1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
# Note:
# Try to avoid module level import statements here to reduce
# import time during CLI execution
import sys
import numpy as np
class CLICommand:
"""Build an atom, molecule or bulk structure.
Atom:
ase build <chemical symbol> ...
Molecule:
ase build <formula> ...
where <formula> must be one of the formulas known to ASE
(see here: https://wiki.fysik.dtu.dk/ase/ase/build/build.html#molecules).
Bulk:
ase build -x <crystal structure> <formula> ...
Examples:
ase build Li # lithium atom
ase build Li -M 1 # ... with a magnetic moment of 1
ase build Li -M 1 -V 3.5 # ... in a 7x7x7 Ang cell
ase build H2O # water molecule
ase build -x fcc Cu -a 3.6 # FCC copper
"""
@staticmethod
def add_arguments(parser):
add = parser.add_argument
add('name', metavar='formula/input-file',
help='Chemical formula or input filename.')
add('output', nargs='?', help='Output file.')
add('-M', '--magnetic-moment',
metavar='M1,M2,...',
help='Magnetic moments. '
'Use "-M 1" or "-M 2.3,-2.3"')
add('--modify', metavar='...',
help='Modify atoms with Python statement. '
'Example: --modify="atoms.positions[-1,2]+=0.1"')
add('-V', '--vacuum', type=float,
help='Amount of vacuum to add around isolated atoms '
'(in Angstrom)')
add('-v', '--vacuum0', type=float,
help='Deprecated. Use -V or --vacuum instead')
add('--unit-cell', metavar='CELL',
help='Unit cell in Angstrom. Examples: "10.0" or "9,10,11"')
add('--bond-length', type=float, metavar='LENGTH',
help='Bond length of dimer in Angstrom')
add('-x', '--crystal-structure',
help='Crystal structure',
choices=['sc', 'fcc', 'bcc', 'hcp', 'diamond',
'zincblende', 'rocksalt', 'cesiumchloride',
'fluorite', 'wurtzite'])
add('-a', '--lattice-constant', default='', metavar='LENGTH',
help='Lattice constant or comma-separated lattice constantes in '
'Angstrom')
add('--orthorhombic', action='store_true',
help='Use orthorhombic unit cell')
add('--cubic', action='store_true',
help='Use cubic unit cell')
add('-r', '--repeat',
help='Repeat unit cell. Use "-r 2" or "-r 2,3,1"')
add('-g', '--gui', action='store_true',
help='open ase gui')
add('--periodic', action='store_true',
help='make structure fully periodic')
@staticmethod
def run(args, parser):
from ase.db import connect
from ase.io import read, write
from ase.visualize import view
if args.vacuum0:
parser.error('Please use -V or --vacuum instead!')
if '.' in args.name:
# Read from file:
atoms = read(args.name)
elif args.crystal_structure:
atoms = build_bulk(args)
else:
atoms = build_molecule(args)
if args.magnetic_moment:
magmoms = np.array(
[float(m) for m in args.magnetic_moment.split(',')])
atoms.set_initial_magnetic_moments(
np.tile(magmoms, len(atoms) // len(magmoms)))
if args.modify:
exec(args.modify, {'atoms': atoms})
if args.repeat is not None:
r = args.repeat.split(',')
if len(r) == 1:
r = 3 * r
atoms = atoms.repeat([int(c) for c in r])
if args.gui:
view(atoms)
if args.output:
write(args.output, atoms)
elif sys.stdout.isatty():
write(args.name + '.json', atoms)
else:
con = connect(sys.stdout, type='json')
con.write(atoms, name=args.name)
def build_molecule(args):
from ase.atoms import Atoms
from ase.build import molecule
from ase.data import (
atomic_numbers,
covalent_radii,
ground_state_magnetic_moments,
)
from ase.symbols import string2symbols
try:
# Known molecule or atom?
atoms = molecule(args.name)
except (NotImplementedError, KeyError):
symbols = string2symbols(args.name)
if len(symbols) == 1:
Z = atomic_numbers[symbols[0]]
magmom = ground_state_magnetic_moments[Z]
atoms = Atoms(args.name, magmoms=[magmom])
elif len(symbols) == 2:
# Dimer
if args.bond_length is None:
b = (covalent_radii[atomic_numbers[symbols[0]]] +
covalent_radii[atomic_numbers[symbols[1]]])
else:
b = args.bond_length
atoms = Atoms(args.name, positions=[(0, 0, 0),
(b, 0, 0)])
else:
raise ValueError('Unknown molecule: ' + args.name)
else:
if len(atoms) == 2 and args.bond_length is not None:
atoms.set_distance(0, 1, args.bond_length)
if args.unit_cell is None:
if args.vacuum:
atoms.center(vacuum=args.vacuum)
else:
atoms.center(about=[0, 0, 0])
else:
a = [float(x) for x in args.unit_cell.split(',')]
if len(a) == 1:
cell = [a[0], a[0], a[0]]
elif len(a) == 3:
cell = a
else:
a, b, c, alpha, beta, gamma = a
degree = np.pi / 180.0
cosa = np.cos(alpha * degree)
cosb = np.cos(beta * degree)
sinb = np.sin(beta * degree)
cosg = np.cos(gamma * degree)
sing = np.sin(gamma * degree)
cell = [[a, 0, 0],
[b * cosg, b * sing, 0],
[c * cosb, c * (cosa - cosb * cosg) / sing,
c * np.sqrt(
sinb**2 - ((cosa - cosb * cosg) / sing)**2)]]
atoms.cell = cell
atoms.center()
atoms.pbc = args.periodic
return atoms
def build_bulk(args):
from ase.build import bulk
L = args.lattice_constant.replace(',', ' ').split()
d = {key: float(x) for key, x in zip('ac', L)}
atoms = bulk(args.name, crystalstructure=args.crystal_structure,
a=d.get('a'), c=d.get('c'),
orthorhombic=args.orthorhombic, cubic=args.cubic)
M, X = {'Fe': (2.3, 'bcc'),
'Co': (1.2, 'hcp'),
'Ni': (0.6, 'fcc')}.get(args.name, (None, None))
if M is not None and args.crystal_structure == X:
atoms.set_initial_magnetic_moments([M] * len(atoms))
return atoms
|