File: ff.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (165 lines) | stat: -rw-r--r-- 6,840 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np

from ase.calculators.calculator import Calculator
from ase.utils import ff


class ForceField(Calculator):
    implemented_properties = ['energy', 'forces']
    nolabel = True

    def __init__(self, morses=None, bonds=None, angles=None, dihedrals=None,
                 vdws=None, coulombs=None, **kwargs):
        Calculator.__init__(self, **kwargs)
        if (morses is None and
            bonds is None and
            angles is None and
            dihedrals is None and
            vdws is None and
                coulombs is None):
            raise ImportError(
                "At least one of morses, bonds, angles, dihedrals,"
                "vdws or coulombs lists must be defined!")
        if morses is None:
            self.morses = []
        else:
            self.morses = morses
        if bonds is None:
            self.bonds = []
        else:
            self.bonds = bonds
        if angles is None:
            self.angles = []
        else:
            self.angles = angles
        if dihedrals is None:
            self.dihedrals = []
        else:
            self.dihedrals = dihedrals
        if vdws is None:
            self.vdws = []
        else:
            self.vdws = vdws
        if coulombs is None:
            self.coulombs = []
        else:
            self.coulombs = coulombs

    def calculate(self, atoms, properties, system_changes):
        Calculator.calculate(self, atoms, properties, system_changes)
        if system_changes:
            for name in ['energy', 'forces', 'hessian']:
                self.results.pop(name, None)
        if 'energy' not in self.results:
            energy = 0.0
            for morse in self.morses:
                i, j, e = ff.get_morse_potential_value(atoms, morse)
                energy += e
            for bond in self.bonds:
                i, j, e = ff.get_bond_potential_value(atoms, bond)
                energy += e
            for angle in self.angles:
                i, j, k, e = ff.get_angle_potential_value(atoms, angle)
                energy += e
            for dihedral in self.dihedrals:
                i, j, k, l, e = ff.get_dihedral_potential_value(
                    atoms, dihedral)
                energy += e
            for vdw in self.vdws:
                i, j, e = ff.get_vdw_potential_value(atoms, vdw)
                energy += e
            for coulomb in self.coulombs:
                i, j, e = ff.get_coulomb_potential_value(atoms, coulomb)
                energy += e
            self.results['energy'] = energy
        if 'forces' not in self.results:
            forces = np.zeros(3 * len(atoms))
            for morse in self.morses:
                i, j, g = ff.get_morse_potential_gradient(atoms, morse)
                limits = get_limits([i, j])
                for gb, ge, lb, le in limits:
                    forces[gb:ge] -= g[lb:le]
            for bond in self.bonds:
                i, j, g = ff.get_bond_potential_gradient(atoms, bond)
                limits = get_limits([i, j])
                for gb, ge, lb, le in limits:
                    forces[gb:ge] -= g[lb:le]
            for angle in self.angles:
                i, j, k, g = ff.get_angle_potential_gradient(atoms, angle)
                limits = get_limits([i, j, k])
                for gb, ge, lb, le in limits:
                    forces[gb:ge] -= g[lb:le]
            for dihedral in self.dihedrals:
                i, j, k, l, g = ff.get_dihedral_potential_gradient(
                    atoms, dihedral)
                limits = get_limits([i, j, k, l])
                for gb, ge, lb, le in limits:
                    forces[gb:ge] -= g[lb:le]
            for vdw in self.vdws:
                i, j, g = ff.get_vdw_potential_gradient(atoms, vdw)
                limits = get_limits([i, j])
                for gb, ge, lb, le in limits:
                    forces[gb:ge] -= g[lb:le]
            for coulomb in self.coulombs:
                i, j, g = ff.get_coulomb_potential_gradient(atoms, coulomb)
                limits = get_limits([i, j])
                for gb, ge, lb, le in limits:
                    forces[gb:ge] -= g[lb:le]
            self.results['forces'] = np.reshape(forces, (len(atoms), 3))
        if 'hessian' not in self.results:
            hessian = np.zeros((3 * len(atoms), 3 * len(atoms)))
            for morse in self.morses:
                i, j, h = ff.get_morse_potential_hessian(atoms, morse)
                limits = get_limits([i, j])
                for gb1, ge1, lb1, le1 in limits:
                    for gb2, ge2, lb2, le2 in limits:
                        hessian[gb1:ge1, gb2:ge2] += h[lb1:le1, lb2:le2]
            for bond in self.bonds:
                i, j, h = ff.get_bond_potential_hessian(atoms, bond)
                limits = get_limits([i, j])
                for gb1, ge1, lb1, le1 in limits:
                    for gb2, ge2, lb2, le2 in limits:
                        hessian[gb1:ge1, gb2:ge2] += h[lb1:le1, lb2:le2]
            for angle in self.angles:
                i, j, k, h = ff.get_angle_potential_hessian(atoms, angle)
                limits = get_limits([i, j, k])
                for gb1, ge1, lb1, le1 in limits:
                    for gb2, ge2, lb2, le2 in limits:
                        hessian[gb1:ge1, gb2:ge2] += h[lb1:le1, lb2:le2]
            for dihedral in self.dihedrals:
                i, j, k, l, h = ff.get_dihedral_potential_hessian(
                    atoms, dihedral)
                limits = get_limits([i, j, k, l])
                for gb1, ge1, lb1, le1 in limits:
                    for gb2, ge2, lb2, le2 in limits:
                        hessian[gb1:ge1, gb2:ge2] += h[lb1:le1, lb2:le2]
            for vdw in self.vdws:
                i, j, h = ff.get_vdw_potential_hessian(atoms, vdw)
                limits = get_limits([i, j])
                for gb1, ge1, lb1, le1 in limits:
                    for gb2, ge2, lb2, le2 in limits:
                        hessian[gb1:ge1, gb2:ge2] += h[lb1:le1, lb2:le2]
            for coulomb in self.coulombs:
                i, j, h = ff.get_coulomb_potential_hessian(atoms, coulomb)
                limits = get_limits([i, j])
                for gb1, ge1, lb1, le1 in limits:
                    for gb2, ge2, lb2, le2 in limits:
                        hessian[gb1:ge1, gb2:ge2] += h[lb1:le1, lb2:le2]
            self.results['hessian'] = hessian

    def get_hessian(self, atoms=None):
        return self.get_property('hessian', atoms)


def get_limits(indices):
    gstarts = []
    gstops = []
    lstarts = []
    lstops = []
    for l, g in enumerate(indices):
        g3, l3 = 3 * g, 3 * l
        gstarts.append(g3)
        gstops.append(g3 + 3)
        lstarts.append(l3)
        lstops.append(l3 + 3)
    return zip(gstarts, gstops, lstarts, lstops)