1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
"""van der Waals correction schemes for DFT"""
import numpy as np
from scipy.special import erfc, erfinv
from ase.calculators.calculator import Calculator
from ase.calculators.polarizability import StaticPolarizabilityCalculator
from ase.neighborlist import neighbor_list
from ase.parallel import myslice, world
from ase.units import Bohr, Hartree
from ase.utils import IOContext
# dipole polarizabilities and C6 values from
# X. Chu and A. Dalgarno, J. Chem. Phys. 121 (2004) 4083
# atomic units, a_0^3
vdWDB_Chu04jcp = {
# Element: [alpha, C6]; units [Bohr^3, Hartree * Bohr^6]
'H': [4.5, 6.5], # [exact, Tkatchenko PRL]
'He': [1.38, 1.42],
'Li': [164, 1392],
'Be': [38, 227],
'B': [21, 99.5],
'C': [12, 46.6],
'N': [7.4, 24.2],
'O': [5.4, 15.6],
'F': [3.8, 9.52],
'Ne': [2.67, 6.20],
'Na': [163, 1518],
'Mg': [71, 626],
'Al': [60, 528],
'Si': [37, 305],
'P': [25, 185],
'S': [19.6, 134],
'Cl': [15, 94.6],
'Ar': [11.1, 64.2],
'Ca': [160, 2163],
'Sc': [120, 1383],
'Ti': [98, 1044],
'V': [84, 832],
'Cr': [78, 602],
'Mn': [63, 552],
'Fe': [56, 482],
'Co': [50, 408],
'Ni': [48, 373],
'Cu': [42, 253],
'Zn': [40, 284],
'As': [29, 246],
'Se': [25, 210],
'Br': [20, 162],
'Kr': [16.7, 130],
'Sr': [199, 3175],
'Te': [40, 445],
'I': [35, 385]}
vdWDB_alphaC6 = vdWDB_Chu04jcp
# dipole polarizabilities and C6 values from
# V. G. Ruiz et al. Phys. Rev. Lett 108 (2012) 146103
# atomic units, a_0^3
vdWDB_Ruiz12prl = {
'Ag': [50.6, 339],
'Au': [36.5, 298],
'Pd': [23.7, 158],
'Pt': [39.7, 347],
}
vdWDB_alphaC6.update(vdWDB_Ruiz12prl)
# C6 values and vdW radii from
# S. Grimme, J Comput Chem 27 (2006) 1787-1799
vdWDB_Grimme06jcc = {
# Element: [C6, R0]; units [J nm^6 mol^{-1}, Angstrom]
'H': [0.14, 1.001],
'He': [0.08, 1.012],
'Li': [1.61, 0.825],
'Be': [1.61, 1.408],
'B': [3.13, 1.485],
'C': [1.75, 1.452],
'N': [1.23, 1.397],
'O': [0.70, 1.342],
'F': [0.75, 1.287],
'Ne': [0.63, 1.243],
'Na': [5.71, 1.144],
'Mg': [5.71, 1.364],
'Al': [10.79, 1.639],
'Si': [9.23, 1.716],
'P': [7.84, 1.705],
'S': [5.57, 1.683],
'Cl': [5.07, 1.639],
'Ar': [4.61, 1.595],
'K': [10.80, 1.485],
'Ca': [10.80, 1.474],
'Sc': [10.80, 1.562],
'Ti': [10.80, 1.562],
'V': [10.80, 1.562],
'Cr': [10.80, 1.562],
'Mn': [10.80, 1.562],
'Fe': [10.80, 1.562],
'Co': [10.80, 1.562],
'Ni': [10.80, 1.562],
'Cu': [10.80, 1.562],
'Zn': [10.80, 1.562],
'Ga': [16.99, 1.650],
'Ge': [17.10, 1.727],
'As': [16.37, 1.760],
'Se': [12.64, 1.771],
'Br': [12.47, 1.749],
'Kr': [12.01, 1.727],
'Rb': [24.67, 1.628],
'Sr': [24.67, 1.606],
'Y-Cd': [24.67, 1.639],
'In': [37.32, 1.672],
'Sn': [38.71, 1.804],
'Sb': [38.44, 1.881],
'Te': [31.74, 1.892],
'I': [31.50, 1.892],
'Xe': [29.99, 1.881]}
# Optimal range parameters sR for different XC functionals
# to be used with the Tkatchenko-Scheffler scheme
# Reference: M.A. Caro arXiv:1704.00761 (2017)
sR_opt = {'PBE': 0.940,
'RPBE': 0.590,
'revPBE': 0.585,
'PBEsol': 1.055,
'BLYP': 0.625,
'AM05': 0.840,
'PW91': 0.965}
def get_logging_file_descriptor(calculator):
if hasattr(calculator, 'log'):
fd = calculator.log
if hasattr(fd, 'write'):
return fd
if hasattr(fd, 'fd'):
return fd.fd
if hasattr(calculator, 'txt'):
return calculator.txt
class vdWTkatchenko09prl(Calculator, IOContext):
"""vdW correction after Tkatchenko and Scheffler PRL 102 (2009) 073005."""
def __init__(self,
hirshfeld=None, vdwradii=None, calculator=None,
Rmax=10., # maximal radius for periodic calculations
Ldecay=1., # decay length for smoothing in periodic calcs
vdWDB_alphaC6=vdWDB_alphaC6,
txt=None, sR=None, comm=world):
"""Constructor
Parameters
==========
hirshfeld: the Hirshfeld partitioning object
calculator: the calculator to get the PBE energy
"""
self.hirshfeld = hirshfeld
if calculator is None:
self.calculator = self.hirshfeld.get_calculator()
else:
self.calculator = calculator
if txt is None:
txt = get_logging_file_descriptor(self.calculator)
if hasattr(self.calculator, 'world'):
self.comm = self.calculator.world
else:
self.comm = comm # the best we know
self.txt = self.openfile(file=txt, comm=self.comm)
self.vdwradii = vdwradii
self.vdWDB_alphaC6 = vdWDB_alphaC6
self.Rmax = Rmax
self.Ldecay = Ldecay
self.atoms = None
if sR is None:
try:
xc_name = self.calculator.get_xc_functional()
self.sR = sR_opt[xc_name]
except KeyError:
raise ValueError(
'Tkatchenko-Scheffler dispersion correction not ' +
f'implemented for {xc_name} functional')
else:
self.sR = sR
self.d = 20
Calculator.__init__(self)
self.parameters['calculator'] = self.calculator.name
self.parameters['xc'] = self.calculator.get_xc_functional()
@property
def implemented_properties(self):
return self.calculator.implemented_properties
def calculation_required(self, atoms, quantities):
if self.calculator.calculation_required(atoms, quantities):
return True
for quantity in quantities:
if quantity not in self.results:
return True
return False
def calculate(self, atoms=None, properties=['energy', 'forces'],
system_changes=[]):
Calculator.calculate(self, atoms, properties, system_changes)
self.update(atoms, properties)
def update(self, atoms=None,
properties=['energy', 'free_energy', 'forces']):
if not self.calculation_required(atoms, properties):
return
if atoms is None:
atoms = self.calculator.get_atoms()
properties = list(properties)
for name in 'energy', 'free_energy', 'forces':
if name not in properties:
properties.append(name)
for name in properties:
self.results[name] = self.calculator.get_property(name, atoms)
self.parameters['uncorrected_energy'] = self.results['energy']
self.atoms = atoms.copy()
if self.vdwradii is not None:
# external vdW radii
vdwradii = self.vdwradii
assert len(atoms) == len(vdwradii)
else:
vdwradii = []
for atom in atoms:
self.vdwradii.append(vdWDB_Grimme06jcc[atom.symbol][1])
if self.hirshfeld is None:
volume_ratios = [1.] * len(atoms)
elif hasattr(self.hirshfeld, '__len__'): # a list
assert len(atoms) == len(self.hirshfeld)
volume_ratios = self.hirshfeld
else: # should be an object
self.hirshfeld.initialize()
volume_ratios = self.hirshfeld.get_effective_volume_ratios()
# correction for effective C6
na = len(atoms)
C6eff_a = np.empty(na)
alpha_a = np.empty(na)
R0eff_a = np.empty(na)
for a, atom in enumerate(atoms):
# free atom values
alpha_a[a], C6eff_a[a] = self.vdWDB_alphaC6[atom.symbol]
# correction for effective C6
C6eff_a[a] *= Hartree * volume_ratios[a]**2 * Bohr**6
R0eff_a[a] = vdwradii[a] * volume_ratios[a]**(1 / 3.)
C6eff_aa = np.empty((na, na))
for a in range(na):
for b in range(a, na):
C6eff_aa[a, b] = (2 * C6eff_a[a] * C6eff_a[b] /
(alpha_a[b] / alpha_a[a] * C6eff_a[a] +
alpha_a[a] / alpha_a[b] * C6eff_a[b]))
C6eff_aa[b, a] = C6eff_aa[a, b]
# New implementation by Miguel Caro
# (complaints etc to mcaroba@gmail.com)
# If all 3 PBC are False, we do the summation over the atom
# pairs in the simulation box. If any of them is True, we
# use the cutoff radius instead
pbc_c = atoms.get_pbc()
EvdW = 0.0
forces = 0. * self.results['forces']
# PBC: we build a neighbor list according to the Reff criterion
if pbc_c.any():
# Effective cutoff radius
tol = 1.e-5
Reff = self.Rmax + self.Ldecay * erfinv(1. - 2. * tol)
# Build list of neighbors
n_list = neighbor_list(quantities="ijdDS",
a=atoms,
cutoff=Reff,
self_interaction=False)
atom_list = [[] for _ in range(len(atoms))]
d_list = [[] for _ in range(len(atoms))]
v_list = [[] for _ in range(len(atoms))]
# r_list = [[] for _ in range(0, len(atoms))]
# Look for neighbor pairs
for k in range(len(n_list[0])):
i = n_list[0][k]
j = n_list[1][k]
dist = n_list[2][k]
vect = n_list[3][k] # vect is the distance rj - ri
# repl = n_list[4][k]
if j >= i:
atom_list[i].append(j)
d_list[i].append(dist)
v_list[i].append(vect)
# r_list[i].append( repl )
# Not PBC: we loop over all atoms in the unit cell only
else:
atom_list = []
d_list = []
v_list = []
# r_list = []
# Do this to avoid double counting
for i in range(len(atoms)):
atom_list.append(range(i + 1, len(atoms)))
d_list.append([atoms.get_distance(i, j)
for j in range(i + 1, len(atoms))])
v_list.append([atoms.get_distance(i, j, vector=True)
for j in range(i + 1, len(atoms))])
# r_list.append( [[0,0,0] for j in range(i+1, len(atoms))])
# No PBC means we are in the same cell
# Here goes the calculation, valid with and without
# PBC because we loop over
# independent pairwise *interactions*
ms = myslice(len(atoms), self.comm)
for i in range(len(atoms))[ms]:
# for j, r, vect, repl in zip(atom_list[i], d_list[i],
# v_list[i], r_list[i]):
for j, r, vect in zip(atom_list[i], d_list[i], v_list[i]):
r6 = r**6
Edamp, Fdamp = self.damping(r,
R0eff_a[i],
R0eff_a[j],
d=self.d,
sR=self.sR)
if pbc_c.any():
smooth = 0.5 * erfc((r - self.Rmax) / self.Ldecay)
smooth_der = -1. / np.sqrt(np.pi) / self.Ldecay * np.exp(
-((r - self.Rmax) / self.Ldecay)**2)
else:
smooth = 1.
smooth_der = 0.
# Here we compute the contribution to the energy
# Self interactions (only possible in PBC) are double counted.
# We correct it here
if i == j:
EvdW -= (Edamp * C6eff_aa[i, j] / r6) / 2. * smooth
else:
EvdW -= (Edamp * C6eff_aa[i, j] / r6) * smooth
# Here we compute the contribution to the forces
# We neglect the C6eff contribution to the forces
# (which can actually be larger
# than the other contributions)
# Self interactions do not contribute to the forces
if i != j:
# Force on i due to j
force_ij = -(
(Fdamp - 6 * Edamp / r) * C6eff_aa[i, j] / r6 * smooth
+ (Edamp * C6eff_aa[i, j] / r6) * smooth_der) * vect / r
# Forces go both ways for every interaction
forces[i] += force_ij
forces[j] -= force_ij
EvdW = self.comm.sum_scalar(EvdW)
self.comm.sum(forces)
self.results['energy'] += EvdW
self.results['free_energy'] += EvdW
self.results['forces'] += forces
if self.txt:
print(('\n' + self.__class__.__name__), file=self.txt)
print(f'vdW correction: {EvdW}', file=self.txt)
print(f'Energy: {self.results["energy"]}',
file=self.txt)
print('\nForces in eV/Ang:', file=self.txt)
symbols = self.atoms.get_chemical_symbols()
for ia, symbol in enumerate(symbols):
print('%3d %-2s %10.5f %10.5f %10.5f' %
((ia, symbol) + tuple(self.results['forces'][ia])),
file=self.txt)
self.txt.flush()
def damping(self, RAB, R0A, R0B,
d=20, # steepness of the step function for PBE
sR=0.94):
"""Damping factor.
Standard values for d and sR as given in
Tkatchenko and Scheffler PRL 102 (2009) 073005."""
scale = 1.0 / (sR * (R0A + R0B))
x = RAB * scale
chi = np.exp(-d * (x - 1.0))
return 1.0 / (1.0 + chi), d * scale * chi / (1.0 + chi)**2
def calculate_ts09_polarizability(atoms):
"""Calculate polarizability tensor
atoms: Atoms object
The atoms object must have a vdWTkatchenko90prl calculator attached.
Returns
-------
polarizability tensor:
Unit (e^2 Angstrom^2 / eV).
Multiply with Bohr * Ha to get (Angstrom^3)
"""
calc = atoms.calc
assert isinstance(calc, vdWTkatchenko09prl)
atoms.get_potential_energy()
volume_ratios = calc.hirshfeld.get_effective_volume_ratios()
na = len(atoms)
alpha_a = np.empty(na)
alpha_eff_a = np.empty(na)
for a, atom in enumerate(atoms):
# free atom values
alpha_a[a], _ = calc.vdWDB_alphaC6[atom.symbol]
# effective polarizability assuming linear combination
# of atomic polarizability from ts09
alpha_eff_a[a] = volume_ratios[a] * alpha_a[a]
alpha = np.sum(alpha_eff_a) * Bohr**2 / Hartree
return np.diag([alpha] * 3)
class TS09Polarizability(StaticPolarizabilityCalculator):
"""Class interface as expected by Displacement"""
def __call__(self, atoms):
return calculate_ts09_polarizability(atoms)
|