File: lammpslib.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (749 lines) | stat: -rw-r--r-- 28,820 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
"""ASE LAMMPS Calculator Library Version"""


import ctypes

import numpy as np
from numpy.linalg import norm

from ase import Atoms
from ase.calculators.calculator import Calculator
from ase.calculators.lammps import Prism, convert
from ase.data import atomic_masses as ase_atomic_masses
from ase.data import atomic_numbers as ase_atomic_numbers
from ase.data import chemical_symbols as ase_chemical_symbols
from ase.utils import deprecated

# TODO
# 1. should we make a new lammps object each time ?
# 4. need a routine to get the model back from lammps
# 5. if we send a command to lmps directly then the calculator does
#    not know about it and the energy could be wrong.
# 6. do we need a subroutine generator that converts a lammps string
#   into a python function that can be called
# 8. make matscipy as fallback
# 9. keep_alive not needed with no system changes


# this one may be moved to some more generic place
@deprecated("Please use the technique in https://stackoverflow.com/a/26912166")
def is_upper_triangular(arr, atol=1e-8):
    """test for upper triangular matrix based on numpy
    .. deprecated:: 3.23.0
        Please use the technique in https://stackoverflow.com/a/26912166
    """
    # must be (n x n) matrix
    assert len(arr.shape) == 2
    assert arr.shape[0] == arr.shape[1]
    return np.allclose(np.tril(arr, k=-1), 0., atol=atol) and \
        np.all(np.diag(arr) >= 0.0)


@deprecated(
    "Please use "
    "`ase.calculators.lammps.coordinatetransform.calc_rotated_cell`. "
    "Note that the new function returns the ASE lower trianglar cell and does "
    "not return the conversion matrix."
)
def convert_cell(ase_cell):
    """
    Convert a parallelepiped (forming right hand basis)
    to lower triangular matrix LAMMPS can accept. This
    function transposes cell matrix so the bases are column vectors

    .. deprecated:: 3.23.0
        Please use
        :func:`~ase.calculators.lammps.coordinatetransform.calc_rotated_cell`.
    """
    cell = ase_cell.T

    if not is_upper_triangular(cell):
        # rotate bases into triangular matrix
        tri_mat = np.zeros((3, 3))
        A = cell[:, 0]
        B = cell[:, 1]
        C = cell[:, 2]
        tri_mat[0, 0] = norm(A)
        Ahat = A / norm(A)
        AxBhat = np.cross(A, B) / norm(np.cross(A, B))
        tri_mat[0, 1] = np.dot(B, Ahat)
        tri_mat[1, 1] = norm(np.cross(Ahat, B))
        tri_mat[0, 2] = np.dot(C, Ahat)
        tri_mat[1, 2] = np.dot(C, np.cross(AxBhat, Ahat))
        tri_mat[2, 2] = norm(np.dot(C, AxBhat))

        # create and save the transformation for coordinates
        volume = np.linalg.det(ase_cell)
        trans = np.array([np.cross(B, C), np.cross(C, A), np.cross(A, B)])
        trans /= volume
        coord_transform = np.dot(tri_mat, trans)

        return tri_mat, coord_transform
    else:
        return cell, None


class LAMMPSlib(Calculator):
    r"""
**Introduction**

LAMMPSlib is an interface and calculator for LAMMPS_. LAMMPSlib uses
the python interface that comes with LAMMPS to solve an atoms model
for energy, atom forces and cell stress. This calculator creates a
'.lmp' object which is a running lammps program, so further commands
can be sent to this object executed until it is explicitly closed. Any
additional variables calculated by lammps can also be extracted. This
is still experimental code.

**Arguments**

=======================  ======================================================
Keyword                                  Description
=======================  ======================================================
``lmpcmds``              list of strings of LAMMPS commands. You need to supply
                         enough to define the potential to be used e.g.

                         ["pair_style eam/alloy",
                         "pair_coeff * * potentials/NiAlH_jea.eam.alloy Ni Al"]

``atom_types``           dictionary of ``atomic_symbol :lammps_atom_type``
                         pairs, e.g. ``{'Cu':1}`` to bind copper to lammps
                         atom type 1.  If <None>, autocreated by assigning
                         lammps atom types in order that they appear in the
                         first used atoms object.

``atom_type_masses``     dictionary of ``atomic_symbol :mass`` pairs, e.g.
                         ``{'Cu':63.546}`` to optionally assign masses that
                         override default ase.data.atomic_masses.  Note that
                         since unit conversion is done automatically in this
                         module, these quantities must be given in the
                         standard ase mass units (g/mol)

``log_file``             string
                         path to the desired LAMMPS log file

``lammps_header``        string to use for lammps setup. Default is to use
                         metal units and simple atom simulation.

                         lammps_header=['units metal',
                             'atom_style atomic',
                             'atom_modify map array sort 0 0'])

``amendments``           extra list of strings of LAMMPS commands to be run
                         post initialization. (Use: Initialization amendments)
                         e.g.

                         ["mass 1 58.6934"]

``post_changebox_cmds``  extra list of strings of LAMMPS commands to be run
                         after any LAMMPS 'change_box' command is performed by
                         the calculator.  This is relevant because some
                         potentials either themselves depend on the geometry
                         and boundary conditions of the simulation box, or are
                         frequently coupled with other LAMMPS commands that
                         do, e.g. the 'buck/coul/long' pair style is often
                         used with the kspace_* commands, which are sensitive
                         to the periodicity of the simulation box.

``keep_alive``           Boolean
                         whether to keep the lammps routine alive for more
                         commands. Default is True.

=======================  ======================================================


**Requirements**

To run this calculator you must have LAMMPS installed and compiled to
enable the python interface. See the LAMMPS manual.

If the following code runs then lammps is installed correctly.

   >>> from lammps import lammps
   >>> lmp = lammps()

The version of LAMMPS is also important. LAMMPSlib is suitable for
versions after approximately 2011. Prior to this the python interface
is slightly different from that used by LAMMPSlib. It is not difficult
to change to the earlier format.

**LAMMPS and LAMMPSlib**

The LAMMPS calculator is another calculator that uses LAMMPS (the
program) to calculate the energy by generating input files and running
a separate LAMMPS job to perform the analysis. The output data is then
read back into python. LAMMPSlib makes direct use of the LAMMPS (the
program) python interface. As well as directly running any LAMMPS
command line it allows the values of any of LAMMPS variables to be
extracted and returned to python.

**Example**

Provided that the respective potential file is in the working directory, one
can simply run (note that LAMMPS needs to be compiled to work with EAM
potentials)

::

    from ase import Atom, Atoms
    from ase.build import bulk
    from ase.calculators.lammpslib import LAMMPSlib

    cmds = ["pair_style eam/alloy",
            "pair_coeff * * NiAlH_jea.eam.alloy Ni H"]

    Ni = bulk('Ni', cubic=True)
    H = Atom('H', position=Ni.cell.diagonal()/2)
    NiH = Ni + H

    lammps = LAMMPSlib(lmpcmds=cmds, log_file='test.log')

    NiH.calc = lammps
    print("Energy ", NiH.get_potential_energy())


**Implementation**

LAMMPS provides a set of python functions to allow execution of the
underlying C++ LAMMPS code. The functions used by the LAMMPSlib
interface are::

    from lammps import lammps

    lmp = lammps(cmd_args) # initiate LAMMPS object with command line args

    lmp.scatter_atoms('x',1,3,positions) # atom coords to LAMMPS C array
    lmp.command(cmd) # executes a one line cmd string
    lmp.extract_variable(...) # extracts a per atom variable
    lmp.extract_global(...) # extracts a global variable
    lmp.close() # close the lammps object

For a single Ni atom model the following lammps file commands would be run
by invoking the get_potential_energy() method::

    units metal
    atom_style atomic
    atom_modify map array sort 0 0

    region cell prism 0 xhi 0 yhi 0 zhi xy xz yz units box
    create_box 1 cell
    create_atoms 1 single 0 0 0 units box
    mass * 1.0

    ## user lmpcmds get executed here
    pair_style eam/alloy
    pair_coeff * * NiAlH_jea.eam.alloy Ni
    ## end of user lmmpcmds

    run 0

where xhi, yhi and zhi are the lattice vector lengths and xy,
xz and yz are the tilt of the lattice vectors, all to be edited.


**Notes**

.. _LAMMPS: http://lammps.sandia.gov/

* Units: The default lammps_header sets the units to Angstrom and eV
  and for compatibility with ASE Stress is in GPa.

* The global energy is currently extracted from LAMMPS using
  extract_variable since lammps.lammps currently extract_global only
  accepts the following ['dt', 'boxxlo', 'boxxhi', 'boxylo', 'boxyhi',
  'boxzlo', 'boxzhi', 'natoms', 'nlocal'].

* If an error occurs while lammps is in control it will crash
  Python. Check the output of the log file to find the lammps error.

* If the are commands directly sent to the LAMMPS object this may
  change the energy value of the model. However the calculator will not
  know of it and still return the original energy value.

"""

    implemented_properties = ['energy', 'free_energy', 'forces', 'stress',
                              'energies']

    started = False
    initialized = False

    default_parameters = dict(
        atom_types=None,
        atom_type_masses=None,
        log_file=None,
        lammps_name='',
        keep_alive=True,
        lammps_header=['units metal',
                       'atom_style atomic',
                       'atom_modify map array sort 0 0'],
        amendments=None,
        post_changebox_cmds=None,
        boundary=True,
        create_box=True,
        create_atoms=True,
        read_molecular_info=False,
        comm=None)

    def __init__(self, *args, **kwargs):
        Calculator.__init__(self, *args, **kwargs)
        self.lmp = None

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.clean()

    def clean(self):
        if self.started:
            self.lmp.close()
            self.started = False
            self.initialized = False
            self.lmp = None

    def set_cell(self, atoms: Atoms, change: bool = False):
        self.prism = Prism(atoms.cell, atoms.pbc)
        _ = self.prism.get_lammps_prism()
        xhi, yhi, zhi, xy, xz, yz = convert(_, "distance", "ASE", self.units)
        box_hi = [xhi, yhi, zhi]

        if change:
            cell_cmd = ('change_box all     '
                        'x final 0 {} y final 0 {} z final 0 {}      '
                        'xy final {} xz final {} yz final {} units box'
                        ''.format(xhi, yhi, zhi, xy, xz, yz))
            if self.parameters.post_changebox_cmds is not None:
                for cmd in self.parameters.post_changebox_cmds:
                    self.lmp.command(cmd)
        else:
            # just in case we'll want to run with a funny shape box,
            # and here command will only happen once, and before
            # any calculation
            if self.parameters.create_box:
                self.lmp.command('box tilt large')

            # Check if there are any indefinite boundaries. If so,
            # shrink-wrapping will end up being used, but we want to
            # define the LAMMPS region and box fairly tight around the
            # atoms to avoid losing any
            lammps_boundary_conditions = self.lammpsbc(atoms).split()
            if 's' in lammps_boundary_conditions:
                pos = self.prism.vector_to_lammps(atoms.positions)
                posmin = np.amin(pos, axis=0)
                posmax = np.amax(pos, axis=0)

                for i in range(3):
                    if lammps_boundary_conditions[i] == 's':
                        box_hi[i] = 1.05 * abs(posmax[i] - posmin[i])

            cell_cmd = ('region cell prism    '
                        '0 {} 0 {} 0 {}     '
                        '{} {} {}     units box'
                        ''.format(*box_hi, xy, xz, yz))

        self.lmp.command(cell_cmd)

    def set_lammps_pos(self, atoms: Atoms):
        # Create local copy of positions that are wrapped along any periodic
        # directions
        pos = convert(atoms.positions, "distance", "ASE", self.units)

        # wrap only after scaling and rotating to reduce chances of
        # lammps neighbor list bugs.
        pos = self.prism.vector_to_lammps(pos, wrap=True)

        # Convert ase position matrix to lammps-style position array
        # contiguous in memory
        lmp_positions = list(pos.ravel())

        # Convert that lammps-style array into a C object
        c_double_array = (ctypes.c_double * len(lmp_positions))
        lmp_c_positions = c_double_array(*lmp_positions)
        #        self.lmp.put_coosrds(lmp_c_positions)
        self.lmp.scatter_atoms('x', 1, 3, lmp_c_positions)

    def calculate(self, atoms, properties, system_changes):
        self.propagate(atoms, properties, system_changes, 0)

    def propagate(self, atoms, properties, system_changes, n_steps, dt=None,
                  dt_not_real_time=False, velocity_field=None):
        """"atoms: Atoms object
            Contains positions, unit-cell, ...
        properties: list of str
            List of what needs to be calculated.  Can be any combination
            of 'energy', 'forces', 'stress', 'dipole', 'charges', 'magmom'
            and 'magmoms'.
        system_changes: list of str
            List of what has changed since last calculation.  Can be
            any combination of these five: 'positions', 'numbers', 'cell',
            'pbc', 'initial_charges' and 'initial_magmoms'.
        """
        if len(system_changes) == 0:
            return

        if not self.started:
            self.start_lammps()
        if not self.initialized:
            self.initialise_lammps(atoms)
        else:  # still need to reset cell
            # NOTE: The whole point of ``post_changebox_cmds`` is that they're
            # executed after any call to LAMMPS' change_box command.  Here, we
            # rely on the fact that self.set_cell(), where we have currently
            # placed the execution of ``post_changebox_cmds``, gets called
            # after this initial change_box call.

            # Apply only requested boundary condition changes.  Note this needs
            # to happen before the call to set_cell since 'change_box' will
            # apply any shrink-wrapping *after* it's updated the cell
            # dimensions
            if 'pbc' in system_changes:
                change_box_str = 'change_box all boundary {}'
                change_box_cmd = change_box_str.format(self.lammpsbc(atoms))
                self.lmp.command(change_box_cmd)

            # Reset positions so that if they are crazy from last
            # propagation, change_box (in set_cell()) won't hang.
            # Could do this only after testing for crazy positions?
            # Could also use scatter_atoms() to set values (requires
            # MPI comm), or extra_atoms() to get pointers to local
            # data structures to zero, but then we would have to be
            # careful with parallelism.
            self.lmp.command("set atom * x 0.0 y 0.0 z 0.0")
            self.set_cell(atoms, change=True)

        if self.parameters.atom_types is None:
            raise NameError("atom_types are mandatory.")

        do_rebuild = (
            not np.array_equal(atoms.numbers, self.previous_atoms_numbers)
            or any(_ in system_changes for _ in ('numbers', 'initial_charges'))
        )
        if not do_rebuild:
            do_redo_atom_types = not np.array_equal(
                atoms.numbers, self.previous_atoms_numbers)
        else:
            do_redo_atom_types = False

        self.lmp.command('echo none')  # don't echo the atom positions
        if do_rebuild:
            self.rebuild(atoms)
        elif do_redo_atom_types:
            self.redo_atom_types(atoms)
        self.lmp.command('echo log')  # switch back log

        self.set_lammps_pos(atoms)

        if self.parameters.amendments is not None:
            for cmd in self.parameters.amendments:
                self.lmp.command(cmd)

        if n_steps > 0:
            if velocity_field is None:
                vel = convert(
                    atoms.get_velocities(),
                    "velocity",
                    "ASE",
                    self.units)
            else:
                # FIXME: Do we need to worry about converting to lammps units
                # here?
                vel = atoms.arrays[velocity_field]

            # Transform the velocities to new coordinate system
            vel = self.prism.vector_to_lammps(vel)

            # Convert ase velocities matrix to lammps-style velocities array
            lmp_velocities = list(vel.ravel())

            # Convert that lammps-style array into a C object
            c_double_array = (ctypes.c_double * len(lmp_velocities))
            lmp_c_velocities = c_double_array(*lmp_velocities)
            self.lmp.scatter_atoms('v', 1, 3, lmp_c_velocities)

        # Run for 0 time to calculate
        if dt is not None:
            if dt_not_real_time:
                self.lmp.command('timestep %.30f' % dt)
            else:
                self.lmp.command('timestep %.30f' %
                                 convert(dt, "time", "ASE", self.units))
        self.lmp.command('run %d' % n_steps)

        if n_steps > 0:
            # TODO this must be slower than native copy, but why is it broken?
            pos = np.array(
                [x for x in self.lmp.gather_atoms("x", 1, 3)]).reshape(-1, 3)
            pos = self.prism.vector_to_ase(pos)

            # Convert from LAMMPS units to ASE units
            pos = convert(pos, "distance", self.units, "ASE")

            atoms.set_positions(pos)

            vel = np.array(
                [v for v in self.lmp.gather_atoms("v", 1, 3)]).reshape(-1, 3)
            vel = self.prism.vector_to_lammps(vel)
            if velocity_field is None:
                atoms.set_velocities(convert(vel, 'velocity', self.units,
                                             'ASE'))

        # Extract the forces and energy
        self.results['energy'] = convert(
            self.lmp.extract_variable('pe', None, 0),
            "energy", self.units, "ASE"
        )
        self.results['free_energy'] = self.results['energy']

        ids = self.lmp.numpy.extract_atom("id")
        # if ids doesn't match atoms then data is MPI distributed, which
        # we can't handle
        assert len(ids) == len(atoms)
        self.results["energies"] = convert(
            self.lmp.numpy.extract_compute('pe_peratom',
                                           self.LMP_STYLE_ATOM,
                                           self.LMP_TYPE_VECTOR),
            "energy", self.units, "ASE"
        )
        self.results["energies"][ids - 1] = self.results["energies"]

        stress = np.empty(6)
        stress_vars = ['pxx', 'pyy', 'pzz', 'pyz', 'pxz', 'pxy']

        for i, var in enumerate(stress_vars):
            stress[i] = self.lmp.extract_variable(var, None, 0)

        stress_mat = np.zeros((3, 3))
        stress_mat[0, 0] = stress[0]
        stress_mat[1, 1] = stress[1]
        stress_mat[2, 2] = stress[2]
        stress_mat[1, 2] = stress[3]
        stress_mat[2, 1] = stress[3]
        stress_mat[0, 2] = stress[4]
        stress_mat[2, 0] = stress[4]
        stress_mat[0, 1] = stress[5]
        stress_mat[1, 0] = stress[5]

        stress_mat = self.prism.tensor2_to_ase(stress_mat)

        stress[0] = stress_mat[0, 0]
        stress[1] = stress_mat[1, 1]
        stress[2] = stress_mat[2, 2]
        stress[3] = stress_mat[1, 2]
        stress[4] = stress_mat[0, 2]
        stress[5] = stress_mat[0, 1]

        self.results['stress'] = convert(-stress, "pressure", self.units, "ASE")

        # definitely yields atom-id ordered force array
        f = convert(np.array(self.lmp.gather_atoms("f", 1, 3)).reshape(-1, 3),
                    "force", self.units, "ASE")
        self.results['forces'] = self.prism.vector_to_ase(f)

        # otherwise check_state will always trigger a new calculation
        self.atoms = atoms.copy()

        if not self.parameters["keep_alive"]:
            self.clean()

    def lammpsbc(self, atoms):
        """Determine LAMMPS boundary types based on ASE pbc settings. For
        non-periodic dimensions, if the cell length is finite then
        fixed BCs ('f') are used; if the cell length is approximately
        zero, shrink-wrapped BCs ('s') are used."""

        retval = ''
        pbc = atoms.get_pbc()
        if np.all(pbc):
            retval = 'p p p'
        else:
            cell = atoms.get_cell()
            for i in range(3):
                if pbc[i]:
                    retval += 'p '
                else:
                    # See if we're using indefinite ASE boundaries along this
                    # direction
                    if np.linalg.norm(cell[i]) < np.finfo(cell[i][0]).tiny:
                        retval += 's '
                    else:
                        retval += 'f '

        return retval.strip()

    def rebuild(self, atoms):
        try:
            n_diff = len(atoms.numbers) - len(self.previous_atoms_numbers)
        except Exception:  # XXX Which kind of exception?
            n_diff = len(atoms.numbers)

        if n_diff > 0:
            if any(("reax/c" in cmd) for cmd in self.parameters.lmpcmds):
                self.lmp.command("pair_style lj/cut 2.5")
                self.lmp.command("pair_coeff * * 1 1")

                for cmd in self.parameters.lmpcmds:
                    if (("pair_style" in cmd) or ("pair_coeff" in cmd) or
                            ("qeq/reax" in cmd)):
                        self.lmp.command(cmd)

            cmd = f"create_atoms 1 random {n_diff} 1 NULL"
            self.lmp.command(cmd)
        elif n_diff < 0:
            cmd = "group delatoms id {}:{}".format(
                len(atoms.numbers) + 1, len(self.previous_atoms_numbers))
            self.lmp.command(cmd)
            cmd = "delete_atoms group delatoms"
            self.lmp.command(cmd)

        self.redo_atom_types(atoms)

    def redo_atom_types(self, atoms):
        current_types = {
            (i + 1, self.parameters.atom_types[sym]) for i, sym
            in enumerate(atoms.get_chemical_symbols())}

        try:
            previous_types = {
                (i + 1, self.parameters.atom_types[ase_chemical_symbols[Z]])
                for i, Z in enumerate(self.previous_atoms_numbers)}
        except Exception:  # XXX which kind of exception?
            previous_types = set()

        for (i, i_type) in current_types - previous_types:
            cmd = f"set atom {i} type {i_type}"
            self.lmp.command(cmd)

        # set charges only when LAMMPS `atom_style` permits charges
        # https://docs.lammps.org/Library_properties.html#extract-atom-flags
        if self.lmp.extract_setting('q_flag') == 1:
            charges = atoms.get_initial_charges()
            if np.any(charges != 0.0):
                for i, q in enumerate(charges):
                    self.lmp.command(f'set atom {i + 1} charge {q}')

        self.previous_atoms_numbers = atoms.numbers.copy()

    def restart_lammps(self, atoms):
        if self.started:
            self.lmp.command("clear")
        # hope there's no other state to be reset
        self.started = False
        self.initialized = False
        self.previous_atoms_numbers = []
        self.start_lammps()
        self.initialise_lammps(atoms)

    def start_lammps(self):
        # Only import lammps when running a calculation
        # so it is not required to use other parts of the
        # module
        from lammps import LMP_STYLE_ATOM, LMP_TYPE_VECTOR, lammps

        self.LMP_STYLE_ATOM = LMP_STYLE_ATOM
        self.LMP_TYPE_VECTOR = LMP_TYPE_VECTOR

        # start lammps process
        if self.parameters.log_file is None:
            cmd_args = ['-echo', 'log', '-log', 'none', '-screen', 'none',
                        '-nocite']
        else:
            cmd_args = ['-echo', 'log', '-log', self.parameters.log_file,
                        '-screen', 'none', '-nocite']

        self.cmd_args = cmd_args

        if self.lmp is None:
            self.lmp = lammps(self.parameters.lammps_name, self.cmd_args,
                              comm=self.parameters.comm)

        # Run header commands to set up lammps (units, etc.)
        for cmd in self.parameters.lammps_header:
            self.lmp.command(cmd)

        for cmd in self.parameters.lammps_header:
            if "units" in cmd:
                self.units = cmd.split()[1]

        if 'lammps_header_extra' in self.parameters:
            if self.parameters.lammps_header_extra is not None:
                for cmd in self.parameters.lammps_header_extra:
                    self.lmp.command(cmd)

        self.started = True

    def initialise_lammps(self, atoms):
        # Initialising commands
        if self.parameters.boundary:
            # if the boundary command is in the supplied commands use that
            # otherwise use atoms pbc
            for cmd in self.parameters.lmpcmds:
                if 'boundary' in cmd:
                    break
            else:
                self.lmp.command('boundary ' + self.lammpsbc(atoms))

        # Initialize cell
        self.set_cell(atoms, change=not self.parameters.create_box)

        if self.parameters.atom_types is None:
            # if None is given, create from atoms object in order of appearance
            s = atoms.get_chemical_symbols()
            _, idx = np.unique(s, return_index=True)
            s_red = np.array(s)[np.sort(idx)].tolist()
            self.parameters.atom_types = {j: i + 1 for i, j in enumerate(s_red)}

        # Initialize box
        if self.parameters.create_box:
            # count number of known types
            n_types = len(self.parameters.atom_types)
            create_box_command = f'create_box {n_types} cell'
            self.lmp.command(create_box_command)

        # Initialize the atoms with their types
        # positions do not matter here
        if self.parameters.create_atoms:
            self.lmp.command('echo none')  # don't echo the atom positions
            self.rebuild(atoms)
            self.lmp.command('echo log')  # turn back on
        else:
            self.previous_atoms_numbers = atoms.numbers.copy()

        # execute the user commands
        for cmd in self.parameters.lmpcmds + ["compute pe_peratom all pe/atom"]:
            self.lmp.command(cmd)

        # Set masses after user commands, e.g. to override
        # EAM-provided masses
        for sym in self.parameters.atom_types:
            if self.parameters.atom_type_masses is None:
                mass = ase_atomic_masses[ase_atomic_numbers[sym]]
            else:
                mass = self.parameters.atom_type_masses[sym]
            self.lmp.command('mass %d %.30f' % (
                self.parameters.atom_types[sym],
                convert(mass, "mass", "ASE", self.units)))

        # Define force & energy variables for extraction
        self.lmp.command('variable pxx equal pxx')
        self.lmp.command('variable pyy equal pyy')
        self.lmp.command('variable pzz equal pzz')
        self.lmp.command('variable pxy equal pxy')
        self.lmp.command('variable pxz equal pxz')
        self.lmp.command('variable pyz equal pyz')

        # I am not sure why we need this next line but LAMMPS will
        # raise an error if it is not there. Perhaps it is needed to
        # ensure the cell stresses are calculated
        self.lmp.command('thermo_style custom pe pxx emol ecoul')

        self.lmp.command('variable fx atom fx')
        self.lmp.command('variable fy atom fy')
        self.lmp.command('variable fz atom fz')

        # do we need this if we extract from a global ?
        self.lmp.command('variable pe equal pe')

        self.lmp.command("neigh_modify delay 0 every 1 check yes")

        self.initialized = True