File: test.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (184 lines) | stat: -rw-r--r-- 5,550 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from math import pi

import numpy as np

from ase.atoms import Atoms
from ase.calculators.calculator import Calculator, kpts2ndarray
from ase.calculators.fd import calculate_numerical_forces
from ase.units import Bohr, Ha


def make_test_dft_calculation():
    a = b = 2.0
    c = 6.0
    atoms = Atoms(positions=[(0, 0, c / 2)],
                  symbols='H',
                  pbc=(1, 1, 0),
                  cell=(a, b, c),
                  calculator=TestCalculator())
    return atoms


class TestCalculator:
    def __init__(self, nk=8):
        assert nk % 2 == 0
        bzk = []
        weights = []
        ibzk = []
        w = 1.0 / nk**2
        for i in range(-nk + 1, nk, 2):
            for j in range(-nk + 1, nk, 2):
                k = (0.5 * i / nk, 0.5 * j / nk, 0)
                bzk.append(k)
                if i >= j > 0:
                    ibzk.append(k)
                    if i == j:
                        weights.append(4 * w)
                    else:
                        weights.append(8 * w)
        assert abs(sum(weights) - 1.0) < 1e-12
        self.bzk = np.array(bzk)
        self.ibzk = np.array(ibzk)
        self.weights = np.array(weights)

        # Calculate eigenvalues and wave functions:
        self.init()

    def init(self):
        nibzk = len(self.weights)
        nbands = 1

        V = -1.0
        self.eps = 2 * V * (np.cos(2 * pi * self.ibzk[:, 0]) +
                            np.cos(2 * pi * self.ibzk[:, 1]))
        self.eps.shape = (nibzk, nbands)

        self.psi = np.zeros((nibzk, 20, 20, 60), complex)
        phi = np.empty((2, 2, 20, 20, 60))
        z = np.linspace(-1.5, 1.5, 60, endpoint=False)
        for i in range(2):
            x = np.linspace(0, 1, 20, endpoint=False) - i
            for j in range(2):
                y = np.linspace(0, 1, 20, endpoint=False) - j
                r = (((x[:, None]**2 +
                       y**2)[:, :, None] +
                      z**2)**0.5).clip(0, 1)
                phi = 1.0 - r**2 * (3.0 - 2.0 * r)
                phase = np.exp(pi * 2j * np.dot(self.ibzk, (i, j, 0)))
                self.psi += phase[:, None, None, None] * phi

    def get_pseudo_wave_function(self, band=0, kpt=0, spin=0):
        assert spin == 0 and band == 0
        return self.psi[kpt]

    def get_eigenvalues(self, kpt=0, spin=0):
        assert spin == 0
        return self.eps[kpt]

    def get_number_of_bands(self):
        return 1

    def get_k_point_weights(self):
        return self.weights

    def get_number_of_spins(self):
        return 1

    def get_fermi_level(self):
        return 0.0

    def get_pseudo_density(self):
        n = 0.0
        for w, eps, psi in zip(self.weights, self.eps[:, 0], self.psi):
            if eps >= 0.0:
                continue
            n += w * (psi * psi.conj()).real

        n[1:] += n[:0:-1].copy()
        n[:, 1:] += n[:, :0:-1].copy()
        n += n.transpose((1, 0, 2)).copy()
        n /= 8
        return n


class TestPotential(Calculator):
    implemented_properties = ['energy', 'forces']

    def calculate(self, atoms, properties, system_changes):
        Calculator.calculate(self, atoms, properties, system_changes)
        E = 0.0
        R = atoms.positions
        F = np.zeros_like(R)
        for a, r in enumerate(R):
            D = R - r
            d = (D**2).sum(1)**0.5
            x = d - 1.0
            E += np.vdot(x, x)
            d[a] = 1
            F -= (x / d)[:, None] * D
        energy = 0.25 * E
        self.results = {'energy': energy, 'forces': F}


class FreeElectrons(Calculator):
    """Free-electron band calculator.

    Parameters:

    nvalence: int
        Number of electrons
    kpts: dict
        K-point specification.

    Example:
    >>> from ase.calculators.test import FreeElectrons
    >>> calc = FreeElectrons(nvalence=1, kpts={'path': 'GXL'})
    """

    implemented_properties = ['energy']
    default_parameters = {'kpts': np.zeros((1, 3)),
                          'nvalence': 0.0,
                          'nbands': 20,
                          'gridsize': 7}

    def calculate(self, atoms, properties, system_changes):
        Calculator.calculate(self, atoms)
        self.kpts = kpts2ndarray(self.parameters.kpts, atoms)
        icell = atoms.cell.reciprocal() * 2 * np.pi * Bohr
        n = self.parameters.gridsize
        offsets = np.indices((n, n, n)).T.reshape((n**3, 1, 3)) - n // 2
        eps = 0.5 * (np.dot(self.kpts + offsets, icell)**2).sum(2).T
        eps.sort()
        self.eigenvalues = eps[:, :self.parameters.nbands] * Ha
        self.results = {'energy': 0.0}

    def get_eigenvalues(self, kpt, spin=0):
        assert spin == 0
        return self.eigenvalues[kpt].copy()

    def get_fermi_level(self):
        v = self.atoms.get_volume() / Bohr**3
        kF = (self.parameters.nvalence / v * 3 * np.pi**2)**(1 / 3)
        return 0.5 * kF**2 * Ha

    def get_ibz_k_points(self):
        return self.kpts.copy()

    def get_number_of_spins(self):
        return 1


def gradient_test(atoms, indices=None):
    """
    Use numeric_force to compare analytical and numerical forces on atoms

    If indices is None, test is done on all atoms.
    """
    if indices is None:
        indices = range(len(atoms))
    f = atoms.get_forces()[indices]
    print('{:>16} {:>20}'.format('eps', 'max(abs(df))'))
    for eps in np.logspace(-1, -8, 8):
        fn = calculate_numerical_forces(atoms, eps, indices)
        print(f'{eps:16.12f} {abs(fn - f).max():20.12f}')
    return f, fn