File: qmmm.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (894 lines) | stat: -rw-r--r-- 32,172 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
from typing import Sequence

import numpy as np

from ase.calculators.calculator import Calculator
from ase.cell import Cell
from ase.data import atomic_numbers
from ase.geometry import get_distances
from ase.parallel import world
from ase.utils import IOContext


class SimpleQMMM(Calculator):
    """Simple QMMM calculator."""

    implemented_properties = ['energy', 'forces']

    def __init__(self, selection, qmcalc, mmcalc1, mmcalc2, vacuum=None):
        """SimpleQMMM object.

        The energy is calculated as::

                    _          _          _
            E = E  (R  ) - E  (R  ) + E  (R   )
                 QM  QM     MM  QM     MM  all

        parameters:

        selection: list of int, slice object or list of bool
            Selection out of all the atoms that belong to the QM part.
        qmcalc: Calculator object
            QM-calculator.
        mmcalc1: Calculator object
            MM-calculator used for QM region.
        mmcalc2: Calculator object
            MM-calculator used for everything.
        vacuum: float or None
            Amount of vacuum to add around QM atoms.  Use None if QM
            calculator doesn't need a box.

        """
        self.selection = selection
        self.qmcalc = qmcalc
        self.mmcalc1 = mmcalc1
        self.mmcalc2 = mmcalc2
        self.vacuum = vacuum

        self.qmatoms = None
        self.center = None

        Calculator.__init__(self)

    def _get_name(self):
        return f'{self.qmcalc.name}-{self.mmcalc1.name}+{self.mmcalc1.name}'

    def initialize_qm(self, atoms):
        constraints = atoms.constraints
        atoms.constraints = []
        self.qmatoms = atoms[self.selection]
        atoms.constraints = constraints
        self.qmatoms.pbc = False
        if self.vacuum:
            self.qmatoms.center(vacuum=self.vacuum)
            self.center = self.qmatoms.positions.mean(axis=0)

    def calculate(self, atoms, properties, system_changes):
        Calculator.calculate(self, atoms, properties, system_changes)

        if self.qmatoms is None:
            self.initialize_qm(atoms)

        self.qmatoms.positions = atoms.positions[self.selection]
        if self.vacuum:
            self.qmatoms.positions += (self.center -
                                       self.qmatoms.positions.mean(axis=0))

        energy = self.qmcalc.get_potential_energy(self.qmatoms)
        qmforces = self.qmcalc.get_forces(self.qmatoms)
        energy += self.mmcalc2.get_potential_energy(atoms)
        forces = self.mmcalc2.get_forces(atoms)

        if self.vacuum:
            qmforces -= qmforces.mean(axis=0)
        forces[self.selection] += qmforces

        energy -= self.mmcalc1.get_potential_energy(self.qmatoms)
        forces[self.selection] -= self.mmcalc1.get_forces(self.qmatoms)

        self.results['energy'] = energy
        self.results['forces'] = forces


class EIQMMM(Calculator, IOContext):
    """Explicit interaction QMMM calculator."""
    implemented_properties = ['energy', 'forces']

    def __init__(self, selection, qmcalc, mmcalc, interaction,
                 vacuum=None, embedding=None, output=None, comm=world):
        """EIQMMM object.

        The energy is calculated as::

                    _          _         _    _
            E = E  (R  ) + E  (R  ) + E (R  , R  )
                 QM  QM     MM  MM     I  QM   MM

        parameters:

        selection: list of int, slice object or list of bool
            Selection out of all the atoms that belong to the QM part.
        qmcalc: Calculator object
            QM-calculator.
        mmcalc: Calculator object
            MM-calculator.
        interaction: Interaction object
            Interaction between QM and MM regions.
        vacuum: float or None
            Amount of vacuum to add around QM atoms.  Use None if QM
            calculator doesn't need a box.
        embedding: Embedding object or None
            Specialized embedding object.  Use None in order to use the
            default one.
        output: None, '-', str or file-descriptor.
            File for logging information - default is no logging (None).

        """

        self.selection = selection

        self.qmcalc = qmcalc
        self.mmcalc = mmcalc
        self.interaction = interaction
        self.vacuum = vacuum
        self.embedding = embedding

        self.qmatoms = None
        self.mmatoms = None
        self.mask = None
        self.center = None  # center of QM atoms in QM-box

        self.output = self.openfile(file=output, comm=comm)

        Calculator.__init__(self)

    def _get_name(self):
        return f'{self.qmcalc.name}+{self.interaction.name}+{self.mmcalc.name}'

    def initialize(self, atoms):
        self.mask = np.zeros(len(atoms), bool)
        self.mask[self.selection] = True

        constraints = atoms.constraints
        atoms.constraints = []  # avoid slicing of constraints
        self.qmatoms = atoms[self.mask]
        self.mmatoms = atoms[~self.mask]
        atoms.constraints = constraints

        self.qmatoms.pbc = False

        if self.vacuum:
            self.qmatoms.center(vacuum=self.vacuum)
            self.center = self.qmatoms.positions.mean(axis=0)
            print('Size of QM-cell after centering:',
                  self.qmatoms.cell.diagonal(), file=self.output)

        self.qmatoms.calc = self.qmcalc
        self.mmatoms.calc = self.mmcalc

        if self.embedding is None:
            self.embedding = Embedding()

        self.embedding.initialize(self.qmatoms, self.mmatoms)
        print('Embedding:', self.embedding, file=self.output)

    def calculate(self, atoms, properties, system_changes):
        Calculator.calculate(self, atoms, properties, system_changes)

        if self.qmatoms is None:
            self.initialize(atoms)

        self.mmatoms.set_positions(atoms.positions[~self.mask])
        self.qmatoms.set_positions(atoms.positions[self.mask])

        if self.vacuum:
            shift = self.center - self.qmatoms.positions.mean(axis=0)
            self.qmatoms.positions += shift
        else:
            shift = (0, 0, 0)

        self.embedding.update(shift)

        ienergy, iqmforces, immforces = self.interaction.calculate(
            self.qmatoms, self.mmatoms, shift)

        qmenergy = self.qmatoms.get_potential_energy()
        mmenergy = self.mmatoms.get_potential_energy()
        energy = ienergy + qmenergy + mmenergy

        print('Energies: {:12.3f} {:+12.3f} {:+12.3f} = {:12.3f}'
              .format(ienergy, qmenergy, mmenergy, energy), file=self.output)

        qmforces = self.qmatoms.get_forces()
        mmforces = self.mmatoms.get_forces()

        mmforces += self.embedding.get_mm_forces()

        forces = np.empty((len(atoms), 3))
        forces[self.mask] = qmforces + iqmforces
        forces[~self.mask] = mmforces + immforces

        self.results['energy'] = energy
        self.results['forces'] = forces


def wrap(D, cell, pbc):
    """Wrap distances to nearest neighbor (minimum image convention)."""
    for i, periodic in enumerate(pbc):
        if periodic:
            d = D[:, i]
            L = cell[i]
            d[:] = (d + L / 2) % L - L / 2  # modify D inplace


class Embedding:
    def __init__(self, molecule_size=3, **parameters):
        """Point-charge embedding."""
        self.qmatoms = None
        self.mmatoms = None
        self.molecule_size = molecule_size
        self.virtual_molecule_size = None
        self.parameters = parameters

    def __repr__(self):
        return f'Embedding(molecule_size={self.molecule_size})'

    def initialize(self, qmatoms, mmatoms):
        """Hook up embedding object to QM and MM atoms objects."""
        self.qmatoms = qmatoms
        self.mmatoms = mmatoms
        charges = mmatoms.calc.get_virtual_charges(mmatoms)
        self.pcpot = qmatoms.calc.embed(charges, **self.parameters)
        self.virtual_molecule_size = (self.molecule_size *
                                      len(charges) // len(mmatoms))

    def update(self, shift):
        """Update point-charge positions."""
        # Wrap point-charge positions to the MM-cell closest to the
        # center of the the QM box, but avoid ripping molecules apart:
        qmcenter = self.qmatoms.positions.mean(axis=0)
        # if counter ions are used, then molecule_size has more than 1 value
        if self.mmatoms.calc.name == 'combinemm':
            mask1 = self.mmatoms.calc.mask
            mask2 = ~mask1
            vmask1 = self.mmatoms.calc.virtual_mask
            vmask2 = ~vmask1
            apm1 = self.mmatoms.calc.apm1
            apm2 = self.mmatoms.calc.apm2
            spm1 = self.mmatoms.calc.atoms1.calc.sites_per_mol
            spm2 = self.mmatoms.calc.atoms2.calc.sites_per_mol
            pos = self.mmatoms.positions
            pos1 = pos[mask1].reshape((-1, apm1, 3))
            pos2 = pos[mask2].reshape((-1, apm2, 3))
            pos = (pos1, pos2)
        else:
            pos = (self.mmatoms.positions, )
            apm1 = self.molecule_size
            apm2 = self.molecule_size
            # This is only specific to calculators where apm != spm,
            # i.e. TIP4P. Non-native MM calcs do not have this attr.
            if hasattr(self.mmatoms.calc, 'sites_per_mol'):
                spm1 = self.mmatoms.calc.sites_per_mol
                spm2 = self.mmatoms.calc.sites_per_mol
            else:
                spm1 = self.molecule_size
                spm2 = spm1
            mask1 = np.ones(len(self.mmatoms), dtype=bool)
            mask2 = mask1

        wrap_pos = np.zeros_like(self.mmatoms.positions)
        com_all = []
        apm = (apm1, apm2)
        mask = (mask1, mask2)
        spm = (spm1, spm2)
        for p, n, m, vn in zip(pos, apm, mask, spm):
            positions = p.reshape((-1, n, 3)) + shift

            # Distances from the center of the QM box to the first atom of
            # each molecule:
            distances = positions[:, 0] - qmcenter

            wrap(distances, self.mmatoms.cell.diagonal(), self.mmatoms.pbc)
            offsets = distances - positions[:, 0]
            positions += offsets[:, np.newaxis] + qmcenter

            # Geometric center positions for each mm mol for LR cut
            com = np.array([p.mean(axis=0) for p in positions])
            # Need per atom for C-code:
            com_pv = np.repeat(com, vn, axis=0)
            com_all.append(com_pv)

            wrap_pos[m] = positions.reshape((-1, 3))

        positions = wrap_pos.copy()
        positions = self.mmatoms.calc.add_virtual_sites(positions)

        if self.mmatoms.calc.name == 'combinemm':
            com_pv = np.zeros_like(positions)
            for ii, m in enumerate((vmask1, vmask2)):
                com_pv[m] = com_all[ii]

        # compatibility with gpaw versions w/o LR cut in PointChargePotential
        if 'rc2' in self.parameters:
            self.pcpot.set_positions(positions, com_pv=com_pv)
        else:
            self.pcpot.set_positions(positions)

    def get_mm_forces(self):
        """Calculate the forces on the MM-atoms from the QM-part."""
        f = self.pcpot.get_forces(self.qmatoms.calc)
        return self.mmatoms.calc.redistribute_forces(f)


def combine_lj_lorenz_berthelot(sigmaqm, sigmamm,
                                epsilonqm, epsilonmm):
    """Combine LJ parameters according to the Lorenz-Berthelot rule"""
    sigma = []
    epsilon = []
    # check if input is tuple of vals for more than 1 mm calc, or only for 1.
    if isinstance(sigmamm, Sequence):
        numcalcs = len(sigmamm)
    else:
        numcalcs = 1  # if only 1 mm calc, eps and sig are simply np arrays
        sigmamm = (sigmamm, )
        epsilonmm = (epsilonmm, )
    for cc in range(numcalcs):
        sigma_c = np.zeros((len(sigmaqm), len(sigmamm[cc])))
        epsilon_c = np.zeros_like(sigma_c)

        for ii in range(len(sigmaqm)):
            sigma_c[ii, :] = (sigmaqm[ii] + sigmamm[cc]) / 2
            epsilon_c[ii, :] = (epsilonqm[ii] * epsilonmm[cc])**0.5
        sigma.append(sigma_c)
        epsilon.append(epsilon_c)

    if numcalcs == 1:  # retain original, 1 calc function
        sigma = np.array(sigma[0])
        epsilon = np.array(epsilon[0])

    return sigma, epsilon


class LJInteractionsGeneral:
    name = 'LJ-general'

    def __init__(self, sigmaqm, epsilonqm, sigmamm, epsilonmm,
                 qm_molecule_size, mm_molecule_size=3,
                 rc=np.inf, width=1.0):
        """General Lennard-Jones type explicit interaction.

        sigmaqm: array
            Array of sigma-parameters which should have the length of the QM
            subsystem
        epsilonqm: array
            As sigmaqm, but for epsilon-paramaters
        sigmamm: Either array (A) or tuple (B)
            A (no counterions):
                Array of sigma-parameters with the length of the smallests
                repeating atoms-group (i.e. molecule) of the MM subsystem
            B (counterions):
                Tuple: (arr1, arr2), where arr1 is an array of sigmas with
                the length of counterions in the MM subsystem, and
                arr2 is the array from A.
        epsilonmm: array or tuple
            As sigmamm but for epsilon-parameters.
        qm_molecule_size: int
            number of atoms of the smallest repeating atoms-group (i.e.
            molecule) in the QM subsystem (often just the number of atoms
            in the QM subsystem)
        mm_molecule_size: int
            as qm_molecule_size but for the MM subsystem. Will be overwritten
            if counterions are present in the MM subsystem (via the CombineMM
            calculator)

        """
        self.sigmaqm = sigmaqm
        self.epsilonqm = epsilonqm
        self.sigmamm = sigmamm
        self.epsilonmm = epsilonmm
        self.qms = qm_molecule_size
        self.mms = mm_molecule_size
        self.rc = rc
        self.width = width
        self.combine_lj()

    def combine_lj(self):
        self.sigma, self.epsilon = combine_lj_lorenz_berthelot(
            self.sigmaqm, self.sigmamm, self.epsilonqm, self.epsilonmm)

    def calculate(self, qmatoms, mmatoms, shift):
        epsilon = self.epsilon
        sigma = self.sigma

        # loop over possible multiple mm calculators
        # currently 1 or 2, but could be generalized in the future...
        apm1 = self.mms
        mask1 = np.ones(len(mmatoms), dtype=bool)
        mask2 = mask1
        apm = (apm1, )
        sigma = (sigma, )
        epsilon = (epsilon, )
        if hasattr(mmatoms.calc, 'name'):
            if mmatoms.calc.name == 'combinemm':
                mask1 = mmatoms.calc.mask
                mask2 = ~mask1
                apm1 = mmatoms.calc.apm1
                apm2 = mmatoms.calc.apm2
                apm = (apm1, apm2)
                sigma = sigma[0]  # Was already loopable 2-tuple
                epsilon = epsilon[0]

        mask = (mask1, mask2)
        e_all = 0
        qmforces_all = np.zeros_like(qmatoms.positions)
        mmforces_all = np.zeros_like(mmatoms.positions)

        # zip stops at shortest tuple so we dont double count
        # cases of no counter ions.
        for n, m, eps, sig in zip(apm, mask, epsilon, sigma):
            mmpositions = self.update(qmatoms, mmatoms[m], n, shift)
            qmforces = np.zeros_like(qmatoms.positions)
            mmforces = np.zeros_like(mmatoms[m].positions)
            energy = 0.0

            qmpositions = qmatoms.positions.reshape((-1, self.qms, 3))

            for q, qmpos in enumerate(qmpositions):  # molwise loop
                # cutoff from first atom of each mol
                R00 = mmpositions[:, 0] - qmpos[0, :]
                d002 = (R00**2).sum(1)
                d00 = d002**0.5
                x1 = d00 > self.rc - self.width
                x2 = d00 < self.rc
                x12 = np.logical_and(x1, x2)
                y = (d00[x12] - self.rc + self.width) / self.width
                t = np.zeros(len(d00))
                t[x2] = 1.0
                t[x12] -= y**2 * (3.0 - 2.0 * y)
                dt = np.zeros(len(d00))
                dt[x12] -= 6.0 / self.width * y * (1.0 - y)
                for qa in range(len(qmpos)):
                    if ~np.any(eps[qa, :]):
                        continue
                    R = mmpositions - qmpos[qa, :]
                    d2 = (R**2).sum(2)
                    c6 = (sig[qa, :]**2 / d2)**3
                    c12 = c6**2
                    e = 4 * eps[qa, :] * (c12 - c6)
                    energy += np.dot(e.sum(1), t)
                    f = t[:, None, None] * (24 * eps[qa, :] *
                                            (2 * c12 - c6) / d2)[:, :, None] * R
                    f00 = - (e.sum(1) * dt / d00)[:, None] * R00
                    mmforces += f.reshape((-1, 3))
                    qmforces[q * self.qms + qa, :] -= f.sum(0).sum(0)
                    qmforces[q * self.qms, :] -= f00.sum(0)
                    mmforces[::n, :] += f00

                e_all += energy
                qmforces_all += qmforces
                mmforces_all[m] += mmforces

        return e_all, qmforces_all, mmforces_all

    def update(self, qmatoms, mmatoms, n, shift):
        # Wrap point-charge positions to the MM-cell closest to the
        # center of the the QM box, but avoid ripping molecules apart:
        qmcenter = qmatoms.cell.diagonal() / 2
        positions = mmatoms.positions.reshape((-1, n, 3)) + shift

        # Distances from the center of the QM box to the first atom of
        # each molecule:
        distances = positions[:, 0] - qmcenter

        wrap(distances, mmatoms.cell.diagonal(), mmatoms.pbc)
        offsets = distances - positions[:, 0]
        positions += offsets[:, np.newaxis] + qmcenter

        return positions


class LJInteractions:
    name = 'LJ'

    def __init__(self, parameters):
        """Lennard-Jones type explicit interaction.

        parameters: dict
            Mapping from pair of atoms to tuple containing epsilon and sigma
            for that pair.

        Example:

            lj = LJInteractions({('O', 'O'): (eps, sigma)})

        """
        self.parameters = {}
        for (symbol1, symbol2), (epsilon, sigma) in parameters.items():
            Z1 = atomic_numbers[symbol1]
            Z2 = atomic_numbers[symbol2]
            self.parameters[(Z1, Z2)] = epsilon, sigma
            self.parameters[(Z2, Z1)] = epsilon, sigma

    def calculate(self, qmatoms, mmatoms, shift):
        qmforces = np.zeros_like(qmatoms.positions)
        mmforces = np.zeros_like(mmatoms.positions)
        species = set(mmatoms.numbers)
        energy = 0.0
        for R1, Z1, F1 in zip(qmatoms.positions, qmatoms.numbers, qmforces):
            for Z2 in species:
                if (Z1, Z2) not in self.parameters:
                    continue
                epsilon, sigma = self.parameters[(Z1, Z2)]
                mask = (mmatoms.numbers == Z2)
                D = mmatoms.positions[mask] + shift - R1
                wrap(D, mmatoms.cell.diagonal(), mmatoms.pbc)
                d2 = (D**2).sum(1)
                c6 = (sigma**2 / d2)**3
                c12 = c6**2
                energy += 4 * epsilon * (c12 - c6).sum()
                f = 24 * epsilon * ((2 * c12 - c6) / d2)[:, np.newaxis] * D
                F1 -= f.sum(0)
                mmforces[mask] += f
        return energy, qmforces, mmforces


class RescaledCalculator(Calculator):
    """Rescales length and energy of a calculators to match given
    lattice constant and bulk modulus

    Useful for MM calculator used within a :class:`ForceQMMM` model.
    See T. D. Swinburne and J. R. Kermode, Phys. Rev. B 96, 144102 (2017)
    for a derivation of the scaling constants.
    """
    implemented_properties = ['forces', 'energy', 'stress']

    def __init__(self, mm_calc,
                 qm_lattice_constant, qm_bulk_modulus,
                 mm_lattice_constant, mm_bulk_modulus):
        Calculator.__init__(self)
        self.mm_calc = mm_calc
        self.alpha = qm_lattice_constant / mm_lattice_constant
        self.beta = mm_bulk_modulus / qm_bulk_modulus / (self.alpha**3)

    def calculate(self, atoms, properties, system_changes):
        Calculator.calculate(self, atoms, properties, system_changes)

        # mm_pos = atoms.get_positions()
        scaled_atoms = atoms.copy()

        # scaled_atoms.positions = mm_pos/self.alpha
        mm_cell = atoms.get_cell()
        scaled_atoms.set_cell(mm_cell / self.alpha, scale_atoms=True)

        results = {}

        if 'energy' in properties:
            energy = self.mm_calc.get_potential_energy(scaled_atoms)
            results['energy'] = energy / self.beta

        if 'forces' in properties:
            forces = self.mm_calc.get_forces(scaled_atoms)
            results['forces'] = forces / (self.beta * self.alpha)

        if 'stress' in properties:
            stress = self.mm_calc.get_stress(scaled_atoms)
            results['stress'] = stress / (self.beta * self.alpha**3)

        self.results = results


class ForceConstantCalculator(Calculator):
    """
    Compute forces based on provided force-constant matrix

    Useful with `ForceQMMM` to do harmonic QM/MM using force constants
    of QM method.
    """
    implemented_properties = ['forces', 'energy']

    def __init__(self, D, ref, f0):
        """
        Parameters:

        D: matrix or sparse matrix, shape `(3*len(ref), 3*len(ref))`
            Force constant matrix.
            Sign convention is `D_ij = d^2E/(dx_i dx_j), so
            `force = -D.dot(displacement)`
        ref: ase.atoms.Atoms
            Atoms object for reference configuration
        f0: array, shape `(len(ref), 3)`
            Value of forces at reference configuration
        """
        assert D.shape[0] == D.shape[1]
        assert D.shape[0] // 3 == len(ref)
        self.D = D
        self.ref = ref
        self.f0 = f0
        self.size = len(ref)
        Calculator.__init__(self)

    def calculate(self, atoms, properties, system_changes):
        Calculator.calculate(self, atoms, properties, system_changes)
        u = atoms.positions - self.ref.positions
        f = -self.D.dot(u.reshape(3 * self.size))
        forces = np.zeros((len(atoms), 3))
        forces[:, :] = f.reshape(self.size, 3)
        self.results['forces'] = forces + self.f0
        self.results['energy'] = 0.0


class ForceQMMM(Calculator):
    """
    Force-based QM/MM calculator

    QM forces are computed using a buffer region and then mixed abruptly
    with MM forces:

        F^i_QMMM = {   F^i_QM    if i in QM region
                   {   F^i_MM    otherwise

    cf. N. Bernstein, J. R. Kermode, and G. Csanyi,
    Rep. Prog. Phys. 72, 026501 (2009)
    and T. D. Swinburne and J. R. Kermode, Phys. Rev. B 96, 144102 (2017).
    """
    implemented_properties = ['forces', 'energy']

    def __init__(self,
                 atoms,
                 qm_selection_mask,
                 qm_calc,
                 mm_calc,
                 buffer_width,
                 vacuum=5.,
                 zero_mean=True,
                 qm_cell_round_off=3,
                 qm_radius=None):
        """
        ForceQMMM calculator

        Parameters:

        qm_selection_mask: list of ints, slice object or bool list/array
            Selection out of atoms that belong to the QM region.
        qm_calc: Calculator object
            QM-calculator.
        mm_calc: Calculator object
            MM-calculator (should be scaled, see :class:`RescaledCalculator`)
            Can use `ForceConstantCalculator` based on QM force constants, if
            available.
        vacuum: float or None
            Amount of vacuum to add around QM atoms.
        zero_mean: bool
            If True, add a correction to zero the mean force in each direction
        qm_cell_round_off: float
            Tolerance value in Angstrom to round the qm cluster cell
        qm_radius: 3x1 array of floats qm_radius for [x, y, z]
            3d qm radius for calculation of qm cluster cell. default is None
            and the radius is estimated from maximum distance between the atoms
            in qm region.
        """

        if len(atoms[qm_selection_mask]) == 0:
            raise ValueError("no QM atoms selected!")

        self.qm_selection_mask = qm_selection_mask
        self.qm_calc = qm_calc
        self.mm_calc = mm_calc
        self.vacuum = vacuum
        self.buffer_width = buffer_width
        self.zero_mean = zero_mean
        self.qm_cell_round_off = qm_cell_round_off
        self.qm_radius = qm_radius

        self.qm_buffer_mask = None

        Calculator.__init__(self)

    def initialize_qm_buffer_mask(self, atoms):
        """
        Initialises system to perform qm calculation
        """
        # calculate the distances between all atoms and qm atoms
        # qm_distance_matrix is a [N_QM_atoms x N_atoms] matrix
        _, qm_distance_matrix = get_distances(
            atoms.positions[self.qm_selection_mask],
            atoms.positions,
            atoms.cell, atoms.pbc)

        self.qm_buffer_mask = np.zeros(len(atoms), dtype=bool)

        # every r_qm is a matrix of distances
        # from an atom in qm region and all atoms with size [N_atoms]
        for r_qm in qm_distance_matrix:
            self.qm_buffer_mask[r_qm < self.buffer_width] = True

    def get_qm_cluster(self, atoms):

        if self.qm_buffer_mask is None:
            self.initialize_qm_buffer_mask(atoms)

        qm_cluster = atoms[self.qm_buffer_mask]
        del qm_cluster.constraints

        round_cell = False
        if self.qm_radius is None:
            round_cell = True
            # get all distances between qm atoms.
            # Treat all X, Y and Z directions independently
            # only distance between qm atoms is calculated
            # in order to estimate qm radius in thee directions
            R_qm, _ = get_distances(atoms.positions[self.qm_selection_mask],
                                    cell=atoms.cell, pbc=atoms.pbc)
            # estimate qm radius in three directions as 1/2
            # of max distance between qm atoms
            self.qm_radius = np.amax(np.amax(R_qm, axis=1), axis=0) * 0.5

        if atoms.cell.orthorhombic:
            cell_size = np.diagonal(atoms.cell)
        else:
            raise RuntimeError("NON-orthorhombic cell is not supported!")

        # check if qm_cluster should be left periodic
        # in periodic directions of the cell (cell[i] < qm_radius + buffer
        # otherwise change to non pbc
        # and make a cluster in a vacuum configuration
        qm_cluster_pbc = (atoms.pbc &
                          (cell_size <
                           2.0 * (self.qm_radius + self.buffer_width)))

        # start with the original orthorhombic cell
        qm_cluster_cell = cell_size.copy()
        # create a cluster in a vacuum cell in non periodic directions
        qm_cluster_cell[~qm_cluster_pbc] = (
            2.0 * (self.qm_radius[~qm_cluster_pbc] +
                   self.buffer_width +
                   self.vacuum))

        if round_cell:
            # round the qm cell to the required tolerance
            qm_cluster_cell[~qm_cluster_pbc] = (np.round(
                (qm_cluster_cell[~qm_cluster_pbc]) /
                self.qm_cell_round_off) *
                self.qm_cell_round_off)

        qm_cluster.set_cell(Cell(np.diag(qm_cluster_cell)))
        qm_cluster.pbc = qm_cluster_pbc

        qm_shift = (0.5 * qm_cluster.cell.diagonal() -
                    qm_cluster.positions.mean(axis=0))

        if 'cell_origin' in qm_cluster.info:
            del qm_cluster.info['cell_origin']

        # center the cluster only in non pbc directions
        qm_cluster.positions[:, ~qm_cluster_pbc] += qm_shift[~qm_cluster_pbc]

        return qm_cluster

    def calculate(self, atoms, properties, system_changes):
        Calculator.calculate(self, atoms, properties, system_changes)

        qm_cluster = self.get_qm_cluster(atoms)

        forces = self.mm_calc.get_forces(atoms)
        qm_forces = self.qm_calc.get_forces(qm_cluster)

        forces[self.qm_selection_mask] = \
            qm_forces[self.qm_selection_mask[self.qm_buffer_mask]]

        if self.zero_mean:
            # Target is that: forces.sum(axis=1) == [0., 0., 0.]
            forces[:] -= forces.mean(axis=0)

        self.results['forces'] = forces
        self.results['energy'] = 0.0

    def get_region_from_masks(self, atoms=None, print_mapping=False):
        """
        creates region array from the masks of the calculators. The tags in
        the array are:
        QM - qm atoms
        buffer - buffer atoms
        MM - atoms treated with mm calculator
        """
        if atoms is None:
            if self.atoms is None:
                raise ValueError('Calculator has no atoms')
            else:
                atoms = self.atoms

        region = np.full_like(atoms, "MM")

        region[self.qm_selection_mask] = (
            np.full_like(region[self.qm_selection_mask], "QM"))

        buffer_only_mask = self.qm_buffer_mask & ~self.qm_selection_mask

        region[buffer_only_mask] = np.full_like(region[buffer_only_mask],
                                                "buffer")

        if print_mapping:

            print(f"Mapping of {len(region):5d} atoms in total:")
            for region_id in np.unique(region):
                n_at = np.count_nonzero(region == region_id)
                print(f"{n_at:16d} {region_id}")

            qm_atoms = atoms[self.qm_selection_mask]
            symbol_counts = qm_atoms.symbols.formula.count()
            print("QM atoms types:")
            for symbol, count in symbol_counts.items():
                print(f"{count:16d} {symbol}")

        return region

    def set_masks_from_region(self, region):
        """
        Sets masks from provided region array
        """
        self.qm_selection_mask = region == "QM"
        buffer_mask = region == "buffer"

        self.qm_buffer_mask = self.qm_selection_mask ^ buffer_mask

    def export_extxyz(self, atoms=None, filename="qmmm_atoms.xyz"):
        """
        exports the atoms to extended xyz file with additional "region"
        array keeping the mapping between QM, buffer and MM parts of
        the simulation
        """
        if atoms is None:
            if self.atoms is None:
                raise ValueError('Calculator has no atoms')
            else:
                atoms = self.atoms

        region = self.get_region_from_masks(atoms=atoms)

        atoms_copy = atoms.copy()
        atoms_copy.new_array("region", region)

        atoms_copy.calc = self  # to keep the calculation results

        atoms_copy.write(filename, format='extxyz')

    @classmethod
    def import_extxyz(cls, filename, qm_calc, mm_calc):
        """
        A static method to import the the mapping from an estxyz file saved by
        export_extxyz() function
        Parameters
        ----------
        filename: string
            filename with saved configuration

        qm_calc: Calculator object
            QM-calculator.
        mm_calc: Calculator object
            MM-calculator (should be scaled, see :class:`RescaledCalculator`)
            Can use `ForceConstantCalculator` based on QM force constants, if
            available.

        Returns
        -------
        New object of ForceQMMM calculator with qm_selection_mask and
        qm_buffer_mask set according to the region array in the saved file
        """

        from ase.io import read
        atoms = read(filename, format='extxyz')

        if "region" in atoms.arrays:
            region = atoms.get_array("region")
        else:
            raise RuntimeError("Please provide extxyz file with 'region' array")

        dummy_qm_mask = np.full_like(atoms, False, dtype=bool)
        dummy_qm_mask[0] = True

        self = cls(atoms, dummy_qm_mask,
                   qm_calc, mm_calc, buffer_width=1.0)

        self.set_masks_from_region(region)

        return self