File: vdwcorrection.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (427 lines) | stat: -rw-r--r-- 15,002 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""van der Waals correction schemes for DFT"""
import numpy as np
from scipy.special import erfc, erfinv

from ase.calculators.calculator import Calculator
from ase.calculators.polarizability import StaticPolarizabilityCalculator
from ase.neighborlist import neighbor_list
from ase.parallel import myslice, world
from ase.units import Bohr, Hartree
from ase.utils import IOContext

# dipole polarizabilities and C6 values from
# X. Chu and A. Dalgarno, J. Chem. Phys. 121 (2004) 4083
# atomic units, a_0^3
vdWDB_Chu04jcp = {
    # Element: [alpha, C6]; units [Bohr^3, Hartree * Bohr^6]
    'H': [4.5, 6.5],  # [exact, Tkatchenko PRL]
    'He': [1.38, 1.42],
    'Li': [164, 1392],
    'Be': [38, 227],
    'B': [21, 99.5],
    'C': [12, 46.6],
    'N': [7.4, 24.2],
    'O': [5.4, 15.6],
    'F': [3.8, 9.52],
    'Ne': [2.67, 6.20],
    'Na': [163, 1518],
    'Mg': [71, 626],
    'Al': [60, 528],
    'Si': [37, 305],
    'P': [25, 185],
    'S': [19.6, 134],
    'Cl': [15, 94.6],
    'Ar': [11.1, 64.2],
    'Ca': [160, 2163],
    'Sc': [120, 1383],
    'Ti': [98, 1044],
    'V': [84, 832],
    'Cr': [78, 602],
    'Mn': [63, 552],
    'Fe': [56, 482],
    'Co': [50, 408],
    'Ni': [48, 373],
    'Cu': [42, 253],
    'Zn': [40, 284],
    'As': [29, 246],
    'Se': [25, 210],
    'Br': [20, 162],
    'Kr': [16.7, 130],
    'Sr': [199, 3175],
    'Te': [40, 445],
    'I': [35, 385]}

vdWDB_alphaC6 = vdWDB_Chu04jcp

# dipole polarizabilities and C6 values from
# V. G. Ruiz et al. Phys. Rev. Lett 108 (2012) 146103
# atomic units, a_0^3
vdWDB_Ruiz12prl = {
    'Ag': [50.6, 339],
    'Au': [36.5, 298],
    'Pd': [23.7, 158],
    'Pt': [39.7, 347],
}

vdWDB_alphaC6.update(vdWDB_Ruiz12prl)

# C6 values and vdW radii from
# S. Grimme, J Comput Chem 27 (2006) 1787-1799
vdWDB_Grimme06jcc = {
    # Element: [C6, R0]; units [J nm^6 mol^{-1}, Angstrom]
    'H': [0.14, 1.001],
    'He': [0.08, 1.012],
    'Li': [1.61, 0.825],
    'Be': [1.61, 1.408],
    'B': [3.13, 1.485],
    'C': [1.75, 1.452],
    'N': [1.23, 1.397],
    'O': [0.70, 1.342],
    'F': [0.75, 1.287],
    'Ne': [0.63, 1.243],
    'Na': [5.71, 1.144],
    'Mg': [5.71, 1.364],
    'Al': [10.79, 1.639],
    'Si': [9.23, 1.716],
    'P': [7.84, 1.705],
    'S': [5.57, 1.683],
    'Cl': [5.07, 1.639],
    'Ar': [4.61, 1.595],
    'K': [10.80, 1.485],
    'Ca': [10.80, 1.474],
    'Sc': [10.80, 1.562],
    'Ti': [10.80, 1.562],
    'V': [10.80, 1.562],
    'Cr': [10.80, 1.562],
    'Mn': [10.80, 1.562],
    'Fe': [10.80, 1.562],
    'Co': [10.80, 1.562],
    'Ni': [10.80, 1.562],
    'Cu': [10.80, 1.562],
    'Zn': [10.80, 1.562],
    'Ga': [16.99, 1.650],
    'Ge': [17.10, 1.727],
    'As': [16.37, 1.760],
    'Se': [12.64, 1.771],
    'Br': [12.47, 1.749],
    'Kr': [12.01, 1.727],
    'Rb': [24.67, 1.628],
    'Sr': [24.67, 1.606],
    'Y-Cd': [24.67, 1.639],
    'In': [37.32, 1.672],
    'Sn': [38.71, 1.804],
    'Sb': [38.44, 1.881],
    'Te': [31.74, 1.892],
    'I': [31.50, 1.892],
    'Xe': [29.99, 1.881]}


# Optimal range parameters sR for different XC functionals
# to be used with the Tkatchenko-Scheffler scheme
# Reference: M.A. Caro arXiv:1704.00761 (2017)
sR_opt = {'PBE': 0.940,
          'RPBE': 0.590,
          'revPBE': 0.585,
          'PBEsol': 1.055,
          'BLYP': 0.625,
          'AM05': 0.840,
          'PW91': 0.965}


def get_logging_file_descriptor(calculator):
    if hasattr(calculator, 'log'):
        fd = calculator.log
        if hasattr(fd, 'write'):
            return fd
        if hasattr(fd, 'fd'):
            return fd.fd
    if hasattr(calculator, 'txt'):
        return calculator.txt


class vdWTkatchenko09prl(Calculator, IOContext):
    """vdW correction after Tkatchenko and Scheffler PRL 102 (2009) 073005."""

    def __init__(self,
                 hirshfeld=None, vdwradii=None, calculator=None,
                 Rmax=10.,  # maximal radius for periodic calculations
                 Ldecay=1.,  # decay length for smoothing in periodic calcs
                 vdWDB_alphaC6=vdWDB_alphaC6,
                 txt=None, sR=None, comm=world):
        """Constructor

        Parameters
        ==========
        hirshfeld: the Hirshfeld partitioning object
        calculator: the calculator to get the PBE energy
        """
        self.hirshfeld = hirshfeld
        if calculator is None:
            self.calculator = self.hirshfeld.get_calculator()
        else:
            self.calculator = calculator

        if txt is None:
            txt = get_logging_file_descriptor(self.calculator)
        if hasattr(self.calculator, 'world'):
            self.comm = self.calculator.world
        else:
            self.comm = comm  # the best we know
        self.txt = self.openfile(file=txt, comm=self.comm)

        self.vdwradii = vdwradii
        self.vdWDB_alphaC6 = vdWDB_alphaC6
        self.Rmax = Rmax
        self.Ldecay = Ldecay
        self.atoms = None

        if sR is None:
            try:
                xc_name = self.calculator.get_xc_functional()
                self.sR = sR_opt[xc_name]
            except KeyError:
                raise ValueError(
                    'Tkatchenko-Scheffler dispersion correction not ' +
                    f'implemented for {xc_name} functional')
        else:
            self.sR = sR
        self.d = 20

        Calculator.__init__(self)

        self.parameters['calculator'] = self.calculator.name
        self.parameters['xc'] = self.calculator.get_xc_functional()

    @property
    def implemented_properties(self):
        return self.calculator.implemented_properties

    def calculation_required(self, atoms, quantities):
        if self.calculator.calculation_required(atoms, quantities):
            return True
        for quantity in quantities:
            if quantity not in self.results:
                return True
        return False

    def calculate(self, atoms=None, properties=['energy', 'forces'],
                  system_changes=[]):
        Calculator.calculate(self, atoms, properties, system_changes)
        self.update(atoms, properties)

    def update(self, atoms=None,
               properties=['energy', 'free_energy', 'forces']):
        if not self.calculation_required(atoms, properties):
            return

        if atoms is None:
            atoms = self.calculator.get_atoms()

        properties = list(properties)
        for name in 'energy', 'free_energy', 'forces':
            if name not in properties:
                properties.append(name)

        for name in properties:
            self.results[name] = self.calculator.get_property(name, atoms)
        self.parameters['uncorrected_energy'] = self.results['energy']
        self.atoms = atoms.copy()

        if self.vdwradii is not None:
            # external vdW radii
            vdwradii = self.vdwradii
            assert len(atoms) == len(vdwradii)
        else:
            vdwradii = []
            for atom in atoms:
                self.vdwradii.append(vdWDB_Grimme06jcc[atom.symbol][1])

        if self.hirshfeld is None:
            volume_ratios = [1.] * len(atoms)
        elif hasattr(self.hirshfeld, '__len__'):  # a list
            assert len(atoms) == len(self.hirshfeld)
            volume_ratios = self.hirshfeld
        else:  # should be an object
            self.hirshfeld.initialize()
            volume_ratios = self.hirshfeld.get_effective_volume_ratios()

        # correction for effective C6
        na = len(atoms)
        C6eff_a = np.empty(na)
        alpha_a = np.empty(na)
        R0eff_a = np.empty(na)
        for a, atom in enumerate(atoms):
            # free atom values
            alpha_a[a], C6eff_a[a] = self.vdWDB_alphaC6[atom.symbol]
            # correction for effective C6
            C6eff_a[a] *= Hartree * volume_ratios[a]**2 * Bohr**6
            R0eff_a[a] = vdwradii[a] * volume_ratios[a]**(1 / 3.)
        C6eff_aa = np.empty((na, na))
        for a in range(na):
            for b in range(a, na):
                C6eff_aa[a, b] = (2 * C6eff_a[a] * C6eff_a[b] /
                                  (alpha_a[b] / alpha_a[a] * C6eff_a[a] +
                                   alpha_a[a] / alpha_a[b] * C6eff_a[b]))
                C6eff_aa[b, a] = C6eff_aa[a, b]

        # New implementation by Miguel Caro
        # (complaints etc to mcaroba@gmail.com)
        # If all 3 PBC are False, we do the summation over the atom
        # pairs in the simulation box. If any of them is True, we
        # use the cutoff radius instead
        pbc_c = atoms.get_pbc()
        EvdW = 0.0
        forces = 0. * self.results['forces']
        # PBC: we build a neighbor list according to the Reff criterion
        if pbc_c.any():
            # Effective cutoff radius
            tol = 1.e-5
            Reff = self.Rmax + self.Ldecay * erfinv(1. - 2. * tol)
            # Build list of neighbors
            n_list = neighbor_list(quantities="ijdDS",
                                   a=atoms,
                                   cutoff=Reff,
                                   self_interaction=False)
            atom_list = [[] for _ in range(len(atoms))]
            d_list = [[] for _ in range(len(atoms))]
            v_list = [[] for _ in range(len(atoms))]
            # r_list = [[] for _ in range(0, len(atoms))]
            # Look for neighbor pairs
            for k in range(len(n_list[0])):
                i = n_list[0][k]
                j = n_list[1][k]
                dist = n_list[2][k]
                vect = n_list[3][k]  # vect is the distance rj - ri
                # repl = n_list[4][k]
                if j >= i:
                    atom_list[i].append(j)
                    d_list[i].append(dist)
                    v_list[i].append(vect)
                    # r_list[i].append( repl )
        # Not PBC: we loop over all atoms in the unit cell only
        else:
            atom_list = []
            d_list = []
            v_list = []
            # r_list = []
            # Do this to avoid double counting
            for i in range(len(atoms)):
                atom_list.append(range(i + 1, len(atoms)))
                d_list.append([atoms.get_distance(i, j)
                               for j in range(i + 1, len(atoms))])
                v_list.append([atoms.get_distance(i, j, vector=True)
                               for j in range(i + 1, len(atoms))])
                # r_list.append( [[0,0,0] for j in range(i+1, len(atoms))])
                # No PBC means we are in the same cell

        # Here goes the calculation, valid with and without
        # PBC because we loop over
        # independent pairwise *interactions*
        ms = myslice(len(atoms), self.comm)
        for i in range(len(atoms))[ms]:
            # for j, r, vect, repl in zip(atom_list[i], d_list[i],
            #                             v_list[i], r_list[i]):
            for j, r, vect in zip(atom_list[i], d_list[i], v_list[i]):
                r6 = r**6
                Edamp, Fdamp = self.damping(r,
                                            R0eff_a[i],
                                            R0eff_a[j],
                                            d=self.d,
                                            sR=self.sR)
                if pbc_c.any():
                    smooth = 0.5 * erfc((r - self.Rmax) / self.Ldecay)
                    smooth_der = -1. / np.sqrt(np.pi) / self.Ldecay * np.exp(
                        -((r - self.Rmax) / self.Ldecay)**2)
                else:
                    smooth = 1.
                    smooth_der = 0.
                # Here we compute the contribution to the energy
                # Self interactions (only possible in PBC) are double counted.
                # We correct it here
                if i == j:
                    EvdW -= (Edamp * C6eff_aa[i, j] / r6) / 2. * smooth
                else:
                    EvdW -= (Edamp * C6eff_aa[i, j] / r6) * smooth
                # Here we compute the contribution to the forces
                # We neglect the C6eff contribution to the forces
                # (which can actually be larger
                # than the other contributions)
                # Self interactions do not contribute to the forces
                if i != j:
                    # Force on i due to j
                    force_ij = -(
                        (Fdamp - 6 * Edamp / r) * C6eff_aa[i, j] / r6 * smooth
                        + (Edamp * C6eff_aa[i, j] / r6) * smooth_der) * vect / r
                    # Forces go both ways for every interaction
                    forces[i] += force_ij
                    forces[j] -= force_ij
        EvdW = self.comm.sum_scalar(EvdW)
        self.comm.sum(forces)

        self.results['energy'] += EvdW
        self.results['free_energy'] += EvdW
        self.results['forces'] += forces

        if self.txt:
            print(('\n' + self.__class__.__name__), file=self.txt)
            print(f'vdW correction: {EvdW}', file=self.txt)
            print(f'Energy:         {self.results["energy"]}',
                  file=self.txt)
            print('\nForces in eV/Ang:', file=self.txt)
            symbols = self.atoms.get_chemical_symbols()
            for ia, symbol in enumerate(symbols):
                print('%3d %-2s %10.5f %10.5f %10.5f' %
                      ((ia, symbol) + tuple(self.results['forces'][ia])),
                      file=self.txt)
            self.txt.flush()

    def damping(self, RAB, R0A, R0B,
                d=20,   # steepness of the step function for PBE
                sR=0.94):
        """Damping factor.

        Standard values for d and sR as given in
        Tkatchenko and Scheffler PRL 102 (2009) 073005."""
        scale = 1.0 / (sR * (R0A + R0B))
        x = RAB * scale
        chi = np.exp(-d * (x - 1.0))
        return 1.0 / (1.0 + chi), d * scale * chi / (1.0 + chi)**2


def calculate_ts09_polarizability(atoms):
    """Calculate polarizability tensor

    atoms: Atoms object
    The atoms object must have a vdWTkatchenko90prl calculator attached.

    Returns
    -------
      polarizability tensor:
      Unit (e^2 Angstrom^2 / eV).
      Multiply with Bohr * Ha to get (Angstrom^3)
    """
    calc = atoms.calc
    assert isinstance(calc, vdWTkatchenko09prl)
    atoms.get_potential_energy()

    volume_ratios = calc.hirshfeld.get_effective_volume_ratios()

    na = len(atoms)
    alpha_a = np.empty(na)
    alpha_eff_a = np.empty(na)
    for a, atom in enumerate(atoms):
        # free atom values
        alpha_a[a], _ = calc.vdWDB_alphaC6[atom.symbol]
        # effective polarizability assuming linear combination
        # of atomic polarizability from ts09
        alpha_eff_a[a] = volume_ratios[a] * alpha_a[a]

    alpha = np.sum(alpha_eff_a) * Bohr**2 / Hartree
    return np.diag([alpha] * 3)


class TS09Polarizability(StaticPolarizabilityCalculator):
    """Class interface as expected by Displacement"""

    def __call__(self, atoms):
        return calculate_ts09_polarizability(atoms)