else:
self.set_splines()
if self.form == 'adp':
self.read_adp_data(data, d)
self.set_adp_splines()
def set_splines(self):
# this section turns the file data into three functions (and
# derivative functions) that define the potential
self.embedded_energy = np.empty(self.Nelements, object)
self.electron_density = np.empty(self.Nelements, object)
self.d_embedded_energy = np.empty(self.Nelements, object)
self.d_electron_density = np.empty(self.Nelements, object)
for i in range(self.Nelements):
self.embedded_energy[i] = spline(self.rho,
self.embedded_data[i], k=3)
self.electron_density[i] = spline(self.r,
self.density_data[i], k=3)
self.d_embedded_energy[i] = self.deriv(self.embedded_energy[i])
self.d_electron_density[i] = self.deriv(self.electron_density[i])
self.phi = np.empty([self.Nelements, self.Nelements], object)
self.d_phi = np.empty([self.Nelements, self.Nelements], object)
# ignore the first point of the phi data because it is forced
# to go through zero due to the r*phi format in alloy and adp
for i in range(self.Nelements):
for j in range(i, self.Nelements):
self.phi[i, j] = spline(
self.r[1:],
self.rphi_data[i, j][1:] / self.r[1:], k=3)
self.d_phi[i, j] = self.deriv(self.phi[i, j])
if j != i:
self.phi[j, i] = self.phi[i, j]
self.d_phi[j, i] = self.d_phi[i, j]
def set_fs_splines(self):
self.embedded_energy = np.empty(self.Nelements, object)
self.electron_density = np.empty(
[self.Nelements, self.Nelements], object)
self.d_embedded_energy = np.empty(self.Nelements, object)
self.d_electron_density = np.empty(
[self.Nelements, self.Nelements], object)
for i in range(self.Nelements):
self.embedded_energy[i] = spline(self.rho,
self.embedded_data[i], k=3)
self.d_embedded_energy[i] = self.deriv(self.embedded_energy[i])
for j in range(self.Nelements):
self.electron_density[i, j] = spline(
self.r, self.density_data[i, j], k=3)
self.d_electron_density[i, j] = self.deriv(
self.electron_density[i, j])
self.phi = np.empty([self.Nelements, self.Nelements], object)
self.d_phi = np.empty([self.Nelements, self.Nelements], object)
for i in range(self.Nelements):
for j in range(i, self.Nelements):
self.phi[i, j] = spline(
self.r[1:],
self.rphi_data[i, j][1:] / self.r[1:], k=3)
self.d_phi[i, j] = self.deriv(self.phi[i, j])
if j != i:
self.phi[j, i] = self.phi[i, j]
self.d_phi[j, i] = self.d_phi[i, j]
def set_adp_splines(self):
self.d = np.empty([self.Nelements, self.Nelements], object)
self.d_d = np.empty([self.Nelements, self.Nelements], object)
self.q = np.empty([self.Nelements, self.Nelements], object)
self.d_q = np.empty([self.Nelements, self.Nelements], object)
for i in range(self.Nelements):
for j in range(i, self.Nelements):
self.d[i, j] = spline(self.r[1:], self.d_data[i, j][1:], k=3)
self.d_d[i, j] = self.deriv(self.d[i, j])
self.q[i, j] = spline(self.r[1:], self.q_data[i, j][1:], k=3)
self.d_q[i, j] = self.deriv(self.q[i, j])
# make symmetrical
if j != i:
self.d[j, i] = self.d[i, j]
self.d_d[j, i] = self.d_d[i, j]
self.q[j, i] = self.q[i, j]
self.d_q[j, i] = self.d_q[i, j]
def read_adp_data(self, data, d):
"""read in the extra adp data from the potential file"""
self.d_data = np.zeros([self.Nelements, self.Nelements, self.nr])
# should be non symmetrical combinations of 2
for i in range(self.Nelements):
for j in range(i + 1):
self.d_data[j, i] = data[d:d + self.nr]
d += self.nr
self.q_data = np.zeros([self.Nelements, self.Nelements, self.nr])
# should be non symmetrical combinations of 2
for i in range(self.Nelements):
for j in range(i + 1):
self.q_data[j, i] = data[d:d + self.nr]
d += self.nr
def write_potential(self, filename, nc=1, numformat='%.8e'):
"""Writes out the potential in the format given by the form
variable to 'filename' with a data format that is nc columns
wide. Note: array lengths need to be an exact multiple of nc
"""
with open(filename, 'wb') as fd:
self._write_potential(fd, nc=nc, numformat=numformat)
def _write_potential(self, fd, nc, numformat):
assert self.nr % nc == 0
assert self.nrho % nc == 0
for line in self.header:
fd.write(line)
fd.write(f'{self.Nelements} '.encode())
fd.write(' '.join(self.elements).encode() + b'\n')
fd.write(('%d %f %d %f %f \n' %
(self.nrho, self.drho, self.nr,
self.dr, self.cutoff)).encode())
# start of each section for each element
# rs = np.linspace(0, self.nr * self.dr, self.nr)
# rhos = np.linspace(0, self.nrho * self.drho, self.nrho)
rs = np.arange(0, self.nr) * self.dr
rhos = np.arange(0, self.nrho) * self.drho
for i in range(self.Nelements):
fd.write(('%d %f %f %s\n' %
(self.Z[i], self.mass[i],
self.a[i], str(self.lattice[i]))).encode())
np.savetxt(fd,
self.embedded_energy[i](rhos).reshape(self.nrho // nc,
nc),
fmt=nc * [numformat])
if self.form == 'fs':
for j in range(self.Nelements):
np.savetxt(fd,
self.electron_density[i, j](rs).reshape(
self.nr // nc, nc),
fmt=nc * [numformat])
else:
np.savetxt(fd,
self.electron_density[i](rs).reshape(
self.nr // nc, nc),
fmt=nc * [numformat])
# write out the pair potentials in Lammps DYNAMO setfl format
# as r*phi for alloy format
for i in range(self.Nelements):
for j in range(i, self.Nelements):
np.savetxt(fd,
(rs * self.phi[i, j](rs)).reshape(self.nr // nc,
nc),
fmt=nc * [numformat])
if self.form == 'adp':
# these are the u(r) or dipole values
for i in range(self.Nelements):
for j in range(i + 1):
np.savetxt(fd, self.d_data[i, j])
# these are the w(r) or quadrupole values
for i in range(self.Nelements):
for j in range(i + 1):
np.savetxt(fd, self.q_data[i, j])
def update(self, atoms):
# check all the elements are available in the potential
self.Nelements = len(self.elements)
elements = np.unique(atoms.get_chemical_symbols())
unavailable = np.logical_not(
np.array([item in self.elements for item in elements]))
if np.any(unavailable):
raise RuntimeError(
f'These elements are not in the potential: {elements[unavailable]}')
# cutoffs need to be a vector for NeighborList
cutoffs = self.cutoff * np.ones(len(atoms))
# convert the elements to an index of the position
# in the eam format
self.index = np.array([self.elements.index(el)
for el in atoms.get_chemical_symbols()])
self.pbc = atoms.get_pbc()
# since we need the contribution of all neighbors to the
# local electron density we cannot just calculate and use
# one way neighbors
self.neighbors = NeighborList(cutoffs,
skin=self.parameters.skin,
self_interaction=False,
bothways=True)
self.neighbors.update(atoms)
def calculate(self, atoms=None, properties=['energy'],
system_changes=all_changes):
"""EAM Calculator
atoms: Atoms object
Contains positions, unit-cell, ...
properties: list of str
List of what needs to be calculated. Can be any combination
of 'energy', 'forces'
system_changes: list of str
List of what has changed since last calculation. Can be
any combination of these five: 'positions', 'numbers', 'cell',
'pbc', 'initial_charges' and 'initial_magmoms'.
"""
Calculator.calculate(self, atoms, properties, system_changes)
# we shouldn't really recalc if charges or magmos change
if len(system_changes) > 0: # something wrong with this way
self.update(self.atoms)
self.calculate_energy(self.atoms)
if 'forces' in properties:
self.calculate_forces(self.atoms)
# check we have all the properties requested
for property in properties:
if property not in self.results:
if property == 'energy':
self.calculate_energy(self.atoms)
if property == 'forces':
self.calculate_forces(self.atoms)
# we need to remember the previous state of parameters
# if 'potential' in parameter_changes and potential != None:
# self.read_potential(potential)
def calculate_energy(self, atoms):
"""Calculate the energy
the energy is made up of the ionic or pair interaction and
the embedding energy of each atom into the electron cloud
generated by its neighbors
"""
pair_energy = 0.0
embedding_energy = 0.0
mu_energy = 0.0
lam_energy = 0.0
trace_energy = 0.0
self.total_density = np.zeros(len(atoms))
if self.form == 'adp':
self.mu = np.zeros([len(atoms), 3])
self.lam = np.zeros([len(atoms), 3, 3])
for i in range(len(atoms)): # this is the atom to be embedded
neighbors, offsets = self.neighbors.get_neighbors(i)
offset = np.dot(offsets, atoms.get_cell())
rvec = (atoms.positions[neighbors] + offset -
atoms.positions[i])
# calculate the distance to the nearest neighbors
r = np.sqrt(np.sum(np.square(rvec), axis=1)) # fast
# r = np.apply_along_axis(np.linalg.norm, 1, rvec) # sloow
nearest = np.arange(len(r))[r <= self.cutoff]
for j_index in range(self.Nelements):
use = self.index[neighbors[nearest]] == j_index
if not use.any():
continue
pair_energy += np.sum(self.phi[self.index[i], j_index](
r[nearest][use])) / 2.
if self.form == 'fs':
density = np.sum(
self.electron_density[j_index,
self.index[i]](r[nearest][use]))
else:
density = np.sum(
self.electron_density[j_index](r[nearest][use]))
self.total_density[i] += density
if self.form == 'adp':
self.mu[i] += self.adp_dipole(
r[nearest][use],
rvec[nearest][use],
self.d[self.index[i], j_index])
self.lam[i] += self.adp_quadrupole(
r[nearest][use],
rvec[nearest][use],
self.q[self.index[i], j_index])
# add in the electron embedding energy
embedding_energy += self.embedded_energy[self.index[i]](
self.total_density[i])
components = dict(pair=pair_energy, embedding=embedding_energy)
if self.form == 'adp':
mu_energy += np.sum(self.mu ** 2) / 2.
lam_energy += np.sum(self.lam ** 2) / 2.
for i in range(len(atoms)): # this is the atom to be embedded
trace_energy -= np.sum(self.lam[i].trace() ** 2) / 6.
adp_result = dict(adp_mu=mu_energy,
adp_lam=lam_energy,
adp_trace=trace_energy)
components.update(adp_result)
self.positions = atoms.positions.copy()
self.cell = atoms.get_cell().copy()
energy = 0.0
for i in components:
energy += components[i]
self.energy_free = energy
self.energy_zero = energy
self.results['energy_components'] = components
self.results['energy'] = energy
def calculate_forces(self, atoms):
# calculate the forces based on derivatives of the three EAM functions
self.update(atoms)
self.results['forces'] = np.zeros((len(atoms), 3))
for i in range(len(atoms)): # this is the atom to be embedded
neighbors, offsets = self.neighbors.get_neighbors(i)
offset = np.dot(offsets, atoms.get_cell())
# create a vector of relative positions of neighbors
rvec = atoms.positions[neighbors] + offset - atoms.positions[i]
r = np.sqrt(np.sum(np.square(rvec), axis=1))
nearest = np.arange(len(r))[r < self.cutoff]
d_embedded_energy_i = self.d_embedded_energy[
self.index[i]](self.total_density[i])
urvec = rvec.copy() # unit directional vector
for j in np.arange(len(neighbors)):
urvec[j] = urvec[j] / r[j]
for j_index in range(self.Nelements):
use = self.index[neighbors[nearest]] == j_index
if not use.any():
continue
rnuse = r[nearest][use]
density_j = self.total_density[neighbors[nearest][use]]
if self.form == 'fs':
scale = (self.d_phi[self.index[i], j_index](rnuse) +
(d_embedded_energy_i *
self.d_electron_density[j_index,
self.index[i]](rnuse)) +
(self.d_embedded_energy[j_index](density_j) *
self.d_electron_density[self.index[i],
j_index](rnuse)))
else:
scale = (self.d_phi[self.index[i], j_index](rnuse) +
(d_embedded_energy_i *
self.d_electron_density[j_index](rnuse)) +
(self.d_embedded_energy[j_index](density_j) *
self.d_electron_density[self.index[i]](rnuse)))
self.results['forces'][i] += np.dot(scale, urvec[nearest][use])
if self.form == 'adp':
adp_forces = self.angular_forces(
self.mu[i],
self.mu[neighbors[nearest][use]],
self.lam[i],
self.lam[neighbors[nearest][use]],
rnuse,
rvec[nearest][use],
self.index[i],
j_index)
self.results['forces'][i] += adp_forces
def angular_forces(self, mu_i, mu, lam_i, lam, r, rvec, form1, form2):
# calculate the extra components for the adp forces
# rvec are the relative positions to atom i
psi = np.zeros(mu.shape)
for gamma in range(3):
term1 = (mu_i[gamma] - mu[:, gamma]) * self.d[form1][form2](r)
term2 = np.sum((mu_i - mu) *
self.d_d[form1][form2](r)[:, np.newaxis] *
(rvec * rvec[:, gamma][:, np.newaxis] /
r[:, np.newaxis]), axis=1)
term3 = 2 * np.sum((lam_i[:, gamma] + lam[:, :, gamma]) *
rvec * self.q[form1][form2](r)[:, np.newaxis],
axis=1)
term4 = 0.0
for alpha in range(3):
for beta in range(3):
rs = rvec[:, alpha] * rvec[:, beta] * rvec[:, gamma]
term4 += ((lam_i[alpha, beta] + lam[:, alpha, beta]) *
self.d_q[form1][form2](r) * rs) / r
term5 = ((lam_i.trace() + lam.trace(axis1=1, axis2=2)) *
(self.d_q[form1][form2](r) * r +
2 * self.q[form1][form2](r)) * rvec[:, gamma]) / 3.
# the minus for term5 is a correction on the adp
# formulation given in the 2005 Mishin Paper and is posted
# on the NIST website with the AlH potential
psi[:, gamma] = term1 + term2 + term3 + term4 - term5
return np.sum(psi, axis=0)
def adp_dipole(self, r, rvec, d):
# calculate the dipole contribution
mu = np.sum((rvec * d(r)[:, np.newaxis]), axis=0)
return mu # sign to agree with lammps
def adp_quadrupole(self, r, rvec, q):
# slow way of calculating the quadrupole contribution
r = np.sqrt(np.sum(rvec ** 2, axis=1))
lam = np.zeros([rvec.shape[0], 3, 3])
qr = q(r)
for alpha in range(3):
for beta in range(3):
lam[:, alpha, beta] += qr * rvec[:, alpha] * rvec[:, beta]
return np.sum(lam, axis=0)
def deriv(self, spline):
"""Wrapper for extracting the derivative from a spline"""
def d_spline(aspline):
return spline(aspline, 1)
return d_spline
def plot(self, name=''):
"""Plot the individual curves"""
import matplotlib.pyplot as plt
if self.form == 'eam' or self.form == 'alloy' or self.form == 'fs':
nrow = 2
elif self.form == 'adp':
nrow = 3
else:
raise RuntimeError(f'Unknown form of potential: {self.form}')
if hasattr(self, 'r'):
r = self.r
else:
r = np.linspace(0, self.cutoff, 50)
if hasattr(self, 'rho'):
rho = self.rho
else:
rho = np.linspace(0, 10.0, 50)
plt.subplot(nrow, 2, 1)
self.elem_subplot(rho, self.embedded_energy,
r'$\rho$', r'Embedding Energy $F(\bar\rho)$',
name, plt)
plt.subplot(nrow, 2, 2)
if self.form == 'fs':
self.multielem_subplot(
r, self.electron_density,
r'$r$', r'Electron Density $\rho(r)$', name, plt, half=False)
else:
self.elem_subplot(
r, self.electron_density,
r'$r$', r'Electron Density $\rho(r)$', name, plt)
plt.subplot(nrow, 2, 3)
self.multielem_subplot(r, self.phi,
r'$r$', r'Pair Potential $\phi(r)$', name, plt)
plt.ylim(-1.0, 1.0) # need reasonable values
if self.form == 'adp':
plt.subplot(nrow, 2, 5)
self.multielem_subplot(r, self.d,
r'$r$', r'Dipole Energy', name, plt)
plt.subplot(nrow, 2, 6)
self.multielem_subplot(r, self.q,
r'$r$', r'Quadrupole Energy', name, plt)
plt.plot()
def elem_subplot(self, curvex, curvey, xlabel, ylabel, name, plt):
plt.xlabel(xlabel)
plt.ylabel(ylabel)
for i in np.arange(self.Nelements):
label = name + ' ' + self.elements[i]
plt.plot(curvex, curvey[i](curvex), label=label)
plt.legend()
def multielem_subplot(self, curvex, curvey, xlabel,
ylabel, name, plt, half=True):
plt.xlabel(xlabel)
plt.ylabel(ylabel)
for i in np.arange(self.Nelements):
for j in np.arange((i + 1) if half else self.Nelements):
label = name + ' ' + self.elements[i] + '-' + self.elements[j]
plt.plot(curvex, curvey[i, j](curvex), label=label)
plt.legend()
|