File: bandgap.py

package info (click to toggle)
python-ase 3.24.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 15,448 kB
  • sloc: python: 144,945; xml: 2,728; makefile: 113; javascript: 47
file content (222 lines) | stat: -rw-r--r-- 6,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import warnings
from dataclasses import dataclass

import numpy as np

spin_error = (
    'The spin keyword is no longer supported.  Please call the function '
    'with the energies corresponding to the desired spins.')
_deprecated = object()


def get_band_gap(calc, direct=False, spin=_deprecated):
    warnings.warn('Please use ase.dft.bandgap.bandgap() instead!')
    gap, (s1, k1, _n1), (s2, k2, _n2) = bandgap(calc, direct, spin=spin)
    ns = calc.get_number_of_spins()
    if ns == 2:
        return gap, (s1, k1), (s2, k2)
    return gap, k1, k2


@dataclass
class GapInfo:
    eigenvalues: np.ndarray

    def __post_init__(self):
        self._gapinfo = _bandgap(self.eigenvalues, direct=False)
        self._direct_gapinfo = _bandgap(self.eigenvalues, direct=True)

    @classmethod
    def fromcalc(cls, calc):
        kpts = calc.get_ibz_k_points()
        nk = len(kpts)
        ns = calc.get_number_of_spins()
        eigenvalues = np.array([[calc.get_eigenvalues(kpt=k, spin=s)
                                 for k in range(nk)]
                                for s in range(ns)])

        efermi = calc.get_fermi_level()
        return cls(eigenvalues - efermi)

    def gap(self):
        return self._gapinfo

    def direct_gap(self):
        return self._direct_gapinfo

    @property
    def is_metallic(self) -> bool:
        return self._gapinfo[0] == 0.0

    @property
    def gap_is_direct(self) -> bool:
        """Whether the direct and indirect gaps are the same transition."""
        return self._gapinfo[1:] == self._direct_gapinfo[1:]

    def description(self, *, ibz_kpoints=None) -> str:
        """Return human-friendly description of direct/indirect gap.

        If ibz_k_points are given, coordinates are printed as well."""
        from typing import List

        lines: List[str] = []
        add = lines.append

        def skn(skn):
            """Convert k-point indices (s, k, n) to string."""
            description = 's={}, k={}, n={}'.format(*skn)
            if ibz_kpoints is not None:
                coordtxt = '[{:.2f}, {:.2f}, {:.2f}]'.format(
                    *ibz_kpoints[skn[1]])
                description = f'{description}, {coordtxt}'
            return f'({description})'

        gap, skn1, skn2 = self.gap()
        direct_gap, skn_direct1, skn_direct2 = self.direct_gap()

        if self.is_metallic:
            add('No gap')
        else:
            add(f'Gap: {gap:.3f} eV')
            add('Transition (v -> c):')
            add(f'  {skn(skn1)} -> {skn(skn2)}')

        if self.gap_is_direct:
            add('No difference between direct/indirect transitions')
        else:
            add('Direct/indirect transitions are different')
            add(f'Direct gap: {direct_gap:.3f} eV')
            if skn_direct1[0] == skn_direct2[0]:
                add(f'Transition at: {skn(skn_direct1)}')
            else:
                transition = skn((f'{skn_direct1[0]}->{skn_direct2[0]}',
                                  *skn_direct1[1:]))
                add(f'Transition at: {transition}')

        return '\n'.join(lines)


def bandgap(calc=None, direct=False, spin=_deprecated,
            eigenvalues=None, efermi=None, output=None, kpts=None):
    """Calculates the band-gap.

    Parameters:

    calc: Calculator object
        Electronic structure calculator object.
    direct: bool
        Calculate direct band-gap.
    eigenvalues: ndarray of shape (nspin, nkpt, nband) or (nkpt, nband)
        Eigenvalues.
    efermi: float
        Fermi level (defaults to 0.0).

    Returns a (gap, p1, p2) tuple where p1 and p2 are tuples of indices of the
    valence and conduction points (s, k, n).

    Example:

    >>> gap, p1, p2 = bandgap(silicon.calc)
    >>> print(gap, p1, p2)
    1.2 (0, 0, 3), (0, 5, 4)
    >>> gap, p1, p2 = bandgap(silicon.calc, direct=True)
    >>> print(gap, p1, p2)
    3.4 (0, 0, 3), (0, 0, 4)
    """

    if spin is not _deprecated:
        raise RuntimeError(spin_error)

    if calc:
        kpts = calc.get_ibz_k_points()
        nk = len(kpts)
        ns = calc.get_number_of_spins()
        eigenvalues = np.array([[calc.get_eigenvalues(kpt=k, spin=s)
                                 for k in range(nk)]
                                for s in range(ns)])
        if efermi is None:
            efermi = calc.get_fermi_level()

    efermi = efermi or 0.0

    gapinfo = GapInfo(eigenvalues - efermi)

    e_skn = gapinfo.eigenvalues
    if eigenvalues.ndim == 2:
        e_skn = e_skn[np.newaxis]  # spinors

    if not np.isfinite(e_skn).all():
        raise ValueError('Bad eigenvalues!')

    gap, (s1, k1, n1), (s2, k2, n2) = _bandgap(e_skn, direct)

    if eigenvalues.ndim != 3:
        p1 = (k1, n1)
        p2 = (k2, n2)
    else:
        p1 = (s1, k1, n1)
        p2 = (s2, k2, n2)

    return gap, p1, p2


def _bandgap(e_skn, direct):
    """Helper function."""
    ns, nk, nb = e_skn.shape
    s1 = s2 = k1 = k2 = n1 = n2 = None

    N_sk = (e_skn < 0.0).sum(2)  # number of occupied bands

    # Check for bands crossing the fermi-level
    if ns == 1:
        if np.ptp(N_sk[0]) > 0:
            return 0.0, (None, None, None), (None, None, None)
    else:
        if (np.ptp(N_sk, axis=1) > 0).any():
            return 0.0, (None, None, None), (None, None, None)

    if (N_sk == 0).any() or (N_sk == nb).any():
        raise ValueError('Too few bands!')

    e_skn = np.array([[e_skn[s, k, N_sk[s, k] - 1:N_sk[s, k] + 1]
                       for k in range(nk)]
                      for s in range(ns)])
    ev_sk = e_skn[:, :, 0]  # valence band
    ec_sk = e_skn[:, :, 1]  # conduction band

    if ns == 1:
        s1 = 0
        s2 = 0
        gap, k1, k2 = find_gap(ev_sk[0], ec_sk[0], direct)
        n1 = N_sk[0, 0] - 1
        n2 = n1 + 1
        return gap, (0, k1, n1), (0, k2, n2)

    gap, k1, k2 = find_gap(ev_sk.ravel(), ec_sk.ravel(), direct)
    if direct:
        # Check also spin flips:
        for s in [0, 1]:
            g, k, _ = find_gap(ev_sk[s], ec_sk[1 - s], direct)
            if g < gap:
                gap = g
                k1 = k + nk * s
                k2 = k + nk * (1 - s)

    if gap > 0.0:
        s1, k1 = divmod(k1, nk)
        s2, k2 = divmod(k2, nk)
        n1 = N_sk[s1, k1] - 1
        n2 = N_sk[s2, k2]
        return gap, (s1, k1, n1), (s2, k2, n2)
    return 0.0, (None, None, None), (None, None, None)


def find_gap(ev_k, ec_k, direct):
    """Helper function."""
    if direct:
        gap_k = ec_k - ev_k
        k = gap_k.argmin()
        return gap_k[k], k, k
    kv = ev_k.argmax()
    kc = ec_k.argmin()
    return ec_k[kc] - ev_k[kv], kv, kc