1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
import os
import re
import numpy as np
def get_vasp_version(string):
"""Extract version number from header of stdout.
Example::
>>> get_vasp_version('potato vasp.6.1.2 bumblebee')
'6.1.2'
"""
match = re.search(r'vasp\.(\S+)', string, re.M)
return match.group(1)
class VaspChargeDensity:
"""Class for representing VASP charge density.
Filename is normally CHG."""
# Can the filename be CHGCAR? There's a povray tutorial
# in doc/tutorials where it's CHGCAR as of January 2021. --askhl
def __init__(self, filename):
# Instance variables
self.atoms = [] # List of Atoms objects
self.chg = [] # Charge density
self.chgdiff = [] # Charge density difference, if spin polarized
self.aug = '' # Augmentation charges, not parsed just a big string
self.augdiff = '' # Augmentation charge differece, is spin polarized
# Note that the augmentation charge is not a list, since they
# are needed only for CHGCAR files which store only a single
# image.
if filename is not None:
self.read(filename)
def is_spin_polarized(self):
if len(self.chgdiff) > 0:
return True
return False
def _read_chg(self, fobj, chg, volume):
"""Read charge from file object
Utility method for reading the actual charge density (or
charge density difference) from a file object. On input, the
file object must be at the beginning of the charge block, on
output the file position will be left at the end of the
block. The chg array must be of the correct dimensions.
"""
# VASP writes charge density as
# WRITE(IU,FORM) (((C(NX,NY,NZ),NX=1,NGXC),NY=1,NGYZ),NZ=1,NGZC)
# Fortran nested implied do loops; innermost index fastest
# First, just read it in
for zz in range(chg.shape[2]):
for yy in range(chg.shape[1]):
chg[:, yy, zz] = np.fromfile(fobj, count=chg.shape[0], sep=' ')
chg /= volume
def read(self, filename):
"""Read CHG or CHGCAR file.
If CHG contains charge density from multiple steps all the
steps are read and stored in the object. By default VASP
writes out the charge density every 10 steps.
chgdiff is the difference between the spin up charge density
and the spin down charge density and is thus only read for a
spin-polarized calculation.
aug is the PAW augmentation charges found in CHGCAR. These are
not parsed, they are just stored as a string so that they can
be written again to a CHGCAR format file.
"""
import ase.io.vasp as aiv
with open(filename) as fd:
self.atoms = []
self.chg = []
self.chgdiff = []
self.aug = ''
self.augdiff = ''
while True:
try:
atoms = aiv.read_vasp(fd)
except (KeyError, RuntimeError, ValueError):
# Probably an empty line, or we tried to read the
# augmentation occupancies in CHGCAR
break
fd.readline()
ngr = fd.readline().split()
ng = (int(ngr[0]), int(ngr[1]), int(ngr[2]))
chg = np.empty(ng)
self._read_chg(fd, chg, atoms.get_volume())
self.chg.append(chg)
self.atoms.append(atoms)
# Check if the file has a spin-polarized charge density part,
# and if so, read it in.
fl = fd.tell()
# First check if the file has an augmentation charge part
# (CHGCAR file.)
line1 = fd.readline()
if line1 == '':
break
elif line1.find('augmentation') != -1:
augs = [line1]
while True:
line2 = fd.readline()
if line2.split() == ngr:
self.aug = ''.join(augs)
augs = []
chgdiff = np.empty(ng)
self._read_chg(fd, chgdiff, atoms.get_volume())
self.chgdiff.append(chgdiff)
elif line2 == '':
break
else:
augs.append(line2)
if len(self.aug) == 0:
self.aug = ''.join(augs)
augs = []
else:
self.augdiff = ''.join(augs)
augs = []
elif line1.split() == ngr:
chgdiff = np.empty(ng)
self._read_chg(fd, chgdiff, atoms.get_volume())
self.chgdiff.append(chgdiff)
else:
fd.seek(fl)
def _write_chg(self, fobj, chg, volume, format='chg'):
"""Write charge density
Utility function similar to _read_chg but for writing.
"""
# Make a 1D copy of chg, must take transpose to get ordering right
chgtmp = chg.T.ravel()
# Multiply by volume
chgtmp = chgtmp * volume
# Must be a tuple to pass to string conversion
chgtmp = tuple(chgtmp)
# CHG format - 10 columns
if format.lower() == 'chg':
# Write all but the last row
for ii in range((len(chgtmp) - 1) // 10):
fobj.write(' %#11.5G %#11.5G %#11.5G %#11.5G %#11.5G\
%#11.5G %#11.5G %#11.5G %#11.5G %#11.5G\n' % chgtmp[ii * 10:(ii + 1) * 10])
# If the last row contains 10 values then write them without a
# newline
if len(chgtmp) % 10 == 0:
fobj.write(' %#11.5G %#11.5G %#11.5G %#11.5G %#11.5G'
' %#11.5G %#11.5G %#11.5G %#11.5G %#11.5G' %
chgtmp[len(chgtmp) - 10:len(chgtmp)])
# Otherwise write fewer columns without a newline
else:
for ii in range(len(chgtmp) % 10):
fobj.write((' %#11.5G') %
chgtmp[len(chgtmp) - len(chgtmp) % 10 + ii])
# Other formats - 5 columns
else:
# Write all but the last row
for ii in range((len(chgtmp) - 1) // 5):
fobj.write(' %17.10E %17.10E %17.10E %17.10E %17.10E\n' %
chgtmp[ii * 5:(ii + 1) * 5])
# If the last row contains 5 values then write them without a
# newline
if len(chgtmp) % 5 == 0:
fobj.write(' %17.10E %17.10E %17.10E %17.10E %17.10E' %
chgtmp[len(chgtmp) - 5:len(chgtmp)])
# Otherwise write fewer columns without a newline
else:
for ii in range(len(chgtmp) % 5):
fobj.write((' %17.10E') %
chgtmp[len(chgtmp) - len(chgtmp) % 5 + ii])
# Write a newline whatever format it is
fobj.write('\n')
def write(self, filename, format=None):
"""Write VASP charge density in CHG format.
filename: str
Name of file to write to.
format: str
String specifying whether to write in CHGCAR or CHG
format.
"""
import ase.io.vasp as aiv
if format is None:
if filename.lower().find('chgcar') != -1:
format = 'chgcar'
elif filename.lower().find('chg') != -1:
format = 'chg'
elif len(self.chg) == 1:
format = 'chgcar'
else:
format = 'chg'
with open(filename, 'w') as fd:
for ii, chg in enumerate(self.chg):
if format == 'chgcar' and ii != len(self.chg) - 1:
continue # Write only the last image for CHGCAR
aiv.write_vasp(fd,
self.atoms[ii],
direct=True)
fd.write('\n')
for dim in chg.shape:
fd.write(' %4i' % dim)
fd.write('\n')
vol = self.atoms[ii].get_volume()
self._write_chg(fd, chg, vol, format)
if format == 'chgcar':
fd.write(self.aug)
if self.is_spin_polarized():
if format == 'chg':
fd.write('\n')
for dim in chg.shape:
fd.write(' %4i' % dim)
fd.write('\n') # a new line after dim is required
self._write_chg(fd, self.chgdiff[ii], vol, format)
if format == 'chgcar':
# a new line is always provided self._write_chg
fd.write(self.augdiff)
if format == 'chg' and len(self.chg) > 1:
fd.write('\n')
class VaspDos:
"""Class for representing density-of-states produced by VASP
The energies are in property self.energy
Site-projected DOS is accesible via the self.site_dos method.
Total and integrated DOS is accessible as numpy.ndarray's in the
properties self.dos and self.integrated_dos. If the calculation is
spin polarized, the arrays will be of shape (2, NDOS), else (1,
NDOS).
The self.efermi property contains the currently set Fermi
level. Changing this value shifts the energies.
"""
def __init__(self, doscar='DOSCAR', efermi=0.0):
"""Initialize"""
self._efermi = 0.0
self.read_doscar(doscar)
self.efermi = efermi
# we have determine the resort to correctly map ase atom index to the
# POSCAR.
self.sort = []
self.resort = []
if os.path.isfile('ase-sort.dat'):
with open('ase-sort.dat') as file:
lines = file.readlines()
for line in lines:
data = line.split()
self.sort.append(int(data[0]))
self.resort.append(int(data[1]))
def _set_efermi(self, efermi):
"""Set the Fermi level."""
ef = efermi - self._efermi
self._efermi = efermi
self._total_dos[0, :] = self._total_dos[0, :] - ef
try:
self._site_dos[:, 0, :] = self._site_dos[:, 0, :] - ef
except IndexError:
pass
def _get_efermi(self):
return self._efermi
efermi = property(_get_efermi, _set_efermi, None, "Fermi energy.")
def _get_energy(self):
"""Return the array with the energies."""
return self._total_dos[0, :]
energy = property(_get_energy, None, None, "Array of energies")
def site_dos(self, atom, orbital):
"""Return an NDOSx1 array with dos for the chosen atom and orbital.
atom: int
Atom index
orbital: int or str
Which orbital to plot
If the orbital is given as an integer:
If spin-unpolarized calculation, no phase factors:
s = 0, p = 1, d = 2
Spin-polarized, no phase factors:
s-up = 0, s-down = 1, p-up = 2, p-down = 3, d-up = 4, d-down = 5
If phase factors have been calculated, orbitals are
s, py, pz, px, dxy, dyz, dz2, dxz, dx2
double in the above fashion if spin polarized.
"""
# Correct atom index for resorting if we need to. This happens when the
# ase-sort.dat file exists, and self.resort is not empty.
if self.resort:
atom = self.resort[atom]
# Integer indexing for orbitals starts from 1 in the _site_dos array
# since the 0th column contains the energies
if isinstance(orbital, int):
return self._site_dos[atom, orbital + 1, :]
n = self._site_dos.shape[1]
from .vasp_data import PDOS_orbital_names_and_DOSCAR_column
norb = PDOS_orbital_names_and_DOSCAR_column[n]
return self._site_dos[atom, norb[orbital.lower()], :]
def _get_dos(self):
if self._total_dos.shape[0] == 3:
return self._total_dos[1, :]
elif self._total_dos.shape[0] == 5:
return self._total_dos[1:3, :]
dos = property(_get_dos, None, None, 'Average DOS in cell')
def _get_integrated_dos(self):
if self._total_dos.shape[0] == 3:
return self._total_dos[2, :]
elif self._total_dos.shape[0] == 5:
return self._total_dos[3:5, :]
integrated_dos = property(_get_integrated_dos, None, None,
'Integrated average DOS in cell')
def read_doscar(self, fname="DOSCAR"):
"""Read a VASP DOSCAR file"""
with open(fname) as fd:
natoms = int(fd.readline().split()[0])
[fd.readline() for _ in range(4)]
# First we have a block with total and total integrated DOS
ndos = int(fd.readline().split()[2])
dos = []
for _ in range(ndos):
dos.append(np.array([float(x) for x in fd.readline().split()]))
self._total_dos = np.array(dos).T
# Next we have one block per atom, if INCAR contains the stuff
# necessary for generating site-projected DOS
dos = []
for _ in range(natoms):
line = fd.readline()
if line == '':
# No site-projected DOS
break
ndos = int(line.split()[2])
line = fd.readline().split()
cdos = np.empty((ndos, len(line)))
cdos[0] = np.array(line)
for nd in range(1, ndos):
line = fd.readline().split()
cdos[nd] = np.array([float(x) for x in line])
dos.append(cdos.T)
self._site_dos = np.array(dos)
|